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Abstract
Spatial familiarity plays an essential role in the wayfinding decision-making process. Recent findings
in wayfinding activity recognition domain suggest that wayfinders’ turning behavior at junctions
is strongly influenced by their spatial familiarity. By continuously monitoring wayfinders’ turning
behavior as reflected in their eye movements during the decision-making period (i.e., immediately
after an instruction is received until reaching the corresponding junction for which the instruction
was given), we provide evidence that familiar and unfamiliar wayfinders can be distinguished. By
applying a pre-trained XGBoost turning activity classifier on gaze data collected in a real-world
wayfinding task with 33 participants, our results suggest that familiar and unfamiliar wayfinders show
different onset and intensity of turning behavior. These variations are not only present between the
two classes –familiar vs. unfamiliar– but also within each class. The differences in turning-behavior
within each class may stem from multiple sources, including different levels of familiarity with the
environment.
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1 Introduction

Wayfinding as a general concept is outlined as “the most prominent real-world application of
spatial cognition” [40]. It is an ongoing decision-making process consisting of several tasks,
each of which requires cognitive resources [3]. The cognitive demand for each task heavily
relies on environmental and user-related features. Theoretical reasoning (e.g. [40, 14, 15])
and empirical evidence (e.g. [31, 23, 25, 12] suggest that familiarity with the environment as a
particular state of spatial cognition plays an important role in the wayfinding decision-making
process. Our previous research on the prediction of wayfinders’ turning activity, as an actual
realization of a series of spatial decisions, introduced familiarity as the most important/
influential feature for the prediction model [2].
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Motivated by our previous finding [2], presenting familiarity with the environment as
the most important feature in turning activity prediction, we decided to more thoroughly
look into this feature during the decision-making process for the turning activity. After
receiving any instruction, wayfinders try to match the conveyed spatial information to the
physical environment and decide for their turning action (i.e., whether to turn left/right or
continue straight ahead). Trying to understand the undergoing cognitive processes in this
matching-to-action phase may reveal aspects of spatial cognition, including spatial familiarity.
Understanding the behavioral correlates of familiarity in this phase of decision-making is
a valuable theoretical contribution in the spatial familiarity domain and provides a fertile
ground for cognitively engineered spatial systems, e.g., more context-aware navigation aid
systems.

In this paper we take a step into this direction: We demonstrate that familiar and
unfamiliar wayfinders, exhibit differing behaviors while reacting on navigational instructions
to decide whether to turn or continue straight (this we call “turning-activity”). On this
account, we monitor the wayfinders’ gaze behavior in relation to their turning-activity, i.e.,
during the matching-to-action phase of the decision-making process, using a mobile eye
tracker and a high-precision GNSS receiver. We report on an in-situ pedestrian wayfinding
study (N = 33), during which participants walked two routes: one located in an area with
which they were familiar, whereas another route located in an area they were unfamiliar
with. The familiarity with the environment was reported by participants in a multi-step
procedure online study prior to the in-situ experiment (see Section 3.1 for more details). We
adapted the pre-trained XGBoost model taken from our previous research [2] and applied it
to the gaze behavior of these two groups of wayfinders, within the matching-to-action phase.

Our analysis provide evidence that detecting gaze-behavioral differences concerning the
turn activity reveals the familiarity of the wayfinders as a binary measure. In addition to
that, as the distribution of probabilities predicting turn vs. no turn activities varies within
both groups, familiar and unfamiliar participant, alike, our findings may lead to a potential
proxy for the estimated level of familiarity.

2 Related Work

Given the aforementioned research goals, we first review previous findings on familiarity
aspects of wayfinding and continue with wayfinding studies that examine gaze behavior
during decision-making. Finally, we report on the prior work on using Machine Learning (ML)
methods for activity classification based on eye-tracking data.

