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Abstract
A Conflict-Free Open Neighborhood coloring, abbreviated CFON∗ coloring, of a graph G = (V, E)
using k colors is an assignment of colors from a set of k colors to a subset of vertices of V (G) such
that every vertex sees some color exactly once in its open neighborhood. The minimum k for which
G has a CFON∗ coloring using k colors is called the CFON∗ chromatic number of G, denoted by
χ∗

ON (G). The analogous notion for closed neighborhood is called CFCN∗ coloring and the analogous
parameter is denoted by χ∗

CN (G). The problem of deciding whether a given graph admits a CFON∗

(or CFCN∗) coloring that uses k colors is NP-complete. Below, we describe briefly the main results
of this paper.

For k ≥ 3, we show that if G is a K1,k-free graph then χ∗
ON (G)= O(k2 log ∆), where ∆ denotes

the maximum degree of G. Dębski and Przybyło in [J. Graph Theory, 2021] had shown that if
G is a line graph, then χ∗

CN (G)= O(log ∆). As an open question, they had asked if their result
could be extended to claw-free (K1,3-free) graphs, which are a superclass of line graphs. Since it
is known that the CFCN∗ chromatic number of a graph is at most twice its CFON∗ chromatic
number, our result positively answers the open question posed by Dębski and Przybyło.

We show that if the minimum degree of any vertex in G is Ω( ∆
logϵ ∆ ) for some ϵ ≥ 0, then

χ∗
ON (G)= O(log1+ϵ ∆). This is a generalization of the result given by Dębski and Przybyło in

the same paper where they showed that if the minimum degree of any vertex in G is Ω(∆), then
χ∗

ON (G)= O(log ∆).

We give a polynomial time algorithm to compute χ∗
ON (G) for interval graphs G. This answers

in positive the open question posed by Reddy [Theoretical Comp. Science, 2018] to determine
whether the CFON∗ chromatic number can be computed in polynomial time on interval graphs.

We explore biconvex graphs, a subclass of bipartite graphs and give a polynomial time algorithm
to compute their CFON∗ chromatic number. This is interesting as Abel et al. [SIDMA, 2018]
had shown that it is NP-complete to decide whether a planar bipartite graph G has χ∗

ON (G) = k

where k ∈ {1, 2, 3}.
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19:2 Conflict-Free Coloring on Claw-Free Graphs and Interval Graphs

1 Introduction

A Conflict-Free Open Neighborhood coloring, abbreviated CFON∗ coloring, of a graph
G = (V, E) using k colors is an assignment of colors from a set of k colors to a subset of
vertices of V (G) such that every vertex sees some color exactly once in its open neighborhood.
The minimum k for which G has a CFON∗ coloring using k colors is called the CFON∗

chromatic number of G, denoted by χ∗
ON (G).1 The analogous notion for closed neighborhood

is called CFCN∗ coloring and the analogous parameter is denoted by χ∗
CN (G). It is known

(see for instance, Equation 1.3 from [26]) that if G has no isolated vertices, then χ∗
CN (G) is

at most twice χ∗
ON (G). Given a graph G and integer k > 0, the CFON∗ coloring problem is

the problem of determining if χ∗
ON (G) ≤ k. The CFON∗ variant is considered to be harder

than the CFCN∗ variant, see for instance, remarks in [22,26].
The notion of conflict-free coloring was introduced by Even, Lotker, Ron and Smorodinsky

in 2004, motivated by the frequency assignment problem in wireless communication [14].
The conflict-free coloring problem on graphs was introduced and first studied by Cheilaris [8]
and Pach and Tardos [26]. Conflict-free coloring has found applications in the area of sensor
networks [17, 25] and coding theory [23]. Since its introduction, the problem has been
extensively studied, see for instance [1, 3, 5, 6, 8, 18, 19, 26, 28]. The decision version of the
CFON∗ coloring problem and many of its variants are known to be NP-complete [1,18]. In [18],
Gargano and Rescigno showed that the optimization version of the CFON∗ coloring problem
is hard to approximate within a factor of n1/2−ϵ, unless P = NP. Fekete and Keldenich [15]
and Hoffmann et al. [21] studied a conflict-free variant of the chromatic Art Gallery Problem,
which is about guarding a simple polygon P using a finite set of colored point guards such
that each point p ∈ P sees at least one guard whose color is distinct from all the other guards
visible from p.

The conflict-free coloring problem has been studied on several graph classes like planar
graphs, split graphs, geometric intersection graphs like interval graphs, unit disk intersection
graphs and unit square intersection graphs, graphs of bounded degree, block graphs, etc.
[1, 4, 6, 9, 16, 22, 26, 27]. The problem has been studied from parameterized complexity
perspective. The problem is fixed-parameter tractable when parameterized by tree-width,
neighborhood diversity, distance to cluster, or the combined parameters clique-width and
the number of colors [2, 4, 6, 18,27].

