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—— Abstract

A rotor walk in a directed graph can be thought of as a deterministic version of a Markov Chain,

where a pebble moves from vertex to vertex following a simple rule until a terminal vertex, or sink,
has been reached. The ARRIVAL problem, as defined by Dohrau et al. [8], consists in determining
which sink will be reached. While the walk itself can take an exponential number of steps, this
problem belongs to the complexity class NP N co-NP without being known to be in P. In this work,
we define a class of directed graphs, namely tree-like multigraphs, which are multigraphs having the
global shape of an undirected tree. We prove that in this class, ARRIVAL can be solved in almost
linear time, while the number of steps of a rotor walk can still be exponential. Then, we give an
application of this result to solve some deterministic analogs of stochastic models (e.g., Markovian
decision processes, Stochastic Games).
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1 Introduction

The rotor routing, or rotor walk model, has been studied under different names: eulerian
walkers [17, 16] and patrolling algorithm [19]. Tt shares many properties with a more algebraic
focused model: abelian sandpiles [4, 15]. We can cite [12] and [15] as general introductions
to this cellular automaton.

Let us explain briefly how a rotor walk works. Consider a directed graph and for each
vertex v, if v has k outgoing arcs, number these arcs from 1 to k. Then, we place a pebble
on a starting vertex and proceed to the walk. On the initial vertex, the pebble moves to
the next vertex according to arc 1. It does the same on the second vertex and so on. But
the second time that a vertex is reached, the pebble will move according to arc 2, and so on
until arc k has been used, and then we start again with arc 1.

In this work, we fix a set of vertices that we call sinks and stop the walking process when
a sink is reached. The problem of determining, for a starting configuration (numbering) of
arcs and an initial vertex, which sink will be reached first is the ARRIVAL problem. It
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is defined in [8] together with a proof that the problem belongs to the complexity class
NP N co-NP, but it is not known to be in P. It has then been shown in [10] that the problem
is in the smaller complexity class UP N co-UP, and a subexponential algorithm has been
proposed in [11], based on computing a Tarski fixed point. This algorithm is even polynomial
if the graph is almost acyclic (in a certain sense). A direct application of the rotor-routing
automaton is that several structural properties of Markov chains can be approximated or
bounded by rotor walks see [6, 7, 9]. It seems natural to extend these results to one and
two player variants and define rotor analogs for Markov decision processes and stochastic
games [18]. It is proved in [18] that deciding if a player can ensure some value is NP-complete
for the one-player version and PSPACE-complete for the two-player version.

Contributions and Organization of the Paper

We define the class of tree-like multigraphs, and prove that while the number of steps needed
to complete a rotor walk can still be exponential, the tree-like structure helps to efficiently
solve ARRIVAL in linear time. We also extend our results to one-player and two-player
variants. It is to be noted that tree-like multigraphs are not almost acyclic in the sense
of [11], thus their algorithm does not run in polynomial time in our case.

In Section 2, we first give some standard definitions for multigraphs and proceed to define
rotor walks in this context, together with different rotor-routing notions (exit pattern, cycle
pushing, etc.). Next, in Section 3, we define tree-like multigraphs and our main tool to
study ARRIVAL on these graphs, namely the return flow. Then, in Section 4, we sketch a
polynomial algorithm that solves ARRIVAL and finally we show that this algorithm can be
used to efficiently solve both the one and two player case.

The following table summarizes our results (bold), i.e. time complexity of computing the
sink (or the optimal sink, for one-player and two-player) reached by a particle starting on a
particular vertex in a graph G = (V, A). Results on simple tree-like multigraphs depicted here
and quickly presented in this paper are detailed in our extended version [1]. The first column
states the complexity of the natural algorithm to solve these problems, namely simulating
the rotor walk.

H Rotor Walk ‘ 0 player 1 player H 2 players

General digraph exponential NP N coNP | NP-complete || PSPACE-complete
Tree-like multigraph exponential o(AD?! O(|A)) O(|Al)
Simple Tree-like multigraph o(v® o(vnt o(vnht o(vt

The t indicates the cases where we can solve the problem for all vertices of the graph at
the same time with this complexity. Note that all proofs that do not appear directly in the
document are detailed in our extended version [1].