2.1 Familiarity Aspects in Wayfinding and Beyond
“We reason that a navigator’s search behavior and search strategy will be heavily influenced
by their degree of familiarity with the environment.” [40]. Investigating the effect of
familiarity on wayfinding and environmental learning, as well as understanding the variables
that contribute to the development of a sense of familiarity, constitute the majority of
theoretical research in the domain of spatial familiarity [1]. Up until now, however, we
lack a comprehensive conceptual definition for “spatial familiarity” [15]. As a consequence,
assessing and modeling familiarity continue to be open research problems. The majority of
attempts taking familiarity into consideration rely on self-reported measures, e.g., customized
questionnaires and sketched maps (see e.g. [6, 19]) and these studies most often use a
binary definition of environmental familiarity (see e.g., [43, 25, 2]). Approaches exploiting
behavioral data benefit from various sources ranging from mobile phone GPS tracks (see.
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e.g., [37]) to social media (e.g., [38]) and recently also gaze-behavior ([25]). Having said this,
empirical studies addressing environmental familiarity have been conducted both indoors [18],
outdoors [25]) and in virtual environments [12], alike.

Only recently, has the classification of binary familiarity based on behavioral correlates
gained momentum. For instance, Gokl and colleagues [12], reported 51.87% to 65.70%
accuracy for a binary classification on familiarity performed on behavioral data collected
from an avatar-based VR study. Savage and colleagues in [34], used place-visits in Foursqure
application and combined it with user-contextual information taken from Facebook profiles
and GPS trajectories to score the level of familiarity with places using Bayesian techniques.
Liao and colleagues in a very recent paper [25], performed a Random Forest binary classifica-
tion (data was initially collected on a Likert-like scale) for familiarity using the gaze-behavior
collected in a real-world navigation task with 38 participants and reported 70% to 81%
accuracy.

2.2 Gaze-based Activity Recognition

As one of the most promising ways of gaining access to people’s cognitive state, gaze, has
received a great deal of attention in the GIScience research domain (see [21, p. 2–9] for an
overview): Its utility has been explored in many applications, for instance, tailoring wayfinding
assistance systems to individual’s demands (see e.g. [11]), and numerous wayfinding studies
conducted in real-world or virtual reality environments ([35], [8] and [39]).

Having said this, the importance of gaze in task prediction has seen great interest for
decades, starting with the seminal works of Yarbus [41] and Buswell [5]. For instance, Kiefer
and colleagues [20] performed gaze analysis for automatic recognition of map users’ activities
by introducing novel gaze features based on string sequence analysis, and reported 78%
accuracy in classifying six common map activities (free exploration, global and focused search,
route planning, line following, and polygon comparison). Bulling and colleagues [4], also
applied a Support Vector Machine (SVM) on gaze features for recognizing five office-related
activities (e.g. copying a text, reading a printed paper etc.) in an eight-participant study
and reported an average precision of 76.1%. In addition to task prediction, researchers have
tried to predict the underlying cognitive or even demographic aspects which are reflected
in various tasks. For instance, Henderson and colleagues [17], tried to predict the cognitive
workload of 12 participants performing various tasks e.g., scene memorization, text reading
etc., using a multivariate pattern classification on the recorded eye movements with 68% to
89% accuracy. Galdi and colleagues [9], studied the applicability of gaze analysis for gender
and age categorization by applying Adaboost and SVMs on data collected from 112 different
observers.

Similar recent research in our domain includes the work of Alinaghi and colleagues [2].
The authors trained an XGBoost classifier on gaze data acquired from a real outdoor
wayfinding study. They reported the best performing model (with 91% of accuracy for
predicting the turning activity of wayfinders with three classes of No-Turn, Turn-Left, and
Turn-Right) trained with the gaze data from the last three seconds before the turning action
was performed. Liao and colleagues [24] reported an accuracy of 67% using a Random Forest
classifier on 38 recorded eye movements during navigation, to predict five tasks, namely
self-localization, environment target search, map target search, route memorization, and
walking to a destination.

