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Abstract
We study the problem of online tree exploration by a deterministic mobile agent. Our main objective
is to establish what features of the model of the mobile agent and the environment allow linear
exploration time. We study agents that, upon entering a node, do not receive as input the edge via
which they entered. In such model, deterministic memoryless exploration is infeasible, hence the
agent needs to be allowed to use some memory. The memory can be located at the agent or at each
node. The existing lower bounds show that if the memory is either only at the agent or only at the
nodes, then the exploration needs superlinear time. We show that tree exploration in dual-memory
model, with constant memory at the agent and logarithmic in the degree at each node is possible in
linear time when one of the two additional features is present: fixed initial state of the memory at
each node (so called clean memory) or a single movable token. We present two algorithms working
in linear time for arbitrary trees in these two models. On the other hand, in our lower bound we
show that if the agent has a single bit of memory and one bit is present at each node, then the
exploration may require quadratic time even on paths, if the initial memory at nodes could be set
arbitrarily (so called dirty memory). This shows that having clean node memory or a token allows
linear time exploration of trees in the dual-memory model, but having neither of those features may
lead to quadratic exploration time even on a simple path.
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1 Introduction

Consider a mobile entity deployed inside an undirected graph with the objective to visit all
its nodes without any a priori knowledge of the topology or size of the graph. This problem,
called a graph exploration, is among the basic problems investigated in the context of a mobile
agent in a graph [1, 10, 24, 26, 33] and has applications to robot navigation [35] and searching
the World Wide Web [7]. In this paper we focus on tree exploration by a deterministic agent.
Clearly, to explore the whole tree of n nodes, any agent needs time Ω(n). A question arises:
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22:2 Tree Exploration in Dual-Memory Model

“What are the minimum agent capabilities required to complete the tree exploration in linear
time?” Many practical applications may not allow the agent to easily backtrack its moves
due to technical, security or privacy reasons. Thus, in this work we assume that the agent,
upon entering a node, does not receive any information about the edge via which it entered.

We consider three components of the input to the agent: memory at the agent, memory
at each node, and movable tokens (cf. e.g. [4, 3, 10, 11]). A deterministic agent given some
input always chooses the same outgoing edge. Hence at a node of degree d needs at least d

different inputs in order to be able to choose all of d outgoing edges. Thus in order to ensure
the sufficient number of possible inputs, the number of possible values of the memory and
possible present or absent states of the tokens, must exceed d. Hence, the sum of the memory
at the agent, memory at the node and the number of tokens must be at least ⌈log dv⌉ bits,
for any node of degree dv, where log denotes base-2 logarithm (cf. [34, Observation 1.1]).

In many applications, mobile agents are meant to be small, simple and inexpensive devices
or software, cf. [11, 24]. These restrictions limit the size of the memory with which they
can be equipped. Thus it is crucial to analyse the performance of the agent equipped with
the minimum size of the memory. In this paper we assume the asymptotically minimum
necessary memory size of O(log dv), where only a constant number of bits is stored at the
agent and logarithmic number (in the degree) at each node.

We consider two additional features of the model, namely – clean memory or a single
token, and we show that each of these assumptions alone allows linear-time tree exploration.
We also prove that when both features are absent, then the linear time exploration with
small memory may be impossible even on a simple path.

2 Model

The agent is located in an initially unknown tree T = (V, E) with n = |V | nodes, where n

is not known to the agent. The agent can traverse one of the edges incident to its current
location within a single step, in order to visit a neighbouring node at its other end. The
nodes of the tree are unlabelled, however in order for the agent to locally distinguish the
edges outgoing from its current position, we assume that the tree is port-labelled. This
means that at each node v with some degree dv, its outgoing edges are uniquely labelled
with numbers from {1, 2, . . . , dv}. Throughout the paper we assume that the port labels are
assigned by an adversary that knows the algorithm used by the agent in advance and wants
to maximize the exploration time.

Memory. The agent is endowed with some number of memory bits (called agent memory
or internal memory), which it can access and modify. In our results, we assume that the
agent has O(1) bits of memory.