1.1 Our Contribution and Discussion
Below, we discuss the main results of this paper.

The complete bipartite graph K1,3 is known as a claw. If a graph does not contain a
claw as an induced subgraph, then it is called a claw-free graph. The claw number of a graph
G is the largest integer k such that G contains an induced K1,k. Dębski and Przybyło [10]
showed that if G is a line graph with maximum degree ∆, then χ∗

CN (G)= O(log ∆). This
bound is tight up to constants. Line graphs are a subclass of claw-free graphs. In [10], it
was asked whether the above result can be extended to claw-free graphs. We do this by

1 It is also known by the name “partial conflict-free chromatic number” as only a subset of vertices are
assigned colors. The “(full) conflict-free chromatic number” of a graph, which requires assigning colors
to all the vertices, is at most one more than its partial conflict-free chromatic number. We use the
notations χ∗

ON (G) and χ∗
CN (G) to be consistent with our other papers on related topics. In our other

papers, we use χON (G) and χCN (G) to refer to the versions of the problem that require all the vertices
to be assigned a color.
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proving a more general result. We show that if G is K1,k-free with maximum degree ∆, then
χ∗

ON (G)= O(k2 log ∆). Since χ∗
CN (G) ≤ 2χ∗

ON (G), we have χ∗
CN (G)= O(k2 log ∆) as well.

This result is presented in Section 3.2.
What is the maximum number of colors required to CFON∗ color a graph whose maximum

degree is ∆? It can be seen that the graph obtained by subdividing every edge of a complete
graph requires ∆ + 1 colors. It is known that for a graph G with maximum degree ∆,
χ∗

ON (G) is at most ∆ + 1 [26]. Pach and Tardos [26] showed that if the minimum degree
of any vertex in G is Ω(log ∆), then χ∗

ON (G)= O(log2 ∆). In this direction, Dębski and
Przybyło [10] showed that if the minimum degree of any vertex in G is Ω(∆), then the
previous upper bound can be improved to show χ∗

ON (G)= O(log ∆). We extend the proof
idea of [10] to generalize their result. We show that if the minimum degree of any vertex
in G is Ω( ∆

logϵ ∆ ) for some ϵ ≥ 0, then χ∗
ON (G)= O(log1+ϵ ∆). This result is presented in

Section 3.3. A natural open question we have here is, can we get a stronger upper bound for
the CFON∗ chromatic number of a graph with minimum degree ω(1)? When the minimum
degree is o(log ∆), the only upper bound known is O(∆) mentioned above due to [26]. In this
situation our first result does give a better (than O(∆)) upper bound for CFON∗ chromatic
number, if the claw number of the graph under consideration is o

(√
∆

log ∆

)
.

For an interval graph G, it has been shown that [4, 27] χ∗
ON (G) ≤ 3. It was shown

in [4] that there exists an interval graph that requires 3 colors, making the above bound
tight. It was asked in [27] if there is a polynomial time algorithm that given an interval
graph G, computes χ∗

ON (G). We answer this in the affirmative and give polynomial time
characterization algorithms for interval graphs G that decide if χ∗

ON (G) ∈ {1, 2, 3}. These
results are presented in Section 4.

For a bipartite graph G, it is easy to see that χ∗
CN (G) ≤ 2. On the contrary, there

exist bipartite graphs G, for which χ∗
ON (G) = Θ(

√
n). It is NP-complete [1] to decide if a

planar bipartite graph is CFON∗ colorable using k colors, where k ∈ {1, 2, 3}. We study the
problem on some subclasses of bipartite graphs that include chain graphs, biconvex bipartite
graphs, and bipartite permutation graphs. We show that three colors are sufficient to CFON∗

color a biconvex bipartite graph and give characterization algorithms to decide the CFON∗

chromatic number. The results are presented in Section 5.

2 Preliminaries

Throughout the paper, we consider simple undirected graphs. We denote the vertex set and
the edge set of a graph G = (V, E), by V (G) and E(G). For standard graph notations, we
refer to the graph theory book by R. Diestel [11]. For a vertex v ∈ G, its open neighborhood,
denoted by NG(v), is the set of neighbors of v in G. The closed neighborhood of v, denoted
by NG[v], is NG(v) ∪ {v}. We use log to denote the logarithm to the base 2, and ln to
denote the natural logarithm. Proofs of the results marked with (⋆) are omitted due to space
constraints.

3 Improved bounds for χ∗
ON (G) for graphs with bounded claw number

The graph K1,k is the complete bipartite graph on k + 1 vertices with one vertex in one part
and the remaining k vertices in the other part.

▶ Definition 1 (Claw number). The claw number of a graph G is the smallest k such that G

is K1,k+1-free. In other words, it is the largest k such that G contains an induced K1,k.

MFCS 2022



19:4 Conflict-Free Coloring on Claw-Free Graphs and Interval Graphs

The complete bipartite graph K1,3 is called a claw. A graph is called a claw-free graph if it
does not contain a claw as an induced subgraph.

In this section, we prove two results: (i) an improved bound for χ∗
ON (G) in terms of the

claw number and maximum degree of G, and (ii) an improved bound for χ∗
ON (G) for graphs

with high minimum degree. We begin by stating a couple of results from probability theory
which will be useful.

▶ Lemma 2 (The Local Lemma, [13]). Let A1, . . . , An be events in an arbitrary probability
space. Suppose that each event Ai is mutually independent of a set of all the other events Aj

but at most d, and that Pr[Ai] ≤ p for all i ∈ [n]. If 4pd ≤ 1, then Pr[∩n
i=1Ai] > 0.