2 Basic Definitions

2.1 Directed Multigraphs

In this paper, unless stated otherwise, we always consider a directed multigraph G =
(V, A, h,t) where V is a finite set of vertices, A is a finite set of arcs, and h (for head) and ¢
(for tail) are two maps from A to V' defining incidence between arcs and vertices. For sake of
clarity, we only consider graphs without arcs of the form h(a) = t(a) (i.e. loops). All our
complexity results would remain true if we authorized them. Note that multigraphs can have
multiple arcs with the same head and tail. Let u € V be a vertex, we denote by A™(u) (resp.
A~ (u)) the subset of arcs a € A with tail u (resp. with head ).
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Let I'" (u) (resp. I'" (u)) be the subset of vertices v € V such that there is an arc a € A
with h(a) = v and t(a) = u (resp.h(a) = u and ¢(a) = v). A graph such that for all u € V we
have |A"(u)| = |T'"(u)| is called simple. A vertex u for which |TF(u) UT ™ (u)] = 1 is called
a leaf.

2.2 Rotor Routing Mechanics
Rotor Graphs
Let G = (V, A, h,t) be a multigraph.

» Definition 1 (Rotor Order). We define a rotor order at u € V' as an operator denoted by
0, such that:
O+ AT (u) = AT (u)
for all a € AT (u), the orbit {a,0,(a),0%(a), ..., GL’“(U)‘A(@)} of arc a under 0, is equal
to At (u), where 0%(a) is the composition of 6, applied to arc a exactly k times.

Observe that each arc of AT (u) appears exactly once in any orbit of 6,. Now, we will
integrate the operator 6, to our graph structure as follows.

» Definition 2 (Rotor Graph). A rotor graph G is a (multi)graph G together with:
a partition V.= Vo U Sy of vertices, where So # 0 is a particular set of vertices called
sinks, and Vg is the rest of the vertices;
a rotor order 0, at each u € Vj.

In this document, unless stated otherwise, all the graphs we consider are rotor graphs
with G = (Vo, So, A, h, t, ).

» Definition 3 (Rotor Configuration). A rotor configuration (or simply configuration) of
a rotor graph G is a mapping p from Vy to A such that p(u) € AT (u) for all u € Vy. We
denote by C(QG) the set of all rotor configurations on the rotor graph G.

What will be called a particle in the remaining of this paper is a pebble which will move
from one vertex to another; hence the position of the particle is characterized by a single
vertex. This movement, called rotor walk, follows specific rules that we detail after.

» Definition 4 (Rotor-particle configuration). A rotor-particle configuration is a couple (p,u)
where p is a rotor configuration and uw € V' denotes the position of a particle.

Rotor Walk

» Definition 5. Let us define two mappings on C(G) x Vp :
turn, with values in C(G), is defined by turn(p,u) = p’ where p’ is equal to p except at
u where p'(u) = 0, (p(w)).
move, with values in V, is defined by move(p,u) = h(p(u)).

By composing those mappings, we are now ready to define the routing of a particle which
is a single step of a rotor walk.

» Definition 6 (Routing of a Particle). The routing of a particle (illustrated in Figure 1)
from a rotor-particle configuration (p,u) is a mapping: routing : C(G) x Vo — C(G) x V
defined by routing(p,u) = (p',v), with p’ = turn(p,u) and v = move(p,u). This can be
viewed as the particle first travelling through p(u) and then p(u) is replaced by 6, (p(w)).

12:3

MFCS 2022



12:4

Polynomial Time Algorithm for ARRIVAL on Tree-Like Multigraphs

(a) Let p be the rotor configuration depicted by | (b) The red rotor configuration in dashes
the red arcs in dashes. is obtained by processing the operation:
routing(p, u2).

Figure 1 A rotor-routing where the particle is depicted by a train and starts on uz. The
sink-vertices are s1 and s2. The red arcs in dashes represent the current rotor configuration. The
rotor orders on the different vertices are anticlockwise, i.e. they are: 6uq:(uo,u2),(uo,u1); Ou,:
(u1,u0),(u1,u2),(u1,81); Ous: (u2,u1),(us2,u0),(uz2,s2). These orders are also depicted by the numbers
around each vertex.

» Remark 7. Our routing rule (move, then turn) is slightly different than the one defined
in [17] which is mostly used in the literature (turn, then move) but is more convenient to
study ARRIVAL. The two rules are equivalent up to applying turn mapping on all vertices.

