Predicting Distance and Direction from Text
Locality Descriptions for Biological Specimen
Collections

Ruoxuan Liao &

Massey Geoinformatics Collaboratory, Massey University, Auckland, New Zealand

Pragyan P. Das &

Massey Geoinformatics Collaboratory, Massey University, Auckland, New Zealand

Christopher B. Jones =

School of Computer Science and Informatics, Cardiff University, UK

Niloofar Aflaki =

Massey Geoinformatics Collaboratory, Massey University, Auckland, New Zealand

Kristin Stock! @&

Massey Geoinformatics Collaboratory, Massey University, Auckland, New Zealand

—— Abstract

A considerable proportion of records that describe biological specimens (flora, soil, invertebrates),
and especially those that were collected decades ago, are not attached to corresponding geographical
coordinates, but rather have their location described only through textual descriptions (e.g. North
Canterbury, Selwyn River near bridge on Springston-Leeston Rd). Without geographical coordinates,
millions of records stored in museum collections around the world cannot be mapped. We present a
method for predicting the distance and direction associated with human language location descriptions
which focuses on the interpretation of geospatial prepositions and the way in which they modify the
location represented by an associated reference place name (e.g. near the Manawatu River). We
study eight distance-oriented prepositions and eight direction-oriented prepositions and use machine
learning regression to predict distance or direction, relative to the reference place name, from a
collection of training data. The results show that, compared with a simple baseline, our model
improved distance predictions by up to 60% and direction predictions by up to 31%.
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1 Introduction

Around the world, vast collections of biological specimens (e.g. plants, fungi, invertebrates,
soil samples) held by museums, libraries and government organisations are georeferenced
using text locality descriptions such as North Canterbury, Selwyn River mear bridge on
Springston-Leeston Rd. While specimens collected in recent years usually have geographic
coordinates (latitude and longitude) captured from GPS, the locations of many millions of
specimens, sometimes going back hundreds of years, are recorded only in text format.
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Many of the text descriptions used are complex, multi-clausal and consist of a mixture
of place names/toponyms (North Canterbury, Selwyn River, Springston-Leeston Rd in the
above example), generic geographic feature types that appear in the landscape but are not
sufficiently notable to have toponyms (bridge in the above example), and location terms
such as prepositions (near, on in the above example) and multi-word phrases (e.g. 4km
north-east of, 80 miles along the road from). Furthermore, many of the descriptions include
abbreviations, and while attempts are being made to enforce standard approaches to the
description of location to support automated georeferencing [2], many historical records do
not follow these standards.

Descriptions of location such as the examples above are referred to as locative expres-
sions [16] and are typically expected to include a located object (or locatum), a spatial
relational term or phrase, and a reference object or relatum [16]. In biological records the
locatum is sometimes implicit (being the sample that was collected), but in more complex
phrases, sub-clauses may include a locatum, such as the word bridge in the previous example.
When georeferencing textual descriptions of locations, Named Entity Recognition methods
which recognise specific types of entities in text, including locations [1], have commonly
been used to recognise named places, while gazetteers are used to attach coordinates to (i.e.
geocode) the names [10, 18]. However, this only provides part of the picture, as location terms
(geospatial prepositions and other modifiers) provide offsets relative to place names (e.g. next
to the Manawatu River), and thus are key to achieving the level of precision needed to make
use of this vast repository of biological data for species mapping and monitoring over time.
A number of works have identified common forms of location descriptions, such as distance
and cardinal direction (e.g. 4km north-east of <place name>), defining rule-based [13]
and probabilistic [12] models for the interpretation of these common forms, and the errors
associated with them. However, the range of possible forms of location descriptions is vast,
and many do not conform to these common structures. Furthermore, the interpretation of
location descriptions is often context dependent, and the way a description is interpreted
many depend on the topography and other physical characteristics, or may vary depending
on the methods used for data collection (in part a function of date) or the collector.