COSIT 2022
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2.3 Machine Learning Models for Activity Recognition
The related work reviewed so far, already indicates the prevalence of SVMs and tree-based
ML techniques in performing classification tasks based on eye movement data. For instance,
Bulling and colleagues [4], and Shiga and colleagues [36] both used SVMs for classification of
general office tasks and everyday tasks based on gaze data and reported reasonable results.
Liao and colleagues reported promising results by applying Random Forest both for task
recognition ([24]), and familiarity prediction ([25]). Liu and colleagues’ results from Random
Forest in [26], where they examined differences in gaze behavior related to the regularity of
road patterns and signage, are also encouraging.

Although SVMs and tree-based techniques provide promising results in gaze-analysis,
recent studies report higher accuracies achieved by ensemble learning, e.g., Gradient Boosted
Trees, across different domains. For instance, in their gaze-based turning activity prediction,
Alinaghi and colleagues [2], compared SVM-RBF, CART, and Random Forest in a pilot
testing phase and reported that XGBoost achieved higher accuracy. Similarly, Zhang and
colleagues [42] provide evidence that XGBoost-based indoor activity recognition algorithm
outperforms both other ensemble learning classifiers and single classifiers in indoor activity
classification (achieving 84.41% accuracy). In a different domain, Mathur and colleagues [27]
found XGBoost superior to eight ML models as well as two deep learning models (long
short-term memory networks and temporal convolutional networks), with an accuracy of
69% and an AUC of 72% when detecting users’ empathy while listening to a narrative robot.

3 Detecting Familiarity Based on Turn Activity

With a similar approach as [17, 9], where trained models for specific task recognition problems
were deployed to predict user-related characteristics, we have also used a pre-trained turning-
activity classifier for familiarity detection. This section provides information on our analysis
for familiarity detection from turning activity behavior. We start with a short description
of the human-subject in-situ study as we use the same dataset as [2] which was collected
to address several research questions. We, then, move on to explain our feature extraction
approach. Finally, we describe the prediction model that we deployed for our familiarity
detection and provide details on how we came upon the familiarity patterns by monitoring
the turning activity behavior during the matching-to-action phase.

3.1 Data Collection
The data used in this paper is part of a larger data collection effort in 2020 addressing
human spatial behavior in real-world wayfinding scenarios and is first presented in [13]1. In a
within-subject design study, participants were required to walk two routes each, one of which
was located in an area they were familiar with, while they were unfamiliar with the other.
Environmental familiarity was collected during an online study: Participants were asked
to indicate areas in which they would be able to find their way easily without any kind of
wayfinding assistance This was used as proxy for being familiar. Subsequently, participants
were asked to pinpoint familiar places therein. Two of these places were randomly chosen
based on the condition of being between 0.9 and 1.3 km apart in order to ensure a reasonable
duration of the experiment, and participants provided their preferred route between these

1 Parts of the data used in the current paper, will be made available at: https://geoinfo.geo.tuwien.
ac.at/resources/ (DOI: 10.48436/f0chy-11p06).

https://geoinfo.geo.tuwien.ac.at/resources/
https://geoinfo.geo.tuwien.ac.at/resources/
https://doi.org/10.48436/f0chy-11p06
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places. All participants walked the familiar route they provided and were randomly assigned
an unfamiliar route which was located in a polygon with no overlaps with the polygons a
participant indicated as familiar.

For either route, participants had to find their way by means of auditory, German-
language, landmark-based2, turn-by-turn route instructions, which were provided to them
on demand and as many times as they requested. In order to ensure the demand of route
instructions when walking a familiar route, participants were instructed that they might
be guided on a route different to the one they actually provided. Participants’ behavior
during the experiment was monitored with a mobile eye-tracking device (PupilLabs Invisible;
200Hz recording frequency), high precision GNSS receiver (PPM 10-xx38) that tracked their
position in time and a head-mounted Inertial Measurement Unit (IMU), whose data we do
not use in this study. Additionally, participants were given a small clicker-device, to request
an instruction by simply pressing a button. In total, N = 52 people (27 female and 25 males,
M(age) = 26 years, SD(age) = 8.3) participated in the outdoor experiments resulting in
N = 104 trials out of which N = 32 were retained for further processing in this paper (18
trials: equipment malfunction or participants not cooperating; 54 trials: not suitable given
our research question, see Section 3.3 for details).