A rotor-routing is in fact a single step of a rotor walk.

» Definition 8 (Rotor Walk). A rotor walk is a (finite or infinite) sequence of rotor-particle
configurations (p;, u;)i>o0, which is recursively defined by (piy1, uiy1) = routing(p;, u;) as
long as u; € Vp.

One can check that the sequence of vertices in the rotor walk starting from the rotor-
particle configuration depicted on Figure 1(b) until a sink is reached is uy, ug, ua, ug, u1, vz, So.
Routing to Sinks

Now that we have defined our version of rotor-walk, we proceed to the corresponding version
of the problem ARRIVAL similar to the one stated in [8].

» Definition 9 (Maximal Rotor Walk). A mazimal rotor walk is a rotor walk such that in the
case where it is finite, the last vertex must be a sink vertex s € Sy =V \ V.

» Definition 10 (Stopping Rotor Graph). If, for any vertex uw € V', there exists a directed
path from u to a sink s € Sy, the graph is said to be stopping.

The next lemma is a classical result on rotor walks (cf Lemma 16 in [12]).
» Lemma 11 (Finite number of steps). If G is stopping then any rotor walk in G is finite.

The main objective of our work is to study the sink that will be reached by a maximal
rotor walk from a rotor-particle configuration, if the rotor walk is finite.

» Definition 12 (Exit Sink). Let u € V, let p be a configuration, if the mazimal rotor walk
starting from (p,u) is finite in G, then the sink reached by such a rotor walk is denoted by
Sc(p,u) and called exit sink of u for the rotor configuration p in G.

» Definition 13 (Exit Pattern). For a rotor configuration p on a stopping rotor graph G, the
exit pattern is the mapping that associates to each vertex u € V, its exit sink Sg(p,u).
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Figure 2 Family of path-like multigraphs where maximal routing can take an exponential number
of steps in the number of vertices, here equal to n + 2. The interior vertices (uo to un—1) have two
arcs going left and one going right. Routing a particle from ug to sink s with the initial configuration
p drawn with red arcs in dashes takes a non-polynomial time considering the anticlockwise rotor
ordering on each vertex, depicted by the curved arc in red. One can check that the number of times
a particle starting from wug will travel from u; to u;4+1 before reaching s is 2+,

2.3 ARRIVAL and Complexity Issues

With our notations, ARRIVAL (see [8]) can be expressed as the following decision problem:

In a stopping rotor graph G,
given (p,u) and s € Sy
does Sg(p,u) =57

This problem belongs to NP N co-NP for simple graphs as shown in [8], but there is
still no polynomial algorithm known to solve it. The case of eulerian simple graphs can be
solved in time O(|V + A|?), since a finite maximal rotor walk from (p,v) ends in at most
O(|V + AJ?) routings (see [19]).

In the case of multigraphs, ARRIVAL still belongs to NP N co-NP, since the polynomial
certificate used for simple graphs in [8] remains valid. Our goal in this paper is to solve the
problem in polynomial time for a particular class of multigraphs. Despite that, even for a
path multigraph, the routing can be exponential, as shown on Figure 2.

2.4 Cycle Pushing

In order to speed-up the rotor walk process, a simple tool to avoid computing every step of
the walk is the use of cycle pushing. We keep the terminology of cycle pushing used in [12] —
even if what is called a cycle in this terminology is usually called a directed cycle or circuit
in graph theory.

» Definition 14 (Cycle Pushing). Let p be a rotor configuration on G containing a dir-
ected cycle C = (uy,us,us,...,ur). We call cycle push the operation on p that leads to a
configuration p' such that:

for allu; € C, p'(u;) = 0y, (p(w;));

Vu € Vo \ C,p'(u) = p(u)
i.e. we process a turn on all u; € C.

Note that a cycle push on a cycle C' can also be computed by putting a particle on a
vertex u of C' and routing the particle until it comes back to u for the first time. Hence,
cycle pushing is in a sense a shortcut on the rotor walk process, so in a manner similar to
Lemma 11 it follows that in a stopping rotor graph, any sequence of cycle pushes is finite.
This is a well known result in rotor walk studies (see [15]). It implies that, by processing
a long enough sequence of successive cycle pushes, the resulting configuration contains no
directed cycles. Such a sequence of cycle pushes is called mazimal.