In this paper, we present a method for determining the distances and directions associated
with a set of location terms (prepositions/prepositional phrases and cardinal directions)
using machine learning regression. We predict the offset distance and direction from a
reference object associated with the location term using semantic and contextual features
of the locality description and the reference object, compare the results to a baseline and
evaluate the importance of the features in the model. We demonstrate that regression is
a useful tool for predicting the distance or direction associated with location descriptions
(depending on the type of description), and that there is scope to further expand this method
with additional features and machine learning models. Our method is evaluated using 15311
locality descriptions from the biological collections held by Manaaki Whenua - Landcare
Research (MWLR), New Zealand. We identified the most frequently occurring prepositions
or nouns/adverb + preposition pairs (e.g. base of and north of respectively), resulting in
eight distance-oriented (near, above, below, at, head of, end of, mouth of, tributary of) and
eight direction prepositions (north of, south of, east of, west of, north-east of, north-west
of, south-east of, south-west of). We confined our attention to the last place name in the
location description that is preceded by one of those terms. In future work, multiple clauses
and place names should be parsed to make use of all the information in the descriptions and
further improve results.
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The paper is structured as follows: Section Two describes previous work; Section Three
presents the method used for extracting relevant terms from the descriptions and calculating
the dependent variables (the values we wish to predict, in this case distance and direction)
and the features used in our model. Section Four presents the results and evaluates feature
importance, and Section Five contains conclusions.

2 Previous work

One of the most common methods for georeferencing text location descriptions is the use of
Named Entity Recognition to identify place names, referred to as geoparsing, before extracting

their coordinates from a gazetteer, known as toponym disambiguation or resolution [10, 17].

However, this simply georeferences the place names mentioned, but ignores the impact of
spatial relation terms that describe a location offset from the place name (e.g. near the
Manawatu River; north-west of Lincoln; outside Auckland). Such descriptions are known as
relative location descriptions, because they describe a location relative to a reference object,
and rely on a spatial relation term to do this. Many spatial relation terms are prepositions
(e.g. at, on, near, beside), though they may be other parts of speech including verbs and
adverbs [6].

A number of works have developed models of spatial relation terms, including mapping
of terms to spatial relations formally modelled with qualitative spatial reasoning methods

(QSR) addressing topological, proximity, orientation and projective relations, e.g. [7, 9, 24].

Such models have only had quite limited application to quantification of distances or angles
associated with specific natural language spatial relational terms due to the challenges of
interpeting the vagueness inherent in human language.

Several studies have proposed fuzzy logic models of proximity relations and conducted
human subjects experiments, including for geographical contexts [26, 31, 8, 11], but such

models do not appear to have been applied to the interpretation of natural language texts.

A regression model of various forms of nearness and farness that considers several contextual
factors, again in a geographical context, was presented in [32] but its application there was
to predict the linguistic description for given metric measures. A quantitative analysis of
the use of near within n-grams was conducted in [5] based on text sources mined from the
web. Triples of the located object, spatial relation and reference object were used to examine
distances between points of interest within three cities, and between populated places and
each of the cities. They found that distances were smaller for near in New York compared to
San Francisco and Los Angeles, but did not study context specific differences in distances
relating to the different feature types. Another study in a similar context analysed the
proximity of close, near and next to spatial relation terms [30] to derive reference object
locations. The study discusses the importance of contextual variables like geometry, size and
travel distance in deriving coordinates. However, factors like the cardinal direction and angle

of the reference object to the located object were not taken into consideration in this study.

Another approach defines spatial templates [21], also known as applicability models or
probabilistic density fields, for particular spatial relation terms, that describe the areas in
which a term may apply, and depict the variation in applicability for example in the form of
a density surface. Thus proximity relation terms such as near may be highly applicable at
distances close to an object, but gradually become less so as the distance increases. Individual
templates can be constructed using multiple examples of observations of the location of a
located object relative to a reference object. While most applications of spatial templates
have been in table-top space [27, 19, 28], they have also been applied in the geo-spatial
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domain [14], including for purposes of interpreting location descriptions [13], with models of
several proximal and projective relations being instantiated with data from the Geograph
photo-sharing web site and human subjects experiments. Various forms of applicability
models were used in the study of [3] to infer distances implied by individual spatial relations
between places in text describing city locations. They used the gazetteer coordinates of
known locations to derive the coordinates of the non-gazetteered places, based on applying
their models of the respective spatial relations. The approach was rule based and depended
upon the prior existence of a graph (‘place graph’) representation of the respective locations.

