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Abstract
We discuss recent algorithmic extensions of two classic results of extremal combinatorics about long
paths in graphs. First, the theorem of Dirac from 1952 asserts that a 2-connected graph G with the
minimum vertex degree d > 1, is either Hamiltonian or contains a cycle of length at least 2d. Second,
the theorem of Erdős-Gallai from 1959, states that a graph G with the average vertex degree D > 1,
contains a cycle of length at least D. The proofs of these theorems are constructive, they provide
polynomial-time algorithms constructing cycles of lengths 2d and D. We extend these algorithmic
results by showing that each of the problems, to decide whether a 2-connected graph contains a
cycle of length at least 2d + k or of a cycle of length at least D + k, is fixed-parameter tractable
parameterized by k.
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1 Introduction

The two fundamental theories from graph theory guarantee the existence of long cycles in
dense graphs. The first theorem is Dirac’s theorem from 1952.

▶ Theorem 1 (Dirac [2, Theorem 4]). Every n-vertex 2-connected undirected graph G with
minimum vertex degree δ(G) ≥ 2, contains a cycle with at least min{2δ(G), n} vertices.

The second theorem from 1959 is due to Erdős and Gallai [3].

▶ Theorem 2 (Erdős and Gallai [3]). Every undirected graph with n vertices and more than
1
2 (n − 1)ℓ edges (ℓ ≥ 2) contains a cycle of length at least ℓ + 1.
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The proofs of both theorems are constructive, in the sense that they provide polynomial-
time algorithms constructing cycles of lengths min{2δ(G), n} and ℓ + 1. This brings us
to a natural and “innocent” question: is it possible to extend the algorithms provided by
Theorems 1 and 2 by a “tiny” bit? For example, for an integer k ≥ 1, is there a polynomial
time algorithm comuting a cycle of length at least 2δ(G) + k? Or, is it possible to identify
in polynomial time whether a graph with 1

2 (n − 1)ℓ edges contains a cycle of length at least
ℓ + k?

The methods developed in the extremal Hamiltonian graph theory do not answer such
questions. The combinatorial bounds in Theorems 1 and 2 are known to be sharp; that is,
there exist graphs that have no cycles of length at least min{2δ(G) + 1, n} or ℓ + 2. Since
the extremal graph theory studies the existence of a cycle under certain conditions, such
type of questions are beyond its applicability. On the other hand, the existing methods of
parameterized complexity, see e.g. [1], do not seem to be much of use here either. Such
algorithms compute a cycle of length at least k in time 2O(k) · nO(1), which in our case is
2O(δ(G)) · nO(1). Hence when δ(G) is, for example, at least n1/100, these algorithms do not
run in polynomial time.

We answer both questions affirmatively and in a much more general way. Our first
theorem, this theorem appears in [4], implies that in polynomial time one can decide whether
G contains a cycle of length at least 2δ(G − B) + k for B ⊆ V (G) and k ≥ 0 as long as
k + |B| ∈ O(log n). (We denote by G − B the induced subgraph of G obtained by removing
vertices of B.) To state our result more precisely, we define the following problem.

Input: Graph G with vertex set B ⊆ V (G) and integer k ≥ 0.
Task: Decide whether G contains a cycle of length at least min{2δ(G −

B), |V (G)| − |B|} + k.

Long Dirac Cycle parameterized by k + |B|

In the definition of Long Dirac Cycle we use the minimum of two values for the
following reason. The question whether an n-vertex graph G contains a cycle of length at
least 2δ(G − B) + k is meaningful only for δ(G − B) ≤ n/2. Indeed, for δ(G − B) > n/2,
G does not contain a cycle of length at least 2δ(G − B) + k > n. However, even when
δ(G − B) > n/2, deciding whether G is Hamiltonian, is still very intriguing. By taking the
minimum of the two values, we capture both interesting situations.

▶ Theorem 3. On an n-vertex 2-connected graph G, Long Dirac Cycle is solvable in
time 2O(k+|B|) · nO(1).