3.2 Data Preparation

To obtain the gaze-related data at each decision-point, we first matched each of the Open
Street Map (OSM)-driven junctions along a route to their corresponding GPS point by
drawing a ray oriented along the segments of the given intersection and intersecting it with
the GPS trace. As the result of this step, we obtained the corresponding timestamps at
which each junction was reached.

Subsequently, we approximated the Start points (i.e. when an instruction was given for
the first time) and End points (i.e. when a junction, for which the instruction was given,
was perceived as junction) of the matching-to-action phase in our analyses. From now on, we
refer to each pair of these points as test-sample. Figure 1 A, visualizes these points. Start
points were found by synchronizing the clicker-output with GPS timestamps. This point is
depicted as a green speaker icon in Figure 1 A. The yellow icons in this figure indicate the
points in time when the same instruction was requested for a second time (again, based on
the synced clicker and GPS timestamps). Since the perception of decision points in reality
do not exactly equate to the junction point (e.g., we do not decide to turn left to a street
right in the middle of a crossing), we model the decision situations by using OSM building
footprints to find all intersection boundaries3. These boundaries are presented in Figure 1 A,
as hatched polygons located at each junction (orange: No-Turn; blue: Turn). From now on,
we will refer to the intersection point of the GPS trace with this boundary as decision-point.
Figure 1 A represents these decision-points with green and blue circles denoting the start
and end of each segment in the test-sample.

2 Points of Interest (POIs) were used as landmarks and chosen according to the algorithm described
in [33]. For a detailed description on how these were double-checked, see [13]. Route instruction pattern:
Turn left [imperative] at Cafe Ritter. [landmark and, hence, location of turning action].

3 If no buildings were located at a junction, we found the boundary of the intersection by using a threshold
of 3.75secs from the projected junction point (i.e. ≈ 5m, based on 4.5km/h avg. walking speed [22].

COSIT 2022
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3.3 Sliding-Window Feature Extraction

As the highest accuracy for the XGBoost turn-activity classifier in our previous research [2]
was reported when trained three seconds before the actual turn occurred, we selected three
seconds as our window size. The step distance was also set to three seconds, avoiding
any overlaps between windows. This is based on findings suggesting that non-overlapping
windows deliver comparable recognition accuracy while majorly reducing the required training
computations and memory usage [7].

Figure 1 Figure A, representing one test-sample, visually defines the Start and End points of
the test-sample as well as the middle start(i) and end(i) points of the segments. As schematically
presented in B, each test-sample is then segmented with a sliding window approach into non-
overlapping windows of three seconds duration. Since we want to analyze the results segment-wise,
we group the windows belonging to one segment by segment id as Seg-i.

With the method explained in 3.2, we extracted all the Start and End points per turning
junctions in all trials, with respect to two main conditions. First, as the experimental design
allowed participants to ask for instructions as often as they needed, we decided to exclude
all the repetitions and only keep the first point in time when the instruction was given.
Second, test-samples should at least have one No-Turn junction (denoted in Figure 1 B as
NT ). This decision is made to have enough analysis time and more decision situations in the
matching-to-action phase. This ensures that we always have at least two segments in each
test-sample. The naming convention for identifying these segments is as follows: Seg-n with
n starting from zero always indicating the final segment right before the Turn junction. This
setting, i.e., starting each test-sample always from the initial instruction point and excluding
the data before that, ensures a clean test-sample and is inline with the experimental design
in which both un/familiar groups did not know the route in advance and had to relay on
the given turn-by-turn instructions to reach the destination. Figure 1 B, represents one of
these clean test-samples for which two No-Turn (NT ) junctions were passed before the Turn
(T) junction was reached. This results in three segments with ids starting from Seg-0, to
Seg-2 which is the first segment right after the instruction was given. After selecting the
test-samples according to these conditions, we ran a non-overlapping sliding window (with
window − size = 3sec and step − size = 3sec) approach for segmenting the eye-tracking
data. Figure 1 B, visually present this approach.
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3.4 Detecting Familiarity by XGBoost Turning Activity Classifier
The trained XGBoost turning-activity prediction model from our previous research [2] is
modified and used for familiarity detection purpose in this paper. XGBoost is one of the
Gradient Boosted Tree algorithm implementations, which allows parallel tree boosting for
unfolding very complex patterns in a highly efficient and scalable manner.