The two following results can be found in [12].
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(a) Red Rotor Configuration p  (b) The red configuration (c) Destination Forest (depicted
in dashes with rotor order on  in dashes is obtained from by red arcs in dashes) computed
each vertex described by increas- a Cycle Push on the cycle by two successive cycle pushes
ing numbers. {(uo,u2),(u2,u1),(u1,u0)}. on p.

Figure 3 Computation of the Destination Forest by successive cycle pushing.

» Lemma 15 (Exit Pattern conservation for Cycle Push). If G is a stopping rotor graph,
for any rotor configuration p and configuration p’ obtained from p by a cycle push, the exit
pattern for p and p' is the same.

» Lemma 16 (Commutativity of Cycle Push). In a stopping rotor graph, any maximal
sequence of cycle pushes starting from a given rotor configuration p leads to the same acyclic
configuration p' (p' does not contain a cycle).

» Definition 17 (Destination Forest). We call the configuration obtained by a mazimal cycle
push sequence on p the Destination Forest of p, denoted by D(p).

The destination forest has a simple interpretation in terms of rotor walks: start a rotor
walk by putting a particle on any vertex of a stopping graph Gj; consider a vertex u € Vj; if
the particle ever reaches u, it will leave u by arc D(p)(u) on the last time it enters w.

In an acyclic configuration like D(p), finding the exit pattern is simple, precisely:

» Lemma 18 (Path to a sink). If there is a directed path between uw € V and s € Sy in p
then Sg(p,u) = s. It follows that from D(p) one can compute the exit pattern of p in time
complezity O(|Al).

This gives us a new approach, since computing the exit pattern of a configuration p
can be done by computing its Destination Forest D(p). Note that by doing this we are
solving a problem harder than ARRIVAL because we compute the exit sink of all vertices
simultaneously.

» Remark 19. The strategy consisting in pushing cycles until the Destination Forest is reached
can take an exponential number of steps. This is the case in the example drawn in Figure 2.

3  Tree-Like Multigraphs: Return Flow Definition
3.1 Tree-Like Multigraphs

To a directed multigraph G = (V, A, h,t) we associate:

A simple directed graph G= (v, fl) such that, for u,v € V there is an arc from u to v in
G if there is at least one arc a € A with t(a) = u and h(a) = v. Please note that even if
there are multiple arcs a that satisfy this property, there is only one arc with tail v and
head v in A. As it is unique, an arc from u to v in A will simply be denoted by (u,v).
A simple undirected graph G = (V, E) such that, for u,v € V there is an edge between u
and v in G if and only if there is at least one arc a € A such that t(a) = u and h(a) = v
or h(a) = u and t(a) = v.
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» Definition 20 (Tree-Like Rotor Multigraph and Tree-Like Multigraph). A rotor multigraph
G = (Vo, So, A, h,t,0) is tree-like if G is a tree and its set of leaves contains Sy. In that case,
we say that G = (V, A, h,t) is a tree-like multigraph.

Without loss of generality, in order to avoid some complexity in the notation and proofs,
we will only study stopping tree-like rotor multigraphs.

» Definition 21 (Sink Component). A sink component is a strongly connected component in
G that does not contain a sink vertex and such that there is no arc leaving the component.

Note that all sink components can be computed in linear time.

» Lemma 22 (Lemma 36 in [1]). Consider a configuration p on a (not necessarily stopping)
tree-like rotor multigraph G = (Vy, So, A, h,t,0). Consider a configuration p' on the stopping
tree-like rotor multigraph G' = (Vy, S}, A’, h,t,0) where G’ is obtained from G by replacing
each sink component by a unique sink, and where p'(u) = p(u) for each u € V. For any
u €V, finding the exit sink of u (if any) or the sink component reached by u in G for the
configuration p can be directly determined by solving ARRIVAL for the configuration p’ in G'.

Note that, after replacing sink components by sinks, the multigraph G’ may no longer
be a tree-like multigraph but a forest-like multigraph. However we can split the study of
ARRIVAL in each tree-like component of this forest since a particle cannot travel between
those trees in a rotor walk.