▶ Theorem 3 (Chernoff Bound, Corollary 4.6 in [24]). Let X1, . . . , Xn be independent Poisson
trials such that Pr[Xi] = pi. Let X =

∑n
i=1 Xi and µ = E[X]. For 0 < δ < 1, Pr[|X − µ| ≥

δµ] ≤ 2e−µδ2/3.

3.1 Auxiliary lemmas

In this subsection, we state some auxiliary lemmas on conflict-free chromatic number of
graphs and hypergraphs having certain structural characteristics that will be used to prove
the main theorems in Sections 3.2 and 3.3. Before we begin, let us define the conflict-free
chromatic number of a hypergraph.

▶ Definition 4. Given a hypergraph H = (V, E), a coloring c : V → [r] is a conflict-free
coloring of H if for every hyperedge E ∈ E, there is a vertex in E that receives a color under
c that is distinct from the colors received by all the other vertices in E. The minimum r such
that c : V → [r] is a conflict-free coloring of H is called the conflict-free chromatic number
of H. This is denoted by χCF (H).

The following theorem on conflict-free coloring of hypergraphs is from [26]. The degree of a
vertex in a hypergraph is the number of hyperedges it is part of.

▶ Theorem 5 (Theorem 1.1(b) in [26]). Let H be a hypergraph and let ∆ be the maximum
degree of any vertex in H. Then, χCF (H) ≤ ∆ + 1.

We prove an upper bound for the conflict-free chromatic number of a “near uniform hyper-
graph” in Lemma 6 below.

▶ Lemma 6. Let H = (V, E) be a hypergraph where (i) every hyperedge intersects with at
most Γ other hyperedges, and (ii) for every hyperedge E ∈ E, r ≤ |E| ≤ ℓr, where ℓ ≥ 1
is some integer and r ≥ 2 log(4Γ). Then, χCF (H) ≤ eℓr, where e is the base of natural
logarithm.

Proof. For each vertex in V , assign a color that is chosen independently and uniformly at
random from a set of eℓr colors. We will first show that the probability of this coloring being
bad for an edge is small, and then use Local Lemma to show the existence of conflict-free
coloring for H using at most eℓr colors.

Consider a hyperedge E ∈ E with m := |E|. By assumption, we have r ≤ m ≤ ℓr. Let
AE denote the bad event that E is colored with ≤ |E|/2 colors. Note that if AE does not
occur, then E is colored with > |E|/2 colors, hence there is at least one color that appears
exactly once in E.
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Pr[AE ] ≤
(

eℓr

m/2

) (
m/2
eℓr

)m

≤
(

e2ℓr

m/2

)m/2 (
m/2
eℓr

)m

(since
(

n

k

)
≤

(en

k

)k

)

= (m/2)m/2

(ℓr)m/2 =
( m

2ℓr

)m/2

≤ (1/2)m/2 ≤ 1
4Γ .

Here the penultimate inequality follows since m ≤ ℓr, and the last inequality follows since
m ≥ 2 log(4Γ).

We apply the Local Lemma (Lemma 2) on the events AE for all hyperedges E ∈ E .
Since each hyperedge intersects with at most Γ other hyperedges, and 4 · 1

4Γ · Γ ≤ 1, we get
Pr[∩E∈E(AE)] > 0. That is, there is a conflict free coloring of H that uses at most eℓr colors.
This completes the proof of the lemma. ◀

Lemmas 7 and 8 prove upper bounds for χ∗
ON (G) when G satisfies certain degree restric-

tions.

▶ Lemma 7. Let G be a graph with (i) V (G) = X ⊎ Y , X, Y ̸= ∅, (ii) every vertex in G has
at most dX neighbors in X, (iii) every vertex in Y has at least one neighbor in X, and (iv)
every vertex in X has at most dY neighbors in Y . Then, there is a coloring of vertices of X

with dXdY + dX − dY + 1 colors such that every vertex in Y sees some color exactly once
among its neighbors in X.

Proof. For each vertex y ∈ Y , we arbitrarily choose one of its neighbors in X. Let us call
this neighbor f(y). For each y ∈ Y , contract the edges {y, f(y)} to obtain a resulting graph
GX . Note that the vertex set of GX is V (GX) = X. The maximum degree of a vertex in the
new graph GX is at most (dX − 1)dY + dX . Thus, we can do a proper coloring (such that no
pair of adjacent vertices receive the same color) of GX using dXdY + dX − dY + 1 colors. We
note that this coloring of the vertices of X satisfies our requirement: in the original graph G,
for each y ∈ Y , the neighbor f(y) is colored distinctly from all the other neighbors of y in
X. ◀

▶ Lemma 8. Let G be a graph with (i) V (G) = X ⊎ Y , X, Y ̸= ∅, (ii) every vertex in Y has
at most tX neighbors in X, and (iii) every vertex in X has at least one neighbor in Y . Then,
there is a coloring of the vertices of Y using at most (tX + 1) colors such that every vertex in
X sees some color exactly once among its neighbors in Y .