The model was trained on 31 features including 28 fixation- and saccade-based gaze
feature (i.e., fixation frequency, min/max/mean/variance of fixation- duration/dispersion/dis-
persionX and dispersionY; and saccade frequency, min/max/mean/variance of saccade-
amplitude/duration, skewness of saccade amplitude, and g-l ratio which is the ratio between
long and short saccades), 2 environmental features (i.e., number and skweness of street
segments at each junction) and 1 user-related feature (i.e., familiarity with the environment
as a binary measure) for 1335 junctions acquired from the same dataset used in [2] (see
Section 3.1). In that paper [2], the highest accuracy of turning-activity prediction (91.4%)
was achieved when the model was trained with the data from the last three seconds before
the turning action. By analyzing the SHAP values, we came upon familiarity as the most
important feature for the model.

As explained in Subsection 3.3, we segmented the data within each test-sample into
three seconds windows to use this model. To investigate the effect of familiarity on turning
activity, we customized this pre-trained model in two ways: We modeled the turning activity
as a binary measure: Turn vs. No-Turn, i.e. we did not distinguish between left and right
turns. In addition to that, we turned the model into a probabilistic classifier in order to
gain the probability distribution over the two classes. It has been suggested in statistics
that such posterior probabilities are required “when a classifier is making a small part of
an overall decision or the outputs need to be combined for the overall decision” [32]. Our
following familiarity analysis also requires the investigation of these small parts of an overall
classification decision.

Therefore, the design decisions presented here are based on our initial assumption that
the expected variations in the posterior probabilities can be considered as a proxy of spatial
familiarity regarding the matching-to-reaction phase of the turning activity. In order to
visually inspect patterns for familiar and unfamiliar cases, we plotted these probabilities in
the matching-to-action phase.

4 Results

This section provides the results of our familiarity detection based on turning activity behavior
during the matching-to-action phase. The two subsections outline the results from three
different angles: the primary outcome of our analysis representing the overall difference
between familiar and unfamiliar wayfinders with regards to their turn-activity behavior is
presented in subsection 4.1; subsection 4.2, however, sheds light on the results of a case-wise
between class comparison (familiar vs unfamiliar) and the result of a case-wise within class
comparison, alike.

4.1 Overall Familiarity Detection
Figure 2 represents the median percentage of windows in which a turn is predicted, aggregated
along each segment across all trials. To analyze the computed probabilities across all cases,
we aggregated the results by computing the median percentage of windows belonging to
Turn class in each segment. This percentage represents the number of windows for which the

COSIT 2022
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probability of class Turn was higher than the probability of class No-Turn. Since the segments
(i.e., street segments belonging to different routes) within each test-sample have different
lengths, we computed the percentages segment-wise. This ensures that the final result is
normalized and comparable on one scale. When interpreting the figure, it is important to keep
in mind that test-samples vary concerning the number of segments they have: For instance,
depending on the route and the first time someone asked for instruction, one test-sample
ended up having three segments while another included four. However, the second condition
we had set for selecting test-samples assured the presence of at least two segments (i.e.,
Seg-0 and Seg-1 ): As explained above, we had chosen the test-samples in a way such that
at least one No-Turn junction was passed before reaching the Turn junction for which the
turn-instruction was given. In Figure 2, the notation n represents the number of trials for
which we have calculated the median percentage.

