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Abstract
Qualitative spatio-temporal reasoning (QSTR) plays a key role in spatial cognition and artificial
intelligence (AI) research. In the past, research and applications of QSTR have often taken
place in the context of declarative forms of knowledge representation. For instance, conceptual
neighborhoods (CN) and composition tables (CT) of relations are introduced explicitly and utilized
for spatial/temporal reasoning. Orthogonal to this line of study, we focus on bottom-up machine
learning (ML) approaches to investigate QSTR. More specifically, we are interested in questions
of whether similarities between qualitative relations can be learned from data purely based on
ML models, and, if so, how these models differ from the ones studied by traditional approaches.
To achieve this, we propose a graph-based approach to examine the similarity of relations by
analyzing trained ML models. Using various experiments on synthetic data, we demonstrate that
the relationships discovered by ML models are well-aligned with CN structures introduced in the
(theoretical) literature, for both spatial and temporal reasoning. Noticeably, even with significantly
limited qualitative information for training, ML models are still able to automatically construct
neighborhood structures. Moreover, patterns of asymmetric similarities between relations are
disclosed using such a data-driven approach. To the best of our knowledge, our work is the first to
automatically discover CNs without any domain knowledge. Our results can be applied to discovering
CNs of any set of jointly exhaustive and pairwise disjoint (JEPD) relations.
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1 Introduction

Since the 90s, Qualitative Spatio-Temporal Reasoning (QSTR) has attracted attentions
from researchers and practitioners in several fields, such as geographical information science,
artificial intelligence and cognitive science [6, 10, 17, 13, 26, 14]. Aside from the clear
connection to human representations and linguistic communication of the spatial configuration
of our environment, QSTR has numerous advantages over its quantitative counterpart [16].
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Representing qualitative information by using symbols and developing calculi to infer unknown
qualitative information is the key to QSTR. Different sets of qualitative spatial relations
(such as directional and topological relations) along with a system of qualitative caculi
are developed [9], among which reasoning over topological relations becomes the most
well-established area in QSTR.

As far as regions are concerned, the most well-known formalizations for qualitative
topological relations are - the Region Connection Calculus (RCC-8) [22] and the 9-Intersection
Model (9-IM) [4, 10]. Both arrive at the same conclusion that there exist eight base topological
relations between regions in 2D space, although they are developed independently during
the earlier 90s [2]. Those relations form the foundation for a variety of qualitative spatial
reasoning techniques [8, 10, 11, 12]. Two major (and interconnected) lines of works are: (1)
Composition Tables (CTs) (i.e., transitivity tables), which store possible resulting relations
arising from the composition of two relations [1, 22, 24, 23]. (2) Conceptual Neighborhood
Graphs (CNGs), which formalize transitions between relations. Conceptual neighbors of
a relation are defined as a set of relations that can be directly transformed into/from the
relation by deforming (e.g., moving and scaling) the related entities continuously (in a
topological sense) [15]. In a CNG, relations are modeled as nodes and an undirected edge is
established between two neighboring relations (see Figure 3f). CNGs play an essential role
for reasoning with uncertain or incomplete information [14], and have been used in research
of cognitive similarity assessment [19, 18] and modeling of linguistic spatial terms [7]. In
addition to topological relations, composition tables, and conceptual neighborhoods have
also been developed for reasoning over temporal relations [1, 15].

Those reasoning methods follow a top-down manner, which usually requires (noise-free)
explicit domain knowledge. On the contrary, success in data-driven Machine Learning (ML)
approaches, which are insensitive to noise and good at dealing with incomplete information as
well as uncertainty, provides new opportunities to study QSTR from a bottom-up perspective.
ML models rely solely on training data to discover patterns/rules that can be implicitly used
for reasoning rather than explicitly injecting domain knowledge into the model. However,
the question of why they succeed and whether they are able to (re)discover theories, here in
the sense of rule sets or CNGs, is unexplored.