Proof. For every vertex v ∈ X, let NY
G (v) denote the set NG(v) ∩ Y , i.e., the neighbors of

v in Y in the graph G. Since every vertex in X has at least one neighbor in Y , we have,
|NY

G (v)| ≥ 1. We construct a hypergraph H = (V, E) from G as described below. We have (i)
V = Y , and (ii) E = {NY

G (v) : v ∈ X}. Since every vertex in Y has at most tX neighbors
in X in the graph G, the maximum degree of a vertex in the hypergraph H (that is, the
maximum number of hyperedges a vertex in H is part of) is at most tX . From Theorem 5,
we have χCF (H) ≤ tX + 1. Observe that in this coloring of the vertices of Y using at most
(tX + 1) colors, every vertex in X sees some color exactly once among its neighbors in Y . ◀

MFCS 2022



19:6 Conflict-Free Coloring on Claw-Free Graphs and Interval Graphs

The following lemma, which will be used in the proof of Theorem 12, shows that given
a graph with high minimum degree there exists a subset of vertices that, for every vertex,
intersects its neighborhood at a small number of vertices.

▶ Lemma 9. Let ∆ denote the maximum degree of a graph G. It is given that every vertex in
G has degree at least c∆

logϵ ∆ for some ϵ ≥ 0 and c is a constant. Then, there exists A ⊆ V (G)
such that for every vertex v ∈ V (G),

75 log(2∆) < |NG(v) ∩ A| <
125
c

log1+ϵ(2∆).

Proof. We construct a random subset A of V (G) as described below. Each v ∈ V (G) is
independently chosen into A with probability 100 log1+ϵ(2∆)

c∆ . For a vertex v ∈ V (G), let Xv

be a random variable that denotes |NG(v) ∩ A|. Then, µv := E[Xv] = 100 log1+ϵ(2∆)
c∆ dG(v) ≥

100 log(2∆). Since dG(v) ≤ ∆, we also have µv ≤ 100 log1+ϵ(2∆)
c . Let Bv denote the event

that |Xv − µv| ≥ µv

4 . Applying Theorem 3 with δ = 1/4, we get Pr[Bv] = Pr[|Xv − µv| ≥
µv

4 ] ≤ 2e− µv
48 ≤ 2e− 100 log(2∆)

48 = 2e− 100 ln(2∆)
48 ln 2 < 2

(2∆)3 . The event Bv is mutually independent
of all but those events Bu where NG(u) ∩ NG(v) ̸= ∅. Hence, every event Bv is mutually
independent of all but at most ∆2 other events. Applying Lemma 2 with p = Pr[Bv] ≤ 2

(2∆)3

and d = ∆2, we have 4 · 2
(2∆)3 · ∆2 ≤ 1. Thus, there is a non-zero probability that none of

the events Bv occur. In other words, for every v, it is possible to have 3
4 µv < Xv < 5

4 µv.
Using the upper and lower bounds of µv we computed above, we can say that there exists an
A such that, for every v, 75 log(2∆) < |NG(v) ∩ A| < 125

c log1+ϵ(2∆). ◀

3.2 Graphs with bounded claw number
▶ Theorem 10. Let G be a K1,k-free graph with maximum degree ∆ having no isolated
vertices. Then, χ∗

ON (G)= O(k2 log ∆).

Proof. Consider a proper coloring (such that no pair of adjacent vertices receive the same
color) of G, h : V (G) → [∆ + 1], using ∆ +1 colors. Let C1, C2, . . . , C∆+1 be the color classes
given by this coloring G. That is, V (G) = C1 ⊎ C2 ⊎ · · · ⊎ C∆+1 is the partitioning of the
vertex set of G given by the coloring, where each Ci is an independent set. We may assume
that the coloring h satisfies the following property: for every 1 < i ≤ ∆ + 1, every vertex v

in Ci has at least one neighbor in every Cj , where 1 ≤ j < i (otherwise, we can move v to a
color class Cj , j < i, in which it has no neighbors without compromising on the “properness”
of the coloring). Since G is K1,k-free, we have the following observation.

▶ Observation 11. For every i ∈ [∆ + 1], a vertex in G has at most k − 1 neighbors in Ci.

Let r = 2 log(4∆2). We partition the vertex set of G into three parts, namely V1, V2, and
V3 as described below. We have V1 := C1. If ∆ > r, then V2 := C2 ⊎ C3 ⊎ · · · ⊎ Cr+1 and
V3 := Cr+2 ⊎ Cr+3 ⊎ · · · ⊎ C∆+1. Otherwise, V2 := C2 ⊎ C3 ⊎ · · · ⊎ C∆+1 and V3 := ∅.

The rest of the proof is about constructing a coloring f : V (G) → N × N that is a
CFON∗ coloring of G. Let N1 = {1, 2, . . . , r1}, N2 = {r1 + 1, r1 + 2, . . . , r1 + r2}, and
N3 = {r1 + r2 + 1, r1 + r2 + 2, . . . , r1 + r2 + r3}, where |N1| = r1 = (k − 1)(k − 2)r + k,
|N2| = r2 = e(k − 1)r, and |N3| = r3 = k. We define three colorings f1, f2, and f3 below.

We begin by describing the coloring f1 : V1 → N1. Let G[V1 ∪ V2] be the subgraph of
G induced on V1 ∪ V2. From Observation 11, every vertex in G[V1 ∪ V2] has at most k − 1
neighbors in V1 = C1. Every vertex in V2 has at least one neighbor in V1 due to the property
of our coloring h. From Observation 11, we can also say that every vertex in V1 has at most
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r(k − 1) neighbors in V2. Applying Lemma 7 on G[V1 ∪ V2] with X = V1, Y = V2, dX = k − 1
and dY = r(k − 1), we can say that there is a coloring f1 : V1 → N1 of the vertices of V1 with
(k − 1)(k − 2)r + k colors such that every vertex in V2 sees some color exactly once among
its neighbors in V1.