In the context of image analysis and retrieval, spatial templates have been used with
machine learning models to predict applicable spatial relations and the locations at which
spatial relation terms apply, allowing the context of particular situations to be taken into
account. In [22] deep learning methods are used with spatial templates (constructed from
multiple examples of, mostly projective, spatial relations) to infer the spatial relations between
objects in images. In a related study [4], deep learning is used with spatial templates to infer
the coordinates of objects in images that have been described with verbal action relations
to a given subject. Their input includes the word embeddings of the subject, the relation
and the object, along with the location and size of the subject. Notably the latter study [4]
provides an example of using regression methods to infer coordinates relative to a reference
object. These studies were both conducted in the context of image analysis and retrieval
without reference to geographic space.

This paper differs from the previous work in developing a predictive, machine learning
model of a selection of distance and direction oriented terms, and incorporating novel
contextual factors in the model. We do not go as far as georeferencing since we only predict
either distance or direction, but this does enable the area to which a description refers to be
narrowed down to a more precise location relative to the reference place name.

3 Method
3.1 Data

The biological specimen dataset that we use in this paper comes from Manaaki Whenua -
Landcare Research (MWLR), New Zealand, and consists of four separate collections, the
details of which are listed in Table 1. The MWLR database is constantly updated and
maintained, and the MWLR version we used was extracted on July 30, 2021. Table 2 shows
some examples of the kinds of locality descriptions that appear in the database. While these
collections in combination contain many millions of records, only a small proportion are
digitised and have geographic coordinates, and we use a subset of these to train and test our
model.

A notable characteristic of the data set is that the coordinates are highly variable in
spatial accuracy. The biological specimens in the collections range in age from those collected
during Cook’s voyages of New Zealand (1769-1779) to the present day. Older specimens
may rely on place names that did not continue to be used and whose location has been lost,
and textual location descriptions were sometimes very imprecise. Specimens collected in
the last few years have been coordinated with GPS, but before that a range of practices
were used to derive the coordinates that we used in this work. Some were heavily manual
processes involving examination of maps, aerial photos and records to allocate coordinates,
but also several automated processes were applied, one example being the use of map sheets
recorded as part of the collection record to derive coordinates, using either the centre or a
specified corner of the map sheet as an approximation of the location. The result of this is
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Table 1 The composition of the MWLR database.

C . Number of
Original
records after
Dataset number dropping null
of records PpIng
values
Allan Herbarium (plants) 321891 13692
International Collection of Micro-organisms from Plants | 22345 909
NZ Fungarium 106945 426
NZ Arthropod Collection 202676 14
Total 633857 15311
Table 2 Example locality descriptions.
Locality Description Latitude | Longitude
Buller, Paparoa Mountains, north flank of Mt Euclid, c¢. 1-1.5km 41,9562 171.6032
east of Morgan Tarn.
Auckland Island, lower slopes about Musgrave Inlet -50.6469 166.1533
Nelson, about 1 km SE of Lake Peel, in the track to Balloon Hut -41.1316 172.6001
Marlborough, hills about Queen Charlotte Sound -41.3859 173.7136
Lake Ellesmere Spit = Kaitorete Spit - About Midway along length. | -43.874 172.2679

that the accuracy of individual records in the data set is unknown. To illustrate this point,
Appendix A provides scatter plots of eight cardinal direction prepositional phrases studied in
this paper, and Table 3 provides figures to indicate the mean bearing (angle from north in a
clockwise direction, ranging from 0° to 360°) and standard deviation of each direction. The
circular nature of bearing values, where 0° is the same as 360° causes problems for predictive
models, and thus following [15], we represent bearings as the (sinf, cosf), and the standard
deviation figures are given using this representation.

Table 3 Comparison of Cardinal Directions.

. . Mean bearing St.andard dc?v1- St'a ndard. devi- Mean standard
Direction ation of cosine | ation of sine of L.
(®) . . deviation
of bearing bearing
north of 11.8 0.57 0.57 0.57
south of 192.6 0.54 0.44 0.49
east of 102.7 0.57 0.54 0.56
west of 263.8 0.47 0.51 0.49
north-east of 38.7 0.47 0.37 0.42
north-west of | 307.8 0.50 0.46 0.48
south-east of 142.4 0.51 0.29 0.40
south-west of 223.7 0.44 0.27 0.36

The vague use of cardinal directions in natural language is well documented [14], and
demonstrated by the range of locations clustered around the specified direction. However,
the scatter plots demonstrate that in this data set, the presence of multiple extreme outliers
is much greater than for data analysed in other work, such as [14]. This is likely to be due to
inaccuracies in the data set, particularly resulting from methods used to georeference older
historical data. Future work will derive and incorporate quality measures into approaches to
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georeference the collection, but here we work with the data as it is, accepting inaccuracies,
as well as some evident gross errors, as part of the challenge that we address. Appendix A
also illustrates the tendency for the main four cardinal directions (north, south, east, west)
to be used for a wider range of directions than the other four (more specific) directions, and
this can also been in the lower mean standard deviations for the more specific directions
than for (north, south, east, west) in Table 3.