In this paper, we propose a graph-based approach to investigate similarities of qualitative
relations from a bottom-up perspective. Particularly, we are interested in how the similarities
derived from ML methods are related to classic theoretical studies (e.g., on conceptual
neighborhoods). By conducting extensive experiments on synthetic data regarding spatial
reasoning (here, RCC-8 relations) and temporal reasoning (here, Allen’s thirteen interval
relations), we are able to demonstrate that ML models can automatically discover conceptual
neighborhood graphs. In addition, experiment results showcase that such graphs can be
easily discovered by ML methods even when limited data are available for training. Moreover,
the similarities of relations are mostly asymmetric, which echos the findings in [19] from a
perspective of cognitive assessment. Furthermore, patterns observed in asymmetric similarities
of relations are disclosed. To the best of our knowledge, we are the first to automatically
discover conceptual neighborhood graphs of qualitative relations from a bottom-up perspective
by analyzing ML methods. In theory, our approach can be used to discover CNGs for any
calculus with jointly exhaustive and pairwise disjoint (JEPD) relations.

The remainder of this paper is structured as follows: Section 2 introduces background
about how to perform QSTR by using machine learning methods. Section 3 elaborates
on the proposed graph-based approach to discover similarities among relations. Section 4
describes the generation of synthetic data, evaluation metrics, and reports experimental
results. Section 5 discusses our findings and points out the direction for future studies.
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2 Background

In this section, we introduce preliminaries of ML methods to achieve QSTR. We summarize
notations and abbreviations we use in this paper in Table 1 for quick reference.

Table 1 Terms and their abbreviations used in this paper.

Terms (abbrev.)
Qualitative Spatio-temporal Reasoning (QSTR) Conceptual Neighborhood Graphs (CNGs)

Machine Learning (ML) Artificial Intelligence (AI)
Knowledge Graphs (KGs) Knowledge Graph Embedding (KGE)
Composition Tables (CTs) Jointly Exhaustive and Pairwise Disjoint (JEPD) relations

RCC-8 Relations IR-13 Relations
disconnected (dc) before (<) after (>)

externally connected (ec) meets (m) met-by (mi)
partially overlapping (po) overlaps (o) overlapped-by (oi)

tangentially proper part (tpp) during (d) contains (di)
tangentially proper part inverse (tppi) starts (s) started-by (si)

non-tangentially proper part (ntpp) finishes (f) finished-by (fi)
non-tangentially proper part inverse (ntppi) equal (=)

equal (eq)

2.1 Qualitative Representation of Relations

In this paper, we store binary relations between entities in form of triples. A triple of the form
⟨s, r, o⟩ represents an entity subject that has a relation to another entity object. For instance,
the statement that a house is externally connected (ec) to a park can be represented as
⟨house, ec, park⟩. A set of such tripled is called a knowledge graph (KG). In our paper, a KG
is a simple directed graph, consisting of entities being modeled as nodes and relations between
them being modeled as labels of edges. Formally, it can be represented as G = (V, E), where
V and E are the set of nodes/entities and edges with relations being labels, respectively.

2.2 Relation Prediction Task

We will focus on a task known as relation prediction, namely inferring the relation between
two entities based on other information. It is equivalent to answering the query ⟨s, ?r, o⟩.
Examples include: what is the topological relation between Los Angeles and Santa Monica?
or what is the temporal relation between the Battle of Trafalgar and the Napoleonic Wars?

2.2.1 Symbolic Reasoning Methods

Traditionally, symbolic representations are adopted to represent entities and relations, on top
of which qualitative calculi are developed to perform reasoning tasks. For instance, CTs along
with path-consistency algorithms are often used to infer missing relation between entities [24].
Given that (property A, tangential proper part (tpp), park B) and (park B, disconnect (dc),
house C ), we are able to infer that (property A, disconnect (dc), house C ) by checking the
CT of RCC-8. Usually such top-down approaches (which are based on qualitative calculi)
fall into the group of symbolic reasoning. Despite their great success in qualitative reasoning
in the past, such approaches are faced with noticeable limitations. For instance, they are
sensitive to erroneous information or noise. Moreover, they can only be applied to a limited
range of reasoning tasks, do not scale well over large datasets, and cannot be easily applied
in combination with numeric approaches [25].