We now describe the coloring f2 : V2 → N2. If V3 = ∅, then, ∀v ∈ V2, f2(v) = r1 + 1.
Suppose V3 ̸= ∅. For a vertex v in G, let NV2

G (v) denote the set of neighbors of v in V2 in the
graph G. We construct a hypergraph H2 = (V2, E2) as follows. We have E2 = {NV2

G (v) : v ∈
V3}. Consider an arbitrary hyperedge E ∈ E2. In the graph G, since every vertex in V3 has at
least one neighbor in every color class Ci, 2 ≤ i ≤ r + 1, |E| ≥ r. Using Observation 11, we
can say that |E| ≤ (k − 1)r. As |NV2

G (v)| ≤ NG(v) ≤ ∆, ∀v ∈ V (G), we have |E| ≤ ∆. This
also implies that E intersects with at most ∆2 other hyperedges in E2. Applying Lemma
6 with ℓ = (k − 1) and Γ = ∆2, we have χCF (H2) ≤ e(k − 1)r. Thus, there is a coloring
f2 : V2 → N2 of the vertices V2 such that every vertex in V3 sees some color exactly once
among its neighbors in V2.

Finally, we describe the coloring f3 : V2 ∪ V3 → N3. From Observation 11, every vertex
in V2 ∪ V3 has at most k − 1 neighbors in V1 = C1. Since there are no isolated vertices in G,
every vertex in V1 has at least one neighbor in V2 ∪ V3. Applying Lemma 8 with X = V1,
Y = V2 ∪ V3, and tX = k − 1, we get a coloring f3 : V2 ∪ V3 → N3 of the vertices of V2 ∪ V3
using at most k colors such that every vertex in V1 sees some color exactly once among its
neighbors in V2 ∪ V3.

We are now ready to define the coloring f .

f(v) =


(1, f1(v)), if v ∈ V1

(f2(v), f3(v)), if v ∈ V2

(1, f3(v)), if v ∈ V3.

We now argue that f is indeed a CFON∗ coloring of G. Consider a vertex v ∈ V (G). If v ∈ V3,
v sees some color exactly once among its neighbors in V2 under the coloring f2. Let u be that
neighbor of v in V2 and f2(u) be that color that appears exactly once in the neighborhood
of v in V2. Since the codomains of f1, f2, and f3 are pairwise disjoint sets, v does not see
the same color among its neighbors in V1 or in V2. Further, since f(u) = (f2(u), f3(u)), the
final coloring f only refines the color classes of V2 given by f2. Thus, the color (f2(u), f3(u))
appears exactly once among the neighbors of v in G. The cases when v ∈ V1 and v ∈ V2 also
follow using similar arguments.

The coloring f uses at most |N1| + |N2||N3| + |N3| = (k − 1)(k − 2)r + k + e(k − 1)kr + k

colors. Since r = O(log ∆), this implies that χON
CF (G) = O(k2 log ∆). ◀

3.3 Graphs with high minimum degree
When a graph G has high minimum degree, the following theorem gives improved upper
bounds for χ∗

ON (G) in terms of its maximum degree.

▶ Theorem 12. Let G be a graph with maximum degree ∆. It is given that every vertex in G

has degree at least c∆
logϵ ∆ for some ϵ ≥ 0 and c is a constant. Then, χ∗

ON (G)= O(log1+ϵ ∆).

Proof. Apply Lemma 9 to find an A ⊆ V (G) such that for every v ∈ V (G), 75 log(2∆) <

|NG(v) ∩ A| < 125
c log1+ϵ(2∆). Construct a hypergraph H = (A, E) where E = {NG(v) ∩

A : v ∈ V (G)}. Every E ∈ E satisfies 2 log(4∆2) < 75 log(2∆) < |E| < 125
c log1+ϵ(2∆). Ap-

plying Lemma 6 with r = 75 log(2∆) and ℓ = 5
3c logϵ(2∆), we get χCF (H) ≤ 340

c log1+ϵ(2∆).
It is easy to see that this conflict-free coloring of H is indeed a CFON∗ coloring for G. ◀

MFCS 2022
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4 Interval graphs

In this section, we show that the problem of determining the CFON∗ chromatic number
of a given interval graph is polynomial time solvable. It was shown in [4, 27] that, for an
interval graph G, χ∗

ON (G) ≤ 3 and that there exists an interval graph that requires three
colors. The complexity of the problem on interval graphs was posed as an open question in
the above papers. We show that CFON∗ coloring is polynomial time solvable. That is, given
an interval graph G, in polynomial time we decide whether χ∗

ON (G) is 1, 2 or 3. We state it
formally below.

▶ Theorem 13. Given an interval graph G, there is a polynomial time algorithm that
determines χ∗

ON (G).

▶ Remark 14 (Notation). In the introduction, we defined CFON∗ coloring to be an assignment
of colors to a subset of the vertices. For the sake of convenience, we will use the color 0 to
denote uncolored vertices. That is, we will use an assignment f : V (G) → {0, 1, 2}, to denote
a coloring that assigns the colors 1 and 2 to some vertices. The vertices that are assigned
0 by f are the “uncolored” vertices. The “color” 0 cannot serve as a unique color in the
neighborhood of any vertex.