3.2 Pre-Processing

Spatial relations are commonly described with prepositions, and for the purposes of this paper,
we focus on creating distance or direction models for a set of common spatial prepositions.
Having replaced common abbreviations in the descriptions with their expanded versions (e.g.
SE -> south-east), we used the spaCy? python library part of speech (POS) tagger to identify
prepositional phrases as those that were tagged either as prepositions alone (e.g. near), or
as nouns or adverbs followed by prepositions (e.g. base of and north of respectively). We
then counted the frequency of each unique prepositional phrase to identify the most frequent.
We first selected the most frequently appearing eight prepositions, and since some cardinal
directions were among this set, we expanded the set to include all eight cardinal directions,
and to also include the next most frequent non-directional prepositions to create a balanced
set of eight prepositions that describe cardinal directions (which we describe as directional
terms), and eight others for which distance is often an important defining characteristic. The
final data set consisting of locality descriptions that use one of these sixteen terms formed
78.60% of the 15311 descriptions mentioned in Table 1.

The final set of spatial relation terms were:

eight directional terms: mnorth, south, east, west, north-west, north-east, south-west,

south-east and

eight other spatial relation terms for which distance may be an important component:

near, at, above, below, head of, mouth of, end of, and tributary of.

While not all of the members of the second set of the terms are primarily distance-related,
incorporating elements of elevation (above, below) or parthood (head of, mouth of, end of,
tributary of), in this work we attempt to predict the distances associated with them. Even
though above and below describe elevation, some distance association is implied, as they
would not be used with locations that were a large distance from the reference object (e.g.
the hut above Lake Wakatipu). Similarly, while the parthood terms refer to some specific
component of an object (e.g. a river), the parthood relation also implies spatial coincidence.
We acknowledge that there are many other semantic aspects of these terms than just the
distance, but delay those aspects for future work.

We next used Named Entity Recognition (NER) to identify place names in the locality
descriptions, testing several state of the art tools and selecting spaCy’s NER tool as the
most accurate after testing on a sample of 200 descriptions. We attempted to retrieve
coordinates for all place names within a bounding box for New Zealand using three gazetteers:
GeoNames?, the New Zealand Geographic Board Place Names Gazetteer? and Nominatim®,
and selected the best result amongst multiple matches (disambiguated) as the place name

https://spacy.io/
http://www.geonames.org/
https://gazetteer.linz.govt.nz/
https://nominatim.org/
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that was closest to the known location for the specimen. In addition to coordinates, the
feature type (e.g. lake, river) was retrieved to support extraction of features for the machine
learning model (see Section 3.3).

We identified all instances of the 16 prepositions that were immediately followed by
a tagged place name for which we could retrieve coordinates. We then calculated the
distance and direction between the coordinates of the place name following the preposition
and the ground-truth coordinates contained in the data set. These values represent the
offset that describes the location of the specimen relative to the reference place name
for simple preposition-place name pairs. For example, for the locality description near
Karangahake Gorge, the distance between the coordinates of Karangahake Gorge retrieved
from the gazetteer and the coordinates of the specimen contained in the collection reflects
the quantitative meaning of the near preposition in this particular context. These, and their
associated directions where prepositions are more direction-related, are the figures we aim to
predict with our model.

For the eight distance-related prepositions, we use the geodetic distance between the
reference object and the ground truth specimen coordinates as the dependent variable (the
value we aim to predict) in our model. For the direction-related prepositions, we follow [15]
and use the sine and cosine of the bearing (sind, cosf) as the dependent variables for model
training (and our regression model for directional prepositions thus has two dependent
variables) and convert them back to bearings at the end. This approach is used to avoid
problems caused by the circular nature of bearing measurements, in which 0° is the same
as 360°.