3.2 Return Flows

Let us consider the simple example depicted on Figure 4 to motivate the introduction of
(u,v)-subtrees and return flows, which is our main tool. In this figure, consider the routing
of a particle starting at wu:

the particle moves from u to v1, and stays for a while in the subtree 17 — where it either

reaches a sink or comes back to u. Suppose it comes back to u. Then:

the particle moves from u to vs, and either reaches a sink in T3 or comes back to wu.

Suppose it comes back to u once again;

the rotor walk goes on, in T3, then in T, Ty,T1,T5, . ..

until finally the particle ends in a sink in one of the subtrees, say T5.
Now consider only the relative movement that the particle had in T5: it went from u into 15
and back to u a number of times, before it ended in a sink. If we were to replace T7 and T3
by single arc leading back automatically to u, the relative movement in T, would have been
exactly the same. The return flow will be a quantity that counts exactly the ability of each
subtree to bounce back the particle to u. During the process described above, every time the
particle enters a subtree and comes back to u, we can think of it as consuming a single unit
of return flow in this subtree. The first time that a particle enters a subtree that has exactly
one unit of return flow left, then the particle must end in a sink of that subtree.

» Definition 23 ((u,v)-subtree). Let (u,v) € A. The (u,v)-subtree Tu,v) 15 a sub(multi)graph
of G:
whose vertices are all the vertices of the connected component of G\ {u} that contains v,
together with u;
whose arcs are all the arcs of G that link the vertices above, excepted in u where we
remove all arcs of AT (u) but a single arc a with head v. Such an arc a always exists
because (u,v) € A;
whose rotor orders are unchanged except at u where 0,(a) = a.

12:7
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Figure 4 We sketch a stopping tree-like rotor multigraph as follows: a vertex u, its neighbours
v1, U2, v3 (that might be sinks), respectively belonging to T4, T», T3, the three connected components
of G\ {u}. In particular, we have AT (u) = {(u,v1); (u,v2); (u,v3)}. We consider the rotor
configuration in red on u and 6., is the anticlockwise order on the arcs of A" (u).

Such a subtree is a (not necessarily stopping) tree-like rotor multigraph. A rotor configuration
p in G can be thought of as a rotor configuration p’ in T{, . by defining that p’(u) = a and
P (w) = p(w) for all w € Ty, 4.

We define a notion of flow for a particular starting vertex.

» Definition 24 (Flow of (u,v)). We define the flow on arc (u,v) € A for configuration
p, denoted by F,(u,v), the number of times (possibly infinite) that an arc with tail v and
head v is visited during the mazimal rotor walk of a particle starting from the rotor-particle
configuration (p,u). We denote by F,(u) the flow vector of (u,v) for every v € I't(u).

» Definition 25 (Return flow). The return flow of arc (u,v) € A for configuration p, denoted
by rp(u,v), is the flow on (u,v) in the (u,v)-subtree T, ).

By definition of return flow, if u € Sp, then 7,(u,v) = 0, and if v € Sy, or if (v,u) ¢ A
then r,(u,v) = 1. Remark also that, even if the tree-like multigraph is stopping, it is not
necessarily the case of any (u, v)-subtree: this is for instance the case of a leaf v which is not
a sink such that (u,v) € A. Finiteness of the return flow characterizes the subtrees that are
stopping as stated in Lemma 26.

» Lemma 26 (Lemma 40 in [1]). Given a stopping tree-like multigraph G' and an arc (u,v) € A,
the (u,v)-subtree T, .y is stopping if and only if for any rotor configuration on G, the return

flow of (u,v) is finite.

We give a bound on the maximal value of the return flow in a multigraph as it will be
used to express our complexity results later.

» Lemma 27 (Return flow bound, Lemma 41 in [1]). Return flows can be written in at most

O(]A]) bits.
Return flows and flows are linked by the following result:

» Lemma 28 (Lemma 42 in [1]). Given a stopping tree-like rotor multigraph G, consider
u € Vo and suppose that h(D(p)(u)) = v. Then:

Fp(ua v) = rﬂ(“? v) ;

for allw € TH(u) \ {v}, Fp(u,w) <r,(u,w);

for allw € TH(u) NI~ (u) \ {v},rp(w,u) = F,(u,w) + 1.
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Figure 5 Examples of return flows in a simple graph. The rotor configuration is depicted by red
arcs in dashes, with So = {so, s1}, and 0, is the anticlockwise order on every vertex. We write
the return flow of all arcs of A next to their corresponding arc in A. As a tutorial example, we
detail the computation of r,(u1,uo) and r,(uo,u1). In the (u1,uo)-subtree, the particle will visit
the following sequence of vertices w1, uo, U2, ug, U1, Uo, U4, Uo, U2, S1, where it crosses (u1,uo) twice,
thus r,(u1,ug) = 2. For the (uo,u1)-subtree, the sequence of vertices visited by the particle is
Ug, U1, U0, U1, U3, U1, U0, UL, U3, So hence r,(ug, u1) = 3.