In other words, Long Dirac Cycle is fixed-parameter tractable parameterized by
k + |B| and the dependence on the parameters is single-exponential. This dependence is
asymptotically optimal up to the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi,
and Zane [6]. Solving Long Dirac Cycle in time 2o(k) · nO(1) even with B = ∅ yields
recognizing in time 2o(n) whether a graph is Hamiltonian. A subexponential algorithm
deciding Hamiltonicity would fail ETH. We show that solving Long Dirac Cycle in time
2o(|B|) · nO(1) even for k = 1 would contradict ETH as well. It is also NP-complete to decide
whether a 2-connected graph G has a cycle of length at least (2 + ε)δ(G) for any ε > 0.

The 2-connectivity requirement in the statement of the theorem is important – without it
Long Dirac Cycle is already NP-complete for k = |B| = 0. Indeed, for an n-vertex graph
G construct a graph H by attaching to each vertex of G a clique of size n/2. Then H has a
cycle of length at least 2δ(H) ≥ n if and only if G is Hamiltonian.
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Our second theorem, that appears in [5], provides an algorithmic extension of the Erdős-
Gallai theorem: A fixed-parameter tractable (FPT) algorithm with parameter k, that decides
whether the circumference (the length of the longest cycle) of a graph is at least ℓ + k. To
state our result formally, we need a few definitions. For an undirected graph G with n vertices
and m edges, we define ℓEG(G) = 2m

n−1 . Then by the Erdős-Gallai theorem, G always has a
cycle of length at least ℓEG(G) if ℓEG(G) > 2. The parameter ℓEG(G) is closely related to
the average degree of G, ad(G) = 2m

n . It is easy to see that for every graph G with at least
two vertices, ℓEG(G) − 1 ≤ ad(G) < ℓEG(G).

The maximum average degree mad(G) is the maximum value of ad(H) taken over all
induced subgraphs H of G. Note that ad(G) ≤ mad(G) and mad(G)−ad(G) may be arbitrary
large. By Theorem 2, we have that if ad(G) ≥ 2, then G has a cycle of length at least ad(G)
and, furthermore, if mad(G) ≥ 2, then there is a cycle of length at least mad(G). Based on
this guarantee, we define the following problem.

Input: A graph G on n vertices and an integer k ≥ 0.
Task: Decide whether G contains a cycle of length at least mad(G) + k.

Longest Cycle Above MAD

Our main result is that this problem is FPT parameterized by k. More precisely, we show
the following.

▶ Theorem 4. Longest Cycle Above MAD can be solved in time 2O(k) · nO(1) on
2-connected graphs.

While Theorems 1 and 2 concern decision problems, their proofs may be adapted to
produce desired cycles, if they exist. We underline this because the standard construction of
a long cycle that for every e ∈ E(G) invokes the decision algorithm on G − e, does not work
in our case, as edge deletions decrease the average degree of a graph.

We also briefly discuss the ideas behind the proofs of both theorems that are based on
an interplay between extremal combinatorics and parameterized algorithms. We develop a
new graph decomposition that we call Dirac decomposition and then show how to use this
decomposition algorithmically. Dirac decomposition is defined for a cycle C in a 2-connected
graph G. Let C be a cycle of length less than 2δ(G) + k. Informally, the components of
Dirac decomposition are connected components in G − V (C). Since G is 2-connected, we
can reach C by a path starting in such a component in G. One of the essential properties of
Dirac decomposition is a limited number of vertices in V (C) that have neighbors outside of
C. In fact, we can choose two short paths P1 and P2 in C (and short means that their total
length is of order k) such that all connections between connected components of G − V (C)
and C go through V (P1) ∪ V (P2). The second important property is that each connected
component of G − (V (P1) ∪ V (P2)) is connected with Pi in G in a very restricted way: The
maximum matching size between its vertex set and the vertex set of Pi is at most one. Dirac
decomposition appears to be very useful for algorithmic purposes. For a cycle C, given a
Dirac decomposition for C, in time 2O(k) · nO(1) we either solve the problem or succeed in
enlarging C.

To apply Dirac decomposition, we also design a polynomial time that (except some
“extremal” cases) we can either (a) enlarge the cycle C, or (b) compute a vertex cover of G

of size at most δ(G) + 2k, or (c) compute a Dirac decomposition. In cases (a) and (c), we
can proceed iteratively. For the case (b) we need another algorithm that solves the problem
in time 2O(k) · nO(1).
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