COSIT 2022
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2.2.2 Knowledge Graph Embedding Methods
Knowledge Graph Embedding (KGE) methods are an embedding technique in ML that has
been empirically proven to be effective in reasoning in a subsymbolic way.

Generally speaking, the goal of KGE methods is to learn subsymbolic representations
of entities and relations in a high-dimensional continuous vector space while preserving the
connectivity between entities and relations from KGs. Typically, developing a KGE model
requires the following three components.

(I) The first is to randomly initialize subsymbolic representations for each entity/relation
in a high-dimensional continuous vector space. By doing so, each entity/relation is
initialized as a high-dimensional vector (a.k.a embedding or subsymbolic representation)
and can be viewed as a point in such high-dimensional vector space. The vector space
could be Euclidean space, Hyperbolic space, Spherical space, etc., which vary between
different KGE models. The embedding of an entity v, or a relation r, can be expressed
as v ∈ Ud, or r ∈ Ud, where U denotes the vector space and d is its dimension.

(II) a scoring function is required to measure the likelihood of a triple being positive (i.e., a
true statement). Various KGE models specify different scoring functions. For instance,
TransE [3], the first KGE model, assumes that for a triple ⟨s, r, o⟩, the relation r is a
transformation operator in a vector space, which translates the subject s to the object
o. Thus the embedding of an object entity o should be equivalent to the resulting
embedding of a subject entity s being translated by the relation r in the vector space.
Then the distance between the embedding of the object entity and the resulting entity
can be used as a scoring function: score(s, r, o) = ∥s + r − o∥. Thus, triples that are
present in KGs (i.e., positive triples) will obtain a lower score while triples that are
not present will gain a higher score.

(III) an objective function is needed for training through a process of optimization. A
commonly used way of constructing such an objective function is by contrasting scores
obtained by positive triples with those of negative triples. Often, the objective function
is built upon the task of entity prediction (namely answering queries such as ⟨?s, r, o⟩
or ⟨s, r, ?o⟩). For each positive triple ⟨s, r, o⟩, a number of negative triples (e.g., k) are
generated by switching the subject s and/or the object o with other randomly selected
entities (e.g., si or oi). Then an objective function L can be defined to minimize scores
for positive triples while maximizing scores for negative ones:

L = −log σ(γ − score(s, r, o)) − 1
k

k∑
i=1

log σ(score(si, r, o) − γ) (1)

where σ is the sigmoid function and γ is a pre-specified hyper-parameter as a margin.
⟨si, r, o⟩ is a negative sample of ⟨s, r, o⟩.

After a number of iterative optimization over the training data, minimizing the objective
function yields embeddings (representations) for all entities and relations in the KG. The
optimized KGE model then can be used in various downstream tasks, such as entity prediction
relation prediction, and triple classification. A plethora of KGE models have been developed
in the the past years, e.g., [3, 20] and various scoring functions have been used (refer to [27]
for more details).

Here we elaborate on how to perform relation prediction (i.e., answering a query ⟨s, ?r, o⟩)
by using trained KGE methods, since they are closely related to our approach discussed in
Section 3. Concretely, we enumerate all possible relations (r′ ∈ R ) to replace ?r individually
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and then sort these relations by score(s, r′, o) in an ascending/descending order. Finally
the embedding method regards the relation ranked first as the correct answer to the query.
The table on the left in Figure 1 shows examples of ordered sets of relations produced by a
trained KGE model regarding different testing queries.

3 Knowledge Graph Embedding Methods as Knowledge Miner

Similarity is one of the most commonly used measures to examine relationships of objects.
For instance, domain experts introduce conceptual neighbors to indicate similar qualitative
relations [15]. Likewise, in this section we introduce an approach to examine similarities
between qualitative relations by analyzing trained KGE models from a bottom-up perspective.
There are two steps in this approach - initial construction of a relation graph and its refinement.