3.3 Regression Model

In order to predict the distance or direction corresponding to the prepositions in our locality

descriptions, we incorporate a number of features in a machine learning regression model.

The features included were as follows:
The GloVe embedding of the feature type of the reference object. GloVe (Global Vec-
tor for Word Representation) generates multi-dimensional vector representations of words
and was first introduced by a team at Stanford University to study the similarity index
between the words. It is derived from word-word occurrences in a textual description by
only considering the non-zero elements, which are used to calculate the embeddings based
on probabilities. We used 200 dimension GloVe embeddings pre-trained on Wikipedia +
Gigaword 5 [25]. The feature type for each place name (reference object) was retrieved
from the relevant gazetteer along with the coordinates.
The vector created by averaging the GloVe embeddings for the feature types of all
place names in the locality description (excluding the reference object) using 200
dimension embeddings pre-trained on Wikipedia + Gigaword 5 [25]. The feature type for
each place name was retrieved from the relevant gazetteer alongside the coordinates.
One hot-encoding of the geometry type (point, line, polygon, volume) of the reference
object feature type. The geometry type was retrieved from the Linguistically Augmented
Geospatial Ontology (LAGO) [29] using WordNet [23] to match feature types retrieved
from the gazetteer for our reference object to feature types contained in the LAGO if
they did not already appear. This feature is included because geometry type has been
shown to influence the use of geospatial prepositions (e.g. the house beside the church vs.
the road beside the river - the latter implies alignment as well as proximity) [29].
One hot-encoding of the scale of the reference object feature type (district scale, neigh-
bourhood scale, immediate scale). The scale was retrieved from the LAGO as for geometry
type, and is included because the influence of scale on the use of geospatial prepositions
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has been demonstrated [29, 20]. Although not identical, this may be considered an
approximate indicator of object size (for example, district scale may refer to objects such
as mountain ranges, while immediate scale may refer to smaller objects such as houses).
One hot-encoding of the census Territorial Authority of the reference object, out of a
total of 85 districts that cover New Zealand. This set of features indicates whether two
instances are in the same geographic area.
The area, population, population density and length (at the longest extent) of
the meshblock® that the reference object is in. These features indicate how urban/rural
an area is, and are included to test whether this aspect influences the use of geospatial
prepositions.
The area, population, population density and length (at the longest extent) of
the Territorial Authority that the reference object is in.
The year that the specimen was collected. This is an approximate indicator of the
accuracy of the coordinates, as recent records have GPS-level accuracy, while coordinates
from 200 years ago may be very approximate (e.g. derived from map sheet or description).
A boolean value indicating whether the location is cultivated from the collections data.
The altitude of the specimen, providing an indication of the environment type (e.g.
alpine).
We used ten-fold cross validation to test a number of different regression models including
Support Vector Machine with polynomial (SVM-polynomial kernel) and Radial Basis Function
kernel (SVM-rbf kernel), k-nearest neighbour, gradient boosting, support vector regression
and decision tree. A number of other models including linear regression and multi-layer
perceptrons were tested but did not perform well so were not pursued further.

4 Results

4.1 Distance Prediction

We evaluate the results of our methods against a simple baseline that relies only on the place
name immediately following the preposition (the relatum), and like most current approaches
ignores the spatial relation term. Hence it assumes that the distance and direction between
the place name and the predicted location are zero. Table 4 shows the mean absolute error for
the baseline and our best-performing machine learning model, together with the percentage
improvement that our method provides over the baseline.

Overall, we see better performance (larger percentage increase) for cardinal directions
than for the distance-related prepositions. While this is unexpected in that we would expect
more consistency in distance for distance-oriented prepositions than direction-oriented, this
may be explained by the larger average distances between relatum and locatum for the
direction-oriented prepositions, so the baseline, which assumes a distance of zero, is a poorer
estimate than for prepositions that are used for smaller distances between relatum and
locatum. However, following this reasoning, we might expect that the poorer result for
the at preposition could be equivalently explained by typically shorter distances between
relatum and locatum, which are better predicted by our zero-distance baseline, but this is
not supported by the data. Our goal is to predict the distance between relatum and locatum
and, as the baseline predicts this distance to be zero, each baseline prediction is equal to
the actual distance between relatum and locatum. Thus the mean absolute error (MAE)

6 The smallest geographic unit for which New Zealand census data is recorded.
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Table 4 Results of Machine Learning Regression - Distance Prediction.