Thus, to compute D(p)(u), we need to compute the flow of all arcs (u,w) with w € I'" (u)
and compare it to r,(u, w). Theorem 29 gives the time complexity of such operation where
c¢(a,b) is the time complexity to divide an integer a by an integer b.

» Theorem 29 (Theorem 43 in [1]). For any vertex u € Vg, given the return flows of all arcs
(u,v) € A with v e Tt (u), one can compute D(p)(u) and the flow on each arc (u,v) in time
O(IT (w)] + e(rmax, AT (w)|)) with rmay being the mazimum (finite) value of r,(u,v) for all
v e Tt (u).

But in the case of simple graphs, we can improve this computation (see Lemma 30).

» Lemma 30 (Lemma 61 in [1]). If the graph is simple, D(p)(u) is the first arc with respect
to order 0., starting at p(u), among all arcs of AT (u) with minimal return flow. The flow
on all arcs (u,v) € A can be computed in time O(|TF (u)]).

4 ARRIVAL for Tree-Like Multigraphs

In this section we show that, for a given configuration p, we can compute the Destination
Forest D(p) in time complexity O(|A| - ¢(rmax, |A])), hence solve the ARRIVAL problem for
every vertex at the same time. To achieve this, we recursively compute return flows for all
arcs in A and then use these flows to compute the destination forest.

» Theorem 31 (Complete Destination Algorithm, Theorem 47 in [1]). The configuration D(p)
can be computed in time O(|A]) for a stopping tree-like rotor multigraph in a model where
arithmetic operations can be made in constant time, or alternatively in O(|A| - ¢(Tmax, |A]))
on a Turing Machine.

Sketch of the Proof. Consider an arbitrary vertex x. We proceed with a Breadth-First

Search (BFS) to compute an order such that all necessary return flows are already computed

when we use Theorem 29. The algorithm is split into two phases:

1. Computation of the return flows of arcs directed from x towards leaves, starting from the
arcs closest to the leaves and recursively coming back to x, using Theorem 29.

2. Computation of the return flows of all remaining arcs, starting from the arcs closest to x
and recursively coming back to the leaves. We use Theorem 29 only twice for each vertex
u to compute the return flows of all arcs (u,v) with (u,v) being directed from the leaves
towards x.

12:9
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All in all, we use Theorem 29 three times for each vertex, hence the time complexity is

O ey (JAT ()] - ¢(rmax, |A]))) which amounts to O(|A| - ¢(rmax, |A]))- <

We showed in Lemma 27 that return flows could be written in at most O(].A|) bits which
gives an upper bound for ¢(rmax, |A|) of k|A|log(].A|) for some constant k& > 0. It is proved
in [14] that the multiplication of two n bits integers can be done in time O(nlog(n)) and as
the complexity of the division is equivalent to the complexity of multiplication (see [5]), the
bound follows. Thus the complexity of our algorithm is O(].A|*log(|.A|)) in this context.

Simple Graph

In the case of simple graphs, this algorithm has a better complexity as we can use Lemma 30
instead of Theorem 29. Nevertheless, the algorithm remains the same and the complexity
sums up to O(]A|) which is also O(]V]) as the graph is simple (details can be found in
Theorem 63 in [1]).

5 One and Two player Variants

Problem ARRIVAL can be seen as a zero-player game where the winning condition is that
the particle reaches a particular sink (or set of sinks). The one and two players variants of
ARRIVAL (i.e. deterministic analogs of Markov decision processes and Stochastic games) we
address in this section are inspired from [18], but differ by the choice of the set of strategies
(see the discussion hereafter).