The first question is how to derive similarities between any two relations in the set R from
a trained KGE model. Our assumption is that it would be difficult for a trained embedding
model to distinguish relations that are similar in a topological sense. That is, in terms of the
task of relation prediction, for a testing query (geometry A, ?r, geometry B) (whose target
answer is externally connected (ec)), we hypothesize the embedding-based model may yield
similar scores for (geometry A, ec, geometry B) and (geometry A, partially overlap (po),
geometry B), because po and ec are topologically similar. Put differently, the sorted set of
predicted relations reveals structural similarities among relations in the sense that similar
relations are more easily confused in relation prediction (see Figure 1).

Based on this assumption, we initiate a graph in which vertices are different types of
relations. For each testing query ⟨s, ?r, o⟩, a directed edge is established from the correct
relation to either the relation ranked at first (top 1) or second (top 2) in the ordered list of
relations. Such a choice relies on whether the relation at top 1 is the correct relation or not.
When the correct is ranked at top 1, we do not introduce a loop. Instead, a directed edge
starting from the correct relation to the relation at Top 2 is added. If the relation at Top 1 is
not the correct, then an edge is built from the correct relation to Top 1. The resulting graph
is a directed graph, whose edges originate from the correct relation to a relation identified as
most similar to the correct by the KGE model. In a directed edge, we use terms - head and
tail - to refer to the source and the target of an edge, respectively. The direction of edges
reflects which candidate relation (tail) is similar to the target relation (head). Note that by
such a distinction, we are able to examine the asymmetric similarities between relations.

The graph constructed above only illustrates which relations are considered as similar
by a KGE model, but does not quantify similarities between relations. Here, we design
a weighting function to quantify these similarities. Specifically, the weight of an edge is
estimated as the proportion of the number of edges from a head to a tail relation over the
total number of edges originating from the head. This function can be formulated as follows:

weight(ri → rj) = count(ri → rj)∑
r′∈R count(ri → r′) (2)

where count(ri → rj) is the cardinality of edges originating from ri (head) to rj (tail) (with
shortest paths). An example of the construction process is shown in Figure 1.

So far, we obtain a directed and weighted graph, which reveals the similarities between
different relations; see Figure 2a. We observe that this graph is almost complete (i.e., any
two relations/vertices are connected via an edge), because eventually any two relations are
likely to be thought of as similar by a KGE model. However, not all these similarities are
significant; for instance many edges only have marginal weights (e.g., 0.01). In order to
extract significant relationships from the initial relation graph, the next step is to prune
insignificant edges to get a refined graph.

COSIT 2022
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id queries correct
answer sorted list

1 <obj 1, ?r, obj 3> tpp tpp|po|ec|dc|eq|ntpp|tppi|ntppi

2 <obj 4, ?r, obj 5> dc dc|po|ec|tpp|tppi|ntpp|eq|ntppi

3 <obj 45, ?r, obj 56> po ntpp|po|tpp|ec|dc|tppi|ntppi|eq

4 <obj 25, ?r, obj 6> ec tpp|ec|ntpp|po|dc|tppi|ntppi|eq

5 <obj 51, ?r, obj 9> ntpp tpp|ntpp|po|ec|dc|eq|ntppi|tppi

6 <obj 7, ?r, obj 11> tppi tppi|ec|ntppi|po|dc|tpp|ntpp|eq

7 <obj 15, ?r, obj 1> ntppi ntppi|tppi|po|ec|dc|eq|tpp|ntpp

8 <obj 22, ?r, obj 5> eq eq|tppi|tpp|po|ec|ntppi|ntpp|dc

9 <obj 17, ?r, obj 51> tppi ntppi|ntpp|ec|po|dc|tpp|ntpp|eq

... ... ... ...

Relation Graph Construction

dc
ec

tpp
1.0

0.5

tppi
1.0 eq

1.0

ntpp

1.0

po

1.01.0
ntppi

0.5
1.0

Figure 1 Relation Graph Construction. Here nine queries are used as examples and the sorted
list column shows relations sorted by a scoring function from a KGE method. Each relation is
represented as a vertex in the graph and edges are established from the correct answer (column 3)
to the relation in bold in the sorted list. Weights are calculated by using Eq. 2.