Figure 2 This plot represents the aggregated results, measured by the median percentage of
windows per segment for which the class turn is predicted, for the two targeted groups: Familiar vs.
Unfamiliar wayfinders. Note that not all the test-samples have all the segments and as a result the
same number of time windows (due to the difference in the number of junctions and instruction-click
points per route). The number of test-samples per segment is denoted by the letter n and error bars
indicate the 95% confidence limit. The results suggest that familiar wayfinders are more confident
in matching the turn instruction to the spatial environment.

4.2 Case-wise Comparisons: Between- and Within-Class
Figure 3 illustrates the resulting plots for a test-sample taken from one route walked by
a familiar and an unfamiliar wayfinder. Since familiar and unfamiliar routes traveled by
wayfinders differ in terms of the street network, length, urban complexity, etc., we compare
turning behavior on a single route walked by two different wayfinders. The x-axis in Figure
3 represents multiple information for clearer understanding: the window-id, constellation
of instruction-point (depicted in green) and junctions (distinguishing Turn and No-Turn
junctions with blue and orange), and the segments outlined in purple for the last segment
immediately before the turning junction and yellow for other segments. To visualize the turn
behavior of each wayfinder, the probability of classes Turn (orange) and No-Turn (blue)
within the matching-to-action phase are given for each window. The difference between
familiar and unfamiliar wayfinders is apparent in this plot: The onset and the intensity of the
variations in probabilities for the two plots are within different segments before the actual
turn.
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Figure 3 This figure contrasts the probability plots of one familiar and one unfamiliar wayfinder
for a single route. The plots indicate that the variation in turning activity probability (i.e., turning-
behavior) starts at different stages between the two classes: The familiar wayfinder demonstrates
more variations only in the last segment before the turn-junction (Seg-0 ), while the unfamiliar
wayfinder exhibit this behavior closely after receiving the instruction (Seg-3 ). Along the x-axis, a
schematic view of the test-sample in terms of the constellation of instruction point, NT as well as T
junctions is shown. Note that although the two diagrams represent the same route, they cannot be
fully aligned due to different instruction-click times and wayfinders’ walking speeds.

By investigating the probability plots per trial within each class (familiar and unfamiliar),
we observed different distribution of turning-activity probabilities. The onset and intensity
of turning behavior are equally different within familiar and unfamiliar wayfinders. As the
in-situ experiment was designed so that different un/familiar wayfinders walked different
routes, disentangling the impact of the route and individual differences might not be feasible.
Coincidentally, however, one route was walked by two different unfamiliar wayfinders. This
gave us a single case where the environment is fixed, and we could relate the patterns of
turning behavior to individual differences. Figure 4, illustrates the probability plots for
this case. The plots show differences concerning the distribution of the turning activity
probabilities even within one familiarity class. A similar pattern is also present in both familiar
and unfamiliar classes when different routes are considered. This is particularly remarkable
for familiar cases: While the vast majority of cases showed a variation of probabilities only
on the final segment, there were also cases showing these variations sooner, e.g., in Seg-1 or
Seg-2.

5 Discussion

We analyzed turning activity behavior in the matching-to-reaction phase, which starts right
after an instruction is given until the corresponding junction is reached. We interpret the
variations in turn probabilities as an indicator of turning-behavior stemming from the given
instruction. We provide evidence that familiar wayfinders show a different behavior during

COSIT 2022
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Figure 4 This figure shows the probability plots of an exceptional case in which two unfamiliar
wayfinders coincidentally walked a single route. The plot indicates that the variation in turning
activity probability (i.e., turning-behavior) starts at different stages. Along the x-axis, a schematic
view of the test-sample in terms of the constellation of instruction point, NT as well as T junctions
is shown.

the matching-to-reaction phase (high median percentage of predicted turns only in the
final segment before the turning junction) of the decision-making compared to unfamiliar
wayfinders (higher rate of turning behavior compared to the familiar group in almost all
segments once an instruction was received).