We specifically consider a game with a single player that controls a subset of vertices
Vaax of V. Given a rotor configuration on the rest of the vertices of Vj, a starting vertex
and a set of targets among the sinks, his goal is to wisely choose the initial rotor configuration
of the vertices he controls (his strategy) such that the particle reaches one of the targets.

Our definition of the way a player controls his vertices is somewhat different from the one
in the seminal paper [18], where a strategy consists in choosing an outgoing-arc each time
the particle is on a vertex controlled by the player. In this sense the set of strategies that we
allow (which seems to us a very natural extension of the zero player case) is a finite subset
of the version from [18] and could seem easier, but the latter can in fact be solved by some
slight modifications of our algorithm. Moreover, the proof of NP-completeness from [18] is
still valid in our case, despite the fact that we reduce the number of available strategies.

» Definition 32 (Partial Configuration). Let V' be a subset of Vj, a partial rotor configuration
on V' is a mapping p' from V' to A such that p'(u) € AT (u) for allu e V'.

Given the disjoint sets of vertices V,., Vapax and Sy, a one-player rotor game (resp.
one-player tree-like rotor game) is defined by (V;., Vaqax, So, A, h, t, 0, val, p) where:

(Vo, So, A, h,t,0) is a rotor graph (resp. tree-like rotor graph) with Vo =V, U Viax;

val is a map from Sp to {0, 1} defining the target sinks (sinks of value 1);

p is a partial configuration on V., i.e. on the vertices not controlled by the player.

The tree-like rotor game is stopping if and only if the induced rotor graph (Vo, So, A, h, t, 0)
is stopping. The player is called MAX, and a strategy for MAX is a partial rotor configur-
ation on Vi4x. We denote by a4 the finite set of strategies for this player.

Consider a partial rotor configuration p on V,. together with strategy ¢ and denote by
(p, o) the rotor configuration where we apply the partial configuration p or o depending on
whether the vertex is in V. or Vyqax. The value of the game for strategy o and starting
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Figure 6 Simple graph where the optimal strategy depends on the starting vertex wuo, with
Vamax = {g}, with u,v € Vp and with all other vertices being sinks. As in previous examples,
the starting configuration is depicted by red arcs in dashes, and the rotor order on all vertices is
an anticlockwise order on their outgoing arcs. In the case up = v, the only optimal strategy is
o(g) = (g,v) and the game has value 1. In the case ug = u, the only optimal strategy is o(g) = (g, u)
and the game has value 1.

vertex ug is denoted by val,(ug) and is equal to val(s) where s is the sink reached by a
maximal rotor walk from the rotor particle configuration ((p, ), ug) if any, and 0 otherwise.
As in the zero-player framework, up to computing strongly connected components that do
not contain sinks and replacing each of them with a sink of value 0, we can suppose that the
tree-like rotor game is stopping. In the following, all rotor games we consider are tree-like
and stopping unless stated otherwise.

When uy is fixed, the maximal value of val,(ug) over strategies o € Xy qx is called the
optimal value of the game with starting vertex uy and is denoted by val*(ug). Any strategy
o € Y pmax such that val, (ug) = val®(ug) is called an optimal strategy for the game starting
in ug. Observe that optimal strategies may depend on the choice of ug (see Figure 6).

The one-player ARRIVAL problem consists in computing the optimal value of a given
starting vertex in a one-player rotor game.

Recall that in the tree-like rotor graph, T{, ., denotes the (u,v)-subtree. We extend this
notation to denote the one-player, not necessarily stopping, game played on the (u,v)-subtree
where we restrict Vaqax and V,. to the subtree. For this game, we only consider the case
where the starting vertex is u.

» Definition 33 (Value under strategy). Let (u,v) be an arc of A. For a strategy o on the
(u, v)-subtree, we denote by val,(u,v) (resp. val (u,v)) the value of the game under strategy
o (resp. under an optimal strategy) in T(, ). This is called the value (resp. the optimal
value) of arc (u,v) for strategy o.

» Definition 34 (Optimal return flow r*). Let (u,v) be an arc of A. If val* (u,v) = 0, then
r*(u,v) is defined as the mazimum of vo(u,v) over all strategies o on Ty ), otherwise it is
the minimum of ro-(u,v) among optimal strategies o* on T(y, ).