Intuitively one could enumerate different thresholds (for instance, by gradually increasing
a threshold (i.e., 0.0, 0.05, 0.1,..., 1.0 )) to cut off edges whose weights are insignificant.
Then one can terminate the enumeration process by manually checking whether the refined
graph is aligned with our domain knowledge/cognition. However, without enough domain
knowledge, it is hard to conclude which graph is meaningful and this means the proposed
solution is not truly bottom-up. In order to reduce human intervention in the refinement
process, we define a condition to automatically terminate the enumeration. The condition is
based on the naive fact that all relations/vertices must be preserved/connected in the graph
after the refinement, since our focus in this paper is on the relationships of all relations.
Based on graph theory, such a fact boils down to ensuring that there is always one connected
component in the graph after the refinement. Therefore, we can gradually increase thresholds
by constant margins (e.g., 0.05) until the initial graph is no longer one connected component.
In summary, in the process of refining relation graphs, we generate a number of candidate
thresholds (within the range of (0.0, 1.0) and a step of 0.05) in an ascending order and find
the maximal threshold that leads to only one connected component in the graph, which is
regarded as the refined relation graph.

4 Experiments

In this section, we introduce the synthetic data we use to test our method, the evaluation
metrics used for graph similarity measure, and present experimental results. Although theor-
etically our proposed approach can be applied to any set of JEPD relations to automatically
discover a graph of relations, we focus on RCC-8 and IR-13 here.

4.1 Data Preparation
Since real-life datasets are usually incomplete, we generate sets of synthetic data for the
purpose of demonstration. Specifically, we choose rectangles as primitive geographical entities
for RCC-8 relations and closed-intervals as primitive temporal entities for IR-13 relations.

To generate rectangles, we first set up a main area, in which rectangles should be located.
By default, the main area is set to be a 15×15 unit square with the origin being its bottom-left
corner. Then we randomly generate pairs of points within the square and each pair of points
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compose the top-left corner and the bottom-right corner of a rectangle2. Finally, we compute
RCC-8 relations between any two rectangles to generate synthetic spatial relation triples.
Likewise, we generate a number of closed-intervals on the x-axis within the range [0, 500].
Specifically, we randomly select two integers from the range and use the smaller one as the
beginning of an interval and the bigger one as the ending of the interval. Then we compute
the IR-13 relations between any two intervals to generate synthetic temporal relation triples.
We call the set of all synthetic triples as complete synthetic data.

However, without any prior knowledge, it is hard to decide how many rectangles/intervals
should be generated within the given main area/line segment. Meanwhile, the number of
rectangles/intervals generated in the same area/line may affect discovered relation graphs.
Therefore, we independently generate several sets of synthetic triples for both the RCC-8
and the IR-13 relations with different number of rectangles/intervals (i.e., [64, 128, 256, 512,
1024]). These sets of triples have different densities of rectangles/intervals. The proportions
of different relations generated with respect to different numbers of rectangles/intervals are
shown in Table 2.

Table 2 Relation proportions of RCC-8 (on the left) and IR-13 (on the right) regarding different
numbers of rectangles/intervals N=64, 128, 256, 512 or 1024. All values are multiplied by 100.

N 64 128 256 512 1024
dc 43.5 43.4 42.7 42.8 42.3
ec 12.2 11.9 11.8 11.5 11.8
eq 1.6 0.8 0.4 0.2 0.1

ntpp 1.2 1.4 1.1 1.5 1.5
ntppi 1.2 1.4 1.1 1.5 1.5

po 35.6 34.8 37.4 36.4 36.7
tpp 2.4 3.1 2.8 3.1 3.1
tppi 2.4 3.1 2.8 3.1 3.1

N 64 128 256 512 1024
< 18.7 14.9 16.1 16.4 16.5
= 1.6 0.8 0.4 0.2 0.1
> 18.7 14.9 16.1 16.4 16.5
d 15.7 17.2 16.4 16.2 16.9
di 15.7 17.2 16.4 16.2 16.9
f 0.1 0.1 0.1 0.1 0.1
fi 0.1 0.1 0.1 0.1 0.1
m 0 0.1 0.1 0.1 0.1
mi 0 0.1 0.1 0.1 0.1
o 14.6 17.1 16.9 16.9 16.1
oi 14.6 17.1 16.9 16.9 16.1
s 0.1 0.2 0.1 0.1 0.1
si 0.1 0.2 0.1 0.1 0.1