Preposition | Best-performing | Count Baseline Regression
Model MAE (m) | MAE (m) | % improv

near svm-rbf kernel 3478 6412 4491 30%
above svm-rbf kernel 695 3581 2634 26%
head of svm-rbf kernel 388 5298 3465 35%
below svm-rbf kernel 278 4256 3462 19%
at svm-polykernel 208 6075 5140 15%
end of svm-rbf kernel 164 5678 4512 21%
mouth of svm-rbf kernel 115 1630 967 41%
tributary of svm-rbf kernel 112 5347 3934 26%
north of svm-rbf kernel 1309 7277 4343 40%
south of svm-rbf kernel 1211 8538 4509 47%
east of svm-rbf kernel 959 7458 3862 48%
west of svm-rbf kernel 879 8533 5054 41%
north-east of svm-rbf kernel 187 10139 4701 54%
south-west of svm-rbf kernel 169 9756 3892 60%
north-west of svm-rbf kernel 147 6116 3212 47%
south-east of svm-rbf kernel 185 9802 4523 54%

for the baseline is equal to the average distance between relatum and locatum across all
instances of a particular preposition. The baseline MAE (and therefore the average distance
between relatum and locatum) for the at preposition is in fact higher than for all other
distance-related prepositions except near. Furthermore, the mouth of preposition has the
shortest average distance (baseline MAE) between relatum and locatum, but is the best
predicted of the distance-oriented prepositions using our method. The mouth of preposition
describes a wide range of distances between 85 and 13200 metres.

Although the regression models show improvement relative to the baseline across all of
the prepositions, and in many cases these are substantial, we consider that the MAE values
are inflated by outliers that result from the low accuracy of some of the coordinates, and in
some cases challenges in identifying accurate coordinates for the relatum place names due to
their absence from, or duplication in, the gazetteers. For example, Table 5 shows that 80%
of the error values (absolute value of predicted - actual distance) for the near preposition are

below 5514.45m. Thus filtering out of the worst 20% of errors results in a MAE of 1672.09m.

Table 5 Errors for each Percentile for the near preposition.

Percentile Error
10th 162.56
20th 422.68
30th 768.50
40th 1208.30
50th 1794.13
60th 2612.76
70th 3806.46
80th 5514.45
90th 10038.38

100th (all values) | 108772.75
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Table 6 Results of Machine Learning Regression — Direction Prediction.

Preposition Best-performing Count | Baseline Regression
Model MAE (°) | MAE (°) | % improv
north of gradient boosting regressor 1309 48.0 47.7 0.6%
south of gradient boosting regressor 1211 35.3 30.4 13.8%
east of k-nn 959 46.1 42.3 8.1%
west of k-nn 879 43.4 41.8 3.5%
north-east of decision tree 187 35.0 26.7 23.8%
south-west of | gradient boosting regressor 169 43.5 30.2 30.6%
north-west of | support vector regression 147 46.2 48.9 -5.9%
south-east of support vector regression 185 48.3 40.0 17.2%

4.2 Direction Prediction

For the eight direction-oriented prepositions, we evaluated the ability of our machine learning
model to predict direction using the features listed in Section 3.3.

While the cardinal directions technically describe precise directions (e.g. east of specifies
90° using north as 0° and measuring angle in a clockwise direction, an angular measurement
known as the bearing), research has shown that these directions are frequently used vaguely
in natural language [14] to refer to a range of directions that are more or less in the direction.
As a result of this tendency to use direction terms vaguely, rather than defining our baseline
as the precise direction that corresponds to each term, we instead use the average deviation
from the precise direction specified by the direction term. We thus use the average difference
between the bearing of the actual line between relatum and locatum and 90° as the baseline
for east, and evaluate the ability of our regression model to predict that difference.