Lemma 35 connects the value val,(u) with the value of the last outgoing arc of vertex u
while processing a maximal rotor walk from the rotor-particle configuration ((p, o), u).
» Lemma 35. Let a be an arc of AT (u) such that D(p,o)(u) = a with h(a) = v. We have
valy (u) = val, (u,v).

To recursively compute an optimal strategy, we need a stronger notion of optimality,
namely a subtree optimal strategy.
» Definition 36 (Subtree optimal strategy). A strategy o* is subtree optimal at ug if it
is optimal at ug and, moreover, val,(u,v) = val (u,v) and ro«(u,v) = r*(u,v) for every
(u,v)-subtree such that (u,v) is directed from ug towards the leaves.
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Instead of recursively computing only the return flow as in the zero-player game, we now
propagate both the optimal value and the optimal return flow to construct a subtree optimal
strategy (details in the proof of Theorem 54 in [1]) and give an equivalent of Theorem 31 for
the one-player game.

» Theorem 37 (Computation of val*(ug), Theorem 54 in [1]). The optimal value val" (ug) can
be computed in the same time complexity as the computation of D(p) in the zero-player game
(see Theorem 31).

Some remarks are in order here. (i) The algorithm used to compute val*(ug) (Algorithm 3
in [1]) provides the optimal value of ug as well as a subtree optimal strategy at ug for every
decisional vertex. A tutorial example is given in [1] (Figure 11). (i7) This algorithm can
also be adapted to compute optimal values for games with more general type of strategies,
particularly those in [18]. (i4i) In the case of a simple graph, one can compute val®(ug)
for every vertex ug with the same time complexity as in Theorem 37 as detailed in our
extended version [1]. (iv) If we consider a game with integer values on the sinks, one can use
a dichotomic process to solve it in log(|S|) steps where a step consists in solving a binary
game.

Two-player Game

In the two-player game, each player controls the initial configuration on disjoint sets of
vertices, and the second player wants to minimize the value of the game. In a general graph,
there may not exist an equilibrium in pure strategies (see Figure 7 where we define a game
equivalent to matching pennies). However, in the case of tree-like rotor multigraphs, we can
show that there always is an equilibrium in pure strategies and compute it (see [1]). As in
the one-player case, if we consider integer values, we can simply proceed using a dichotomy
technique.

Conclusion and Future Work

Concerning ARRIVAL, one remaining fundamental question is to determine whether there
exists a polynomial algorithm to solve the zero-player game. Similarly, problems such as
simple stochastic games, parity games and mean-payoff games are also in NP N co-NP,
and there are no polynomial algorithm known to solve them (see [13]). For those different
problems, considering subclasses of graphs where we can find polynomial algorithms is a
fruitful approach (see [2] and [3]). This paper is a first step in this direction.

Thus, we would like to study more general classes of graphs. To begin with, even graphs
that are well-studied in terms of the sandpile group such that ladders or grids remain now an
open problem for ARRIVAL. The problem of finding the destination of multiple particles at
the same time is also an important open problem in nearly all cases — we solve it for the
(simple) path graph in our extended version (see [1]).

Now that the Tree-like multigraph case is settled, it seems natural to try and extend these
results to classes of graphs with bounded width (e.g. treewidth, pathwidth, etc.). However,
this extension is not direct and requires further work. If we were to replace a single node
by a bag of nodes, defining an analog of the rotor ordering, the routine and return flows is
much more complicated since a particle can enter and leave the bag in different ways. We
need to compute and store all the exit arcs for all entering arcs in the bag for every rotor
configuration, and combine these informations for neighbouring bags in order to find locally
the destination forest. We intend to finish this work in a near future.
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Figure 7 This example is a simple undirected graph where each edge is replaced by two arcs.

We have Vaqax = {Maz}, Vmzy = {Min} and Vo = {c,d, e, f} and Sy is the rest of the vertices
with their value written inside them. The particle starts on the vertex Max. In this game, the
only optimal strategy for M.AX when the strategy for MZN is the arc (Min,z) with z € {c,d} is
(Maz,z). On the other hand the only optimal strategy for MZN when the strategy for MAX is
the arc (Maz,c) (resp. (Max,d)) is (Min,d) (resp. (Min,c)). The situation is like the classical
matching pennies game where one player tries to match the strategy of the opponent whereas
the other player has the opposite objective. It is known that such game does not admit a Nash
equilibrium in pure strategies.
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