4.2 Experiment Settings
We choose HyperRotatE [5] as the embedding model to learn subsymbolic representations of
entities and relations, thanks to its ability of modeling the composition of relations (which is
relevant to composition tables) and tree-like graph structures (which is useful for modeling
transitive relations (e.g., ntpp)). This model also contains the three components mentioned
in Section 2.2.2 and has a different scoring function. We use the original implementation of
HyperRotatE to learn embeddings for entities and relations3. Hyper-parameters used for the
RCC-8 and the IR-13 relations include learning rates: 0.05 (for the RCC-8 relations) and
0.1 (for the IR-13 relations), batch sizes: 1024 for both, negative samples: 64 (for the RCC-8
relations) and 32 (for the IR-13 relations), and dimensions: 110 (for the RCC-8 relations)

2 We ensure that each rectangle is valid. For example, if the two points in a pair align along the same
axis, we will remove this pair.

3 https://github.com/HazyResearch/KGEmb

COSIT 2022
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and 18 (for the IR-13 relations). For IR-13 relations, we use the same hyper-parameters for
all synthetic data. For RCC-8 relations, we increase the dimension of the embedding space
to 200 when the number of entities is 512 or 10244. In the experiment, we train HyperRotatE
and then perform relation prediction over the complete synthetic data by default 5.

4.3 Evaluation Metrics
In order to quantify the differences between the learned relation graph and from CNGs, we
introduce three metrics to measure commonality and difference. One solution is to convert
graphs to sets of edges (each edge consists of a pair of relations) and to use set operations
for quantification. Three metrics can be defined: (1) False Recall (i.e., number of false
positives): the number of edges that are in our generated graph but not in CNGs (set
difference). (2) True Recall (i.e., number of true positives): the number of edges that are in
both our generated graph and CNGs (set intersection). (3) Failed Recall (i.e., number of
false negatives): the number of edges that are not in our generated graph but in CNGs (set
difference). Clearly, a graph that is similar to CNGs should have a low False Recall, a high
True Recall, and a low Failed Recall.

4.4 Experimental Results
In this section, we first show direct results from our approach introduced in Section 3.
Figure 2 illustrates (a) the initial relation graph resulting from the construction steps and (b)
the refined relation graph after pruning. Next we report main findings based on the refined
relation graph.

dc

ec

0.816

ntpp

0.011

ntppi

0.009

po

0.123

tpp

0.028

tppi

0.012

0.249

0.014

0.011

0.501

0.117

0.108

0.003

0.02

0.977

0.003

0.0230.974

0.035

0.634

0.028

0.03

0.127

0.145

0.001

0.166

0.362
0.444

0.027
0.001

0.166

0.381

0.43
0.022

eq
0.008

0.082

0.91

(a) Initial Relation Graph.

dc ec0.816

po

0.501

ntpp tpp0.977

ntppi tppi0.974

0.634

0.444

0.43

eq

0.91

(b) Refined Relation Graph.

Figure 2 Examples of initial/refined relation graphs produced by our approach.

4 When the number of entities increased to 512/1024, the model’s performance greatly deteriorated. We
assume the performance is compromised due to lack of learnable parameters. Thus, we increase the
dimensions to provide more learnable parameters for our models to learn.

5 Note that we do not tune these hyper-parameters but choose them by empirical experiences. It is
worthwhile to investigate the impact of hyper-parameters on the experiment results in the future.
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1. Relation graphs automatically discovered by our approach are well-aligned with CNGs
for both RCC-8 and IR-13 relations. Figure 2b implies that our refined relation graph
resembles conceptual neighborhood graphs (Figure 3f). This motivates us to examine how
similar our refined relation graphs are CNGs from the literature and whether this is merely
a coincidence. In order to make our refined graphs comparable with CNGs, we convert the
refined graphs into undirected and unweighted relation graphs (UU-RGs).