▶ Definition 15 (Interval Graphs). A graph G = (V, E) is called an interval graph if there
exists a set of intervals on the real line such that the following holds: (i) there is a bijection
between the intervals and the vertices and (ii) there exists an edge between two vertices if
and only if the corresponding intervals intersect.

The main ingredient of the algorithm is the use of multi-chain ordering property on interval
graphs. Before defining the multi-chain ordering property, we look at some prerequisites.

▶ Definition 16 (Chain Graph [12]). A bipartite graph G = (A, B) is a chain graph if and
only if for any two vertices u, v ∈ A, either N(u) ⊆ N(v) or N(v) ⊆ N(u). If G is a chain
graph, it follows that for any two vertices u, v ∈ B, either N(u) ⊆ N(v) or N(v) ⊆ N(u).

As a consequence, we can order the vertices in B in the decreasing order of the degrees.
We can break ties arbitrarily. If b1 ∈ B appears before b2 ∈ B in the ordering, then it follows
that N(b2) ⊆ N(b1).

▶ Definition 17 (Multi-chain Ordering [7, 12]). Given a connected graph G = (V, E), we
arbitrarily choose a vertex as v0 ∈ V (G) and construct distance layers L0, L1, . . . , Lp from
v0. The layer Li, where i ∈ [p], represents the set of vertices that are at a distance i from v0.
Note that p here denotes the largest integer such that Lp is non-empty.

We say that these layers form a multi-chain ordering of G if for every two consecutive
layers Li and Li+1, where i ∈ {0, 1, . . . , p − 1}, we have that the vertices in Li and Li+1, and
the edges connecting these layers form a chain graph.

▶ Theorem 18 (Theorem 2.5 of [12]). All connected interval graphs admit multi-chain
orderings.

We give a characterization of interval graphs that require one color and two colors in
polynomial time in Theorem 21 and Theorem 23 respectively. Given an interval graph G, the
algorithms decide if G is CFON∗ colorable using one color or two colors. If G is not CFON∗

colorable using one color or two colors, we conclude that G is CFON∗ colorable using three
colors (since it is known that for an interval graph G, χ∗

ON (G) ≤ 3). One of the key ideas
used in Theorem 23 (to decide if G can be CFON∗ colored using two nonzero colors) is sort
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of a bootstrapping idea. After narrowing down the possibilities, we need to test if a given
subgraph can be colored using the colors {0, 1} so as to obtain a CFON∗ coloring. To solve
this, we use Theorem 21.

Before we proceed to the main theorems of this section, we observe the following on a
graph G that admits multi-chain ordering.

▶ Observation 19. If G admits a multi-chain ordering, then every distance layer Li, for
0 ≤ i < p contains a vertex v such that N(v) ⊇ Li+1.

Proof. Consider a multi-chain ordering of G, starting with an arbitrary vertex. For any
two consecutive distance layers Li and Li+1, it can be seen that each vertex in Li+1 has a
neighbor in Li. This, together with the fact that Li and Li+1 form a chain graph, imply that
there is a vertex v ∈ Li such that N(v) ⊇ Li+1. ◀

▶ Observation 20. In any CFON∗ coloring of G that uses one color, at most one vertex in
each Li is assigned the color 1.

Proof. Consider a layer Li of the graph. As per Observation 19, there is a v ∈ Li such that
N(v) ⊇ Li+1. If two vertices in Li+1 are colored 1, then the vertex v ∈ Li does not have a
uniquely colored neighbor. Hence in all the layers L1, L2, . . . up to the last layer Lp, we have
that at most one vertex is assigned the color 1. Since L0 has only one vertex, the statement
is trivially true for L0. ◀

▶ Theorem 21. Given an interval graph G = (V, E), we can decide in O(n5) time if
χ∗

ON (G) = 1.

Proof. Let L0, L1, . . . , Lp be the distance layers of G constructed from an arbitrarily chosen
vertex v0, satisfying the multi-chain ordering. If there is a CFON∗ coloring that uses 1 color,
then from Observation 20, at most one vertex in each layer is assigned the color 1. There
are two possibilities for a layer Li: either it has no vertices colored 1, or it has exactly one
vertex that is colored 1. In the former case, there is a unique coloring for Li when none of
the vertices in Li are assigned the color 1. In the latter case, we have |Li| many colorings
(for Li) where each coloring has exactly one vertex with color 1 (and the rest are assigned 0).
In total, we have at most |Li| + 1 colorings for each Li. We call all such colorings valid.

The task is to find if there is a sequence of colorings assigned to each layer of G such that
we have a CFON∗ coloring. Notice that the vertices in Li can possibly have neighbors in
the layers Li−1, Li, and Li+1. The question of deciding whether the vertices in Li have a
uniquely colored neighbor entirely depends on the colorings assigned to these three layers.
We say that colorings assigned to three consective layers are good if the vertices in the central
layer have uniquely colored neighbors. We use a dynamic programming based approach to
verify the existence of a CFON∗ coloring for G.