As explained in Section 3.2, we represent these angles as two numbers: sinf, cosf, and
perform a multivariate regression to predict both values simultaneously. Table 6 presents the
results for the direction prediction, with the sinf, cosfl values converted back into errors in
degrees and compared to the baseline. This means, for example, that if we simply assumed
that the preposition south of means a bearing of 180°, we would get a MAE of 35.3° using
our dataset. However, the use of our regression model reduces this MAE to 30.4°, giving a
13.4% improvement. It must be acknowledged that the MAE for both the baseline and the
regression model are relatively high. The high MAE for the baseline is an indication of the
large spread of directions for which a given cardinal direction term is used, in some cases
deviating substantially from the precise direction indicated by the term (e.g. 90° for east),
as indicated in Appendix A, and while the regression model improves on the baseline by up
to 30%, we anticipate that improvements could be achieved by the inclusion of additional
features that focus on directional semantics. It is also of note that the regression model
for north-west of predicts direction less well than if the precise direction were used (315°).
This is most likely because the spread of data points for north-west of is relatively narrow
compared to the other directions, with few outliers, and thus the regression models ability to
model contextual variations in the use of the direction term is less effective.

4.3 Feature Importance

We analyse the importance of different features in the model by calculating the correlation
coefficient between each feature and the three dependent variables (distance, sinf and cosd).
Figure 1 shows the 25 features with the highest correlations. The light grey area indicates the
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importance of the GloVe embeddings for the relatum feature type across all of the distance
and direction predictions. The dark grey squares represent the average embedding of the
feature types of all other place names, as well as feature types mentioned explicitly in the
descriptions (e.g. pit in back paddock), and are also important.

Geometry type is among the most highly correlated features with both distance and
direction. For example, the boolean point geometry feature is negatively correlated with
distance for near while the line geometry is negatively correlated with distance for tributary
of. This means that expressions with point reference objects are more likely to be used for
short distances than for other geometry types. The most common point reference object
(which is also classified as a polygon reference object) is a small populated place or locality,
and it is not unexpected that these would be referenced when closer to the specimen collection
location than when further away, in contrast to non-point objects, which are likely to be
larger in scale. Although they also appear among the 25 most correlated features with the
two direction-related dependent variables, geometry type features do not exhibit a consistent
pattern across multiple cardinal directions, with the line geometry boolean feature being
positively correlated for west of and south of, negatively for north of and south-east of and
not for the others.

The scale features are not strongly correlated with distance, but do appear in several
of the cardinal directions, although the direction of the correlation (positive or negative)
varies. The importance of territorial authorities (being the most highly correlated feature for
distance for head of and at and for cosf for north-west and south-east) indicates a geographic
pattern in the way that geospatial prepositions are interpreted. There are 85 territorial
authorities throughout New Zealand, with areas ranging from 19 to 29,552 square kilometres,
and while some are very small and urban in nature, many cover widely varying terrains and

environments including a single authority covering all of Fiordland and much of Southland.

The meshblock geometry characteristics (length, area and to a lesser extent population)
shown in yellow, and those of the territorial authorities are also important for some of the
prepositions, as is altitude (shown in brown, along with year and cultivation).

5 Conclusion

In this paper we used regression to predict the distance and direction associated with 16
prepositions. We demonstrated that regression is a useful tool for predicting the distance
associated with location descriptions, with improvements for distance-oriented prepositions
of up to 41%, and for direction-oriented prepositions of up to 60%. We also showed the
significant impact of outliers in this data set, highlighting the need to consider accuracy
in these kinds of biological collections data sets that contain historical records. Results
for prediction of direction (bearing) were less promising, with the best result showing an
improvement of 31% for south-west of (the preposition that yielded the best direction
prediction results). We also evaluated the importance of the features used in the model
through correlation with the dependent variables, showing that relatum feature type is
very important, but a range of other features also contribute, such as territorial authority,
geometry type and scale.

In order to further improve the results of these models, future work will derive and
incorporate spatial data accuracy measures so that greater weight is given to the coordinate
data that is known to be accurate. In addition, we will explore more advanced methods for
identifying place names that relate to specific prepositions, and for disambiguating place
names. In future work we also plan to add further contextual features to the models, and to
apply transformer-based neural network approaches such as BERT to the challenge.
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Radial scatter plots for cardinal direction prepositional phrases

o

28

North of
o
00000
8000

"o

Eastol
o

000

.
8o
North,_East of
100000
0000
L
40000

180

Soulh?ﬁml of

g’

200
28
s
2
=5
s
e
28
1
Fo
25

South of
r

8ot

South_West of
-

s

135

4:15

COSIT 2022