While familiar and unfamiliar wayfinders can be distinguished reasonably well based
on their gaze behavior before turns, our data suggest considerable within-class diversity.
This was revealed when the results within each class were analyzed case-wise. Within both
familiar and unfamiliar groups, no two cases represented the turn-behavior precisely at the
same time or with the same intensity. We discuss three different potential explanations:
Spatial Environments: Each route was walked twice by one familiar and one unfamiliar

person, i.e., there were 16 different routes considered in this study. Differences in within-
class cases might, hence, stem from the environmental differences among the routes, e.g.,
urban configuration, segment (e.g., length) and junction characteristics e.g., number of
segments, etc.), POIs, etc.

Levels of Familiarity: Theoretical reasoning [28, 10] suggests that there are different levels
of spatial familiarity. Consequently, differences in turning-behavior during the matching-
to-action phase may be considered as a potential indicator of different levels of familiarity.
However, collecting ground truth data for these levels is still an open research question.
Researchers tend to use either the number of years a person has lived in a city as
an indicator (see e.g. [30]) or collect level of familiarity data using custom-designed
questionnaires (see, e.g. [25] who collected self-report familiarity ratings on a 7-point
scale but re-classed it to binary measure for their analysis.)
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Users’ Spatial Abilities: A considerable body of literature stresses the importance of indi-
viduals’ spatial abilities in all spatial tasks including wayfinding [29, 16]. Thus, another
possible explanation for the difference in turning activity could be individual differences
in spatial abilities, which could act as a moderator for the effects of spatial familiarity.

All of these explanations can be valid and the differences observed within each class may
stem from one or many of these factors. However, we have slight evidence that highlights
the priority of Levels of Familiarity more than others. As presented in Figure 4, even for the
single case in the unfamiliar class for which two different wayfinders walked the same route,
we can observe these individual variations in turning-behaviors. Although this one case is
not considered as a representative sample, observing a case like this, with a fixed spatial
environment for both wayfinders, reinforces the finding that the variations in turn-behaviors
within each class may stem from the levels of familiarity (see Future Work below).

6 Conclusion and Future Work

In this paper, we provide evidence that familiarity of wayfinders can be detected by analyzing
their gaze behavior during the matching-to-action phase of decision-making for turning
activity. We draw this conclusion based on the analysis of gaze data that has been collected
during an in-situ wayfinding experiment by a customized pre-trained XGBoost turning
activity classifier. The classification results indicate a distinguishable pattern between
these two groups regarding their turning-behavior. Within each group, however, we also
observe unique patterns of turning-behavior. We discussed this observation with respect
to three possible explanations: the impact of the spatial environment, different levels of
familiarity, and users’ spatial abilities. Each of these factors may account for the within-group
differences in observed turn-behavior. However, a single-case observation hints that spatial
environment may not be the most important factor, as in this case, two different wayfinders,
both unfamiliar, walked the same route. Hence, the results of the current study open the
door to predicting, modeling, and hopefully defining spatial familiarity on a continuous scale.
This leaves room for further investigations (in both controlled and uncontrolled settings)
concerning all of these factors in general and different levels of familiarity in particular. This
investigation will be fostered by the fact that spatial ability and spatial environment can
both be fairly controlled in experimental designs. For instance, to disentangle the user and
environmental effects, it would be interesting to conduct an experiment with relatively similar
routes for each wayfinder, so that each wayfinder can be assigned a comparable familiar
and unfamiliar route concerning the environmental factors. Such a setting allows for further
within-class analysis, e.g., the gaze-pattern differences between familiar and unfamiliar routes
walked by the same person. Another experiment for keeping the environment factor fixed
would be to select a single route and recruit only familiar or unfamiliar participants. Adding
more behavioral data sources may as well be worthwhile to consider in this research endeavor.
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