We now construct a layered companion hypergraph G = (V ′, E) with vertices in p + 1
layers. Each layer Ti of G corresponds to the layer Li of G where i ∈ [p] ∪ {0}. Each vertex
in layer Ti of G corresponds to a valid coloring of vertices in Li of G. Hence the number of
vertices in each layer Ti of G is equal to |Li| + 1. We now explain how the hyperedges E of G
are determined.

For 1 ≤ i ≤ p − 1, the vertices x ∈ Ti−1, y ∈ Ti, z ∈ Ti+1 form a hyperedge {x, y, z} if the
corresponding colorings, when assigned to Li−1, Li and Li+1 respectively, ensures that every
vertex in Li has a uniquely colored neighbor. We also have hyperedges {y, z}, where y ∈ T0
and z ∈ T1 are colorings such that when y and z are assigned to L0 and L1 respectively, the
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vertex in L0 sees a uniquely colored neighbor. Similarly, we have hyperedges {x, y}, where
x ∈ Tp−1 and z ∈ Tp are colorings such that when x and y are assigned to Lp−1 and Lp

respectively, all the vertices in Lp see a uniquely colored neighbor.
Since the number of valid colorings is |Li| + 1 for the layer Li, the total number of valid

colorings across all layers is at most 2n. The total number of potential hyperedges to check
is at most O(n3). Once we fix valid colorings xi−1, xi, xi+1 for Li−1, Li, Li+1 respectively,
we can check in O(|Li| · n) ≤ O(n2) time if {xi−1, xi, xi+1} ∈ E . Hence we need O(n5) time
to construct G.

To obtain a CFON∗ coloring for G, we need to construct a sequence of colorings x0 ∈ T0,
x1 ∈ T1, . . ., xp ∈ Tp such that {x0, x1} ∈ E , {xi−1, xi, xi+1} ∈ E for all 1 ≤ i ≤ p − 1, and
finally {xp−1, xp} ∈ E . For this, we use Lemma 22, stated and proved below. Since each
|Ti| = |Li| + 1 ≤ n + 1, and number of layers is at most n, this takes at most O(n4) time.
The construction of G takes O(n5) time and dominates the running time. ◀

▶ Lemma 22. Suppose there is a layered hypergraph G = (V ′, E) with layers T0, T1, T2, . . . , Tp,
where |Ti| ≤ α, for 0 ≤ i ≤ p and p ≤ β. Suppose further that all the hyperedges in E contain
one vertex each from three consecutive layers, or contain one vertex each from T0 and
T1, or contain one vertex each from Tp−1 and Tp. We can determine if there exists a
sequence x0 ∈ T0, x1 ∈ T1, . . ., xp ∈ Tp such that {x0, x1} ∈ E, {xi−1, xi, xi+1} ∈ E for all
1 ≤ i ≤ p − 1, and finally {xp−1, xp} ∈ E in O(α3β) time.

Proof. We start with the vertices in T0. For each vertex x1 ∈ T1, we store a list of predecessors
x0 such that {x0, x1} ∈ E . For 1 ≤ i ≤ p − 1, we do the following at each vertex xi ∈ Ti.
We look at the list of predecessors stored. If xi−1 is a listed predecessor of xi, then we
search for all the hyperedges {xi−1, xi, z}, where z ∈ Ti+1. If we find such a hyperedge
{xi−1, xi, xi+1} ∈ E , then we store xi as a predecessor in the list at xi+1. Finally, for each
xp ∈ Tp, we check if there is a listed predecessor z ∈ Tp−1 of xp such that {z, xp} ∈ E . If
there is any such xp ∈ Tp for which this holds, then there exists a sequence as desired in the
statement of the lemma.

Note that the general step involves going through a list of size at most α at each vertex
xi. For each listed predecessor xi−1, there are potentially at most α hyperedges of the form
{xi−1, xi, z} to check, where z ∈ Ti+1. We need to do this for all the vertices (at most α of
them) of Ti. This gives a time complexity of O(α3) at the i-th layer. Since there are β layers,
the total running time is O(α3β). ◀

We now proceed to the next result that decides in polynomial time whether χON (G) = 2.

▶ Theorem 23 (⋆). Given an interval graph G, we can decide in O(n20) time if χON (G) = 2.

Sketch of Proof. The idea of this proof is similar to the proof of Theorem 21. For a layer
|Li|, we had |Li| + 1 colorings to consider in Theorem 21. Unlike in Theorem 21, we have
more colorings to consider since the vertices can get the colors {0, 1, 2}. We have the following
types of colorings in each layer Li:

Type 1: All the vertices in Li are assigned the color 0. There is only one coloring of Li of
this type.

Type 2: Exactly one vertex is assigned the color 1 or 2 while the rest are assigned the color
0. The number of colorings is 2|Li|.

Type 3: Both the colors 1 and 2 appear exactly once and the rest are assigned the color 0.
The number of colorings is |Li|(|Li| − 1) ≤ |Li|2.
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Type 4: One of the colors 1 or 2 appears at least twice while the other color appears exactly
once. The remaining vertices are assigned the color 0.

Type 5: One of the colors 1 or 2 appears at least twice and all the other vertices are assigned
the color 0.

Due to space constraints, the full proof is omitted. We describe a proof sketch highlighting
the key ideas in the proof below.