Figure 3 and Figure 4 report the results for RCC-8 and IR-13 relations, respectively,
with different number of entities being considered. Noticeably, our approach discovers stable
relation graphs for both RCC-8 and IR-13 relations. In specific, relation graphs for RCC-8
remain almost unchanged with an increasing number of rectangles and relation graphs for
IR-13 begin to be fixed (except for the equal relation) when the number of intervals is
256. This observation also aligns with the statistics shown in Table 2, in which the relation
proportions become relatively stable when the number of entities reaches 256. This indicates
that the KGE model is mainly affected by the proportion of relations in the synthetic data.
Moreover, by comparing Figure 3a, 3b, 3c, 3d and 3e with Figure 3f (or comparing Figure 4c,
4d and 4e with Figure 4f), we can observe that the discovered relation graphs are well-aligned
with the CNGs which are defined in the literature (see Figure 3f and Figure 4f), except for
differences around the equal relation(i.e., “eq” and “=”). This observation demonstrates the
ability of ML models in learning domain knowledge purely from data and the effectiveness
of our approach in automatically discovering relationships of JEPD relations (RCC-8 and
IR-13 as examples here). This demonstrates that conceptual neighborhood graphs can be
reproduced from data without any domain knowledge/inductive bias.

As for the differences around the equal relation, one explanation is the lack of enough
equal relations in our synthetic data. Because we randomly generate rectangles/intervals
within a given area/segment, it is relatively rare to yield two rectangles/intervals that have
the same geometry. As a result, most equal relations are just self-equivalent (e.g., ⟨s, eq, s⟩),
which in fact does not provide enough useful information for the model to learn. Hence, we
do not consider this a shortcoming of the model.

2. Similarities of relations are asymmetric and certain relations are more similar. Several
patterns in asymmetric similarities of relations are also disclosed. In this experiment,
we examine similarities of relations, which are quantified by weights in Eq. 2. We extract a
subgraph from our initial relation graphs (see Figure 2a) that contain edges presented in
the theoretical CGNs except for edges that are connected to the equal relation (since the
equal relation is not well-reproduced). We set the number of entities to 1024 and run the
HyperRotatE model for 20 times to obtain average weights/similarity scores. The extracted
subgraphs for RCC-8 and IR-13 relations are illustrated in Figure 5.

Apparently, we can observe that similarities of relations are asymmetric. In other words,
the statement that a is similar to b differs from that b is similar to a (a and b are relations).
For instance, the similarity between dc and ec is 0.903 while the inverse similarity is 0.215.
Namely, dc is more similar to ec while ec is less similar to dc. In fact, Figure 5a shows ec is
most similar to po, and both dc and po are most similar to ec. Meanwhile, we find that ec
and po are more similar in general with higher similarities of 0.556 and 0.654. Additionally,
there exist similar patterns between relations and their inverses in terms of their asymmetric
similarities to other relations. For instance, Figure 5b shows < is most similar to m and m is
most similar to o. In terms of their inverse relations, > is most similar to mi and mi is most
similar to oi. Moreover, in Figure 5a, ntpp is most similar to tpp and ntppi is most similar
to tppi. Similar patterns are shown between d–>f–>oi and di–>fi–>o, as well as between
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Figure 3 The relation graph of the RCC-8
relations w.r.t. different number of rectangles.
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Figure 4 The relation graph of the IR-13
relations w.r.t. different number of intervals.

d–>s->o and di–>si–>oi. Another interesting observation is that all neighboring relations
of the overlapping relation (i.e., po in RCC-8 and o and oi in IR-13 ) are most similar to
the overlapping relation (see the arrows that point to the overlapping relation). By contrast,
in Figure 5b, both d and di are most similar to their neighboring relations (the red arrows
around them leave out of them). Interestingly, similarity assessments in the cognitive science
literature have been shown to be highly non-symmetric as well due to differences in (feature)
alignment. For instance, Klippel et al. disclosed that the similarity between RCC-8 relations
vary from different scenarios (such as hurricane, cannon and geometry). In addition, Mark
et al. also found that some topological relations indeed are conceptually more similar to
others [21].
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(b) Similarities for IR-13 relations.