The above 5 types are exhaustive. We cannot have a “Type 6” coloring in Li+1 where
there are at least two vertices with color 1 and at least two vertices with color 2. This is
because Observation 19 implies the existence of a vertex v ∈ Li such that N(v) ⊇ Li+1.
This implies that v does not have a uniquely colored neighbor for such a coloring of Li+1.
The number of colorings of Types 1, 2, 3 are polynomial in |Li| while the number of
colorings of Types 4 and 5 are exponential in |Li|. Since we cannot consider an exponential
number of colorings, we consider a polynomial subset of Type 4 and Type 5 colorings
which are representatives of all possible Type 4 and Type 5 colorings.
Given a Type 4 or Type 5 coloring, the key point is that it is enough to fix the colors of
a few vertices that we will refer to as “left-important” and “right-important” vertices.
This allows us to restrict the focus onto a reduced number of representative colorings.
Because of the flexibility offered by the representative colorings, there are some cases
where we have to explore further in order to decide if the graph is CFON∗ colorable using
colors from {0, 1, 2}. This reduces to the problem of testing whether a given subgraph
is CFON∗ colorable using colors from {0, 1}. We use Theorem 21 (with some minor
changes) to accomplish this. This is the last, but critical step that we need to complete
the proof. ◀

Using Theorems 21 and 23, we can now infer Theorem 13.
▶ Remark 24. Recently, the work of Gonzalez and Mann [20] (done simultaneously and inde-
pendently from ours) on mim-width showed that the CFON∗ coloring problem is polynomial-
time solvable on graph classes for which a branch decomposition of constant mim-width can
be computed in polynomial time. This includes the class of interval graphs. We note that
our work gives a more explicit algorithm without having to go through the machinery of
mim-width. We also note that the mim-width algorithm, as presented in [20], requires a
running time in excess of Ω(n300). Hence our algorithm is better in this regard as well.

5 Subclasses of Bipartite Graphs

It is known that there exist bipartite graphs G for which χ∗
ON (G) = Θ(

√
n), where n is

the number of vertices of G. Abel et al. [1] showed that it is NP-complete to decide if k

colors are sufficient to CFON∗ color a planar bipartite graph even when k ∈ {1, 2, 3}. This
implies that CFON∗ coloring is NP-hard on bipartite graphs as well. In this section, we
study CFON∗ coloring on some subclasses of bipartite graphs namely biconvex graphs and
bipartite permutation graphs. We show that CFON∗ coloring is polynomial time solvable on
these classes.

We first define biconvex graphs, followed Lemma 26 by a bound on the CFON* chromatic
number. The proof of Lemma 26 is omitted.

▶ Definition 25 (Biconvex Graph). We say that an ordering σ of X in a bipartite graph
B = (X, Y, E) satisfies the adjacency property if for every vertex y ∈ Y , the neighborhood
N(y) is a set of vertices that are consecutive in the ordering σ of X. A bipartite graph
(X, Y, E) is biconvex if there are orderings of X (with respect to Y ) and Y (with respect to
X) that fulfill the adjacency property.
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▶ Lemma 26 (⋆). If G is a biconvex graph, then χ∗
ON (G) ≤ 3.

▶ Theorem 27. The problem of determining the CFON∗ chromatic number of a given
biconvex graph is solvable in polynomial time.

Proof. Given a biconvex graph G, we show that χ∗
ON (G) ≤ 3. We use the fact that every

induced subgraph of a biconvex graph admits multi-chain ordering [7, 12]. Let G = (V, E)
be a biconvex graph and let V0, V1, . . . , Vq be a partition of vertices V (G) respecting the
multi-chain ordering conditions. Similar to interval graphs, we now characterize graphs that
require one color and two colors. Note that the algorithms in Theorems 21 and 23 work for
biconvex graphs too as the proof is based on the multi-chain ordering property and biconvex
bipartite graphs admit multi-chain ordering property. In fact, the proof is a bit simpler
because of the fact that each Vi is an independent set and we do not need to take care of the
edges within a part Vi, as in the case of interval graphs. ◀

The class of bipartite permutation graphs [7] are a subclass of biconvex, and also admit
multi-chain ordering property. Hence it follows from Theorem 27 that the problem is
polynomial time solvable on bipartite permutation graphs.

▶ Corollary 28. The problem of determining the CFON∗ chromatic number of a given
bipartite permutation graph is solvable in polynomial time.

6 Conclusion

In this paper, we study CFON∗ coloring on claw-free graphs, interval graphs and biconvex
graphs.

We first show that if G is a K1,k-free graph with maximum degree ∆, then χ∗
ON (G) =

O(k2 log ∆). We then show that if the minimum degree of G is Ω( ∆
logϵ ∆ ) for some ϵ ≥ 0,

then χ∗
ON (G) = O(log1+ϵ ∆). The tightness of these bounds is a natural open question.

We show that CFON∗ coloring is polynomial time solvable on interval graphs and biconvex
graphs, critically using the fact that they admit multi-chain ordering property. Using a
similar approach, it can be shown that the full coloring variant of the problem (i.e., CFON
coloring) is polynomial time solvable on these graph classes. It is known that CFON∗ coloring
is NP-hard on planar bipartite graphs and there exist bipartite graphs on n vertices that
requires Θ(

√
n) colors. It may be of interest to study the problem on other subclasses of

bipartite graphs, such as convex bipartite graphs, chordal bipartite graphs and tree-convex
bipartite graphs.
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