Figure 5 Asymmetric similarities of relations. For two edges between two vertices, the edge with
a larger weight is highlighted in red.

3. Even with limited training data (i.e., as low as 15% of the complete synthetic
data), HyperRotatE is still capable of reproducing CNGs. Finally, we are interested
in the question of how much training data is needed for HyperRotatE to reproduce CNGs.
In order to answer this question, we extract subsets of the complete synthetic data with
different proportions and use the three metrics introduced in Section 4.3 to evaluate the
commonality and difference between UU-RGs and CNGs. Experiment results with the
number of entities being 256 are shown in Figure 6. Red lines and black lines are theoretical
references, indicating numbers of edges that are connected to the equal relation and that are
not in theoretical CNGs, respectively. Clearly, regarding RCC-8 relations, when more than
10% of the complete synthetic data are used for training, HyperRotatE is able to reproduce
CNGs with stable recalls. Specifically, when the proportion is larger than 10%, False Recall
continues to be 0, True Recall is either 7 or 8 and Failed Recall is either 3 or 4. Noticeably,
True Recall is always above the red line (i.e., 6 – the theoretical number of edges that are not
connected to “=” in the CNG) and Not Recall is close to the black line (i.e., 5 – the theoretical
number of edges that are connected to “=” in the CNG). That is, the relation graphs (except
for conceptual neighbors of the equal relation) is well-aligned with the theoretical CNGs
even when only 10% of the complete synthetic data are available. Similar observations are
shown for IR-13 relations; see Figure 6b; however, the same pattern is observed when the
training proportion is larger than 15%. In summary, HyperRotatE is a robust knowledge
miner, which succeeds in discovering CNGs even with limited training data.

5 Conclusion

In this work, we presented a graph-based approach to examine similarities among RCC-8
and IR-13 relations in neighborhood graphs since they are important to spatio-temporal
reasoning and spatial queries. In contrast to traditional approaches that heavily rely on
top-down techniques and rule sets, we address this problem in a bottom-up manner without
the need of any domain knowledge. Specifically, we focus on the task of relation prediction;
namely to answer the query ⟨s, ?r, o⟩. Our rationale is that it would be difficult for machine
learning methods to distinguish relations that are topologically similar when predicting
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Figure 6 Quantitative comparison between UU-RGs and CGNs. UU-RGs are reproduced w.r.t.
different proportions of the complete synthetic data as training data. Lines in red denote the number
of edges that are not connected to the equal relation in CNGs and lines in black denotes the opposite.

missing relations between two entities. Therefore, we can pull similar relations out of the
relation prediction task, and then use the proposed method to construct a graph to examine
the structure among relations. Our experiments on synthetic data about RCC-8 and IR-13
relations reveal that (1) the extracted relation graphs are well-aligned with conceptual
neighborhood graphs introduced in [15] and [10] except for neighboring relations of the equal
relation. We believe this may be caused by a lack of enough equal relations in generated
training data, which is left for future work; that (2) similarities of relations are asymmetric,
and patterns in asymmetric similarities of relations are the same as those in their inverse
relations; and that (3) the presented embedding models are robust in mining qualitative
spatial and temporal knowledge (i.e., CNGs), even with limited training data.

Theoretically, our approach could be applied to any calculus with JEPD relations [6] to
automatically discover CNGs. We believe our research would benefit theoretical studies of
CNGs in general and contribute to a broader field, such as geospatial artificial intelligence, by
promoting a deeper understanding of what machines really learn from data in a bottom-up
manner. In the future, we plan to study whether such CNGs will be preserved when realistic
data (particularly when non-spatial information is also considered) are used at training.
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