Each node v ∈ V contains some number of memory bits as well, which can be modified
by the agent when visiting that node. We will call these bits node memory or local memory.
We assume that node v contains Θ(log dv) bits of memory. Hence, each node is capable of
storing a constant number of pointers to its neighbours in the tree.

General Exploration Algorithm. Upon entering a node v, the agent a receives, as input,
its current state sa, the state sv of the current node v, the number tokv of tokens at v, the
number toka of tokens at the agent and the degree dv of the current node. It outputs its
new state s′

a, new state s′
v of node v, new state tok′

a, tok′
v of the tokens at the agent/node,

respectively, and port pout via which it exits node v; hence, the algorithm defines a transition:
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(sa, sv, toka, tokv, dv)→ (s′
a, s′

v, tok′
a, tok′

v, pout),

that must satisfy toka +tokv = tok′
a +tok′

v. In models without the tokens, the state transition
of the algorithm can be simplified to:

(sa, sv, dv)→ (s′
a, s′

v, pout)

Starting state. We assume that for a given deterministic algorithm, there is one starting
state s of the agent (obtained from the agent memory), in which the agent is at the beginning
of (any execution of) the algorithm. The agent can also use this state later (it can transition
to s in subsequent steps of the algorithm). The starting location of the agent is chosen by an
adversary accordingly to agent’s algorithm (to maximize the agent’s exploration time).

Our models. In this paper we study the following three models:
In CleanMem, there is a fixed state ŝ and each node v is initially in the state sv = ŝ, regard-

less of the degree of the vertex. In this model the agent does not have access to any tokens.
In DirtyMem, the memory at the nodes is in arbitrary initial states, which are chosen by

an adversary. In this model the agent does not have access to any tokens.
In Token, the agent is initially equipped with a single token. If the agent holds a token, it

can drop it at a node upon visiting that node. When visiting a node, the agent receives as
input whether the current node already contains a token. In this case the agent additionally
outputs whether it decides to pick up the token, i.e., deduct from tokv and add to toka.
Clearly, since the agent has only one token, then after dropping it at some node, it needs to
pick it up before dropping it again at some other node. In this model we assume that the
initial state of the memory at each node is chosen by an adversary (like in DirtyMem model).

3 Our results

Upper bounds. While a lot of the existing literature focuses on feasibility of exploration,
we show that it is possible to complete the tree exploration in the minimum possible linear
time using (asymptotically) minimal memory. We show two algorithms in models CleanMem
and Token, exploring arbitrary unknown trees in the optimal time O(n) if constant memory
is located at the agent and logarithmic memory is located at each node. Our results show
that in the context of tree exploration in dual-memory model, the assumption about clean
memory (fixed initial state of node memory) can be “traded” for a token.

It is worth noting that in both our algorithms, the agent returns to the starting position
and terminates after completing the exploration, which is a harder task than a perpetual
exploration. If the memory is only at the agent, exploration of trees with stop at the starting
node requires Ω(log n) bits of memory [14]; if the agent is only required to terminate at any
node then still a superconstant Ω(log log log n) memory is required [14]; while exploration
without stop is feasible using O(log ∆) agent memory [14] (where ∆ is the maximum degree
of a node). All these results assume that the agent could receive the port number via which
it entered the current node, while our algorithms operate without this information.

Lower bound. To explore a path with a single bit of memory and with arbitrary initial
state at each node (note that log dv = 1 for internal nodes on the path), one can employ
the Rotor-Router algorithm and achieve exploration time of O(n2) [41] (there is no need for
agent memory), which is time and memory optimal in the model with only node memory [34].

MFCS 2022



22:4 Tree Exploration in Dual-Memory Model

We want to verify the hypothesis that dual-memory allows to achieve linear time of
exploration of trees. In our lower bound we analyse path exploration with one bit at each node
and additional one bit of memory at the agent. We prove that in this setting, in DirtyMem
model an exploration of the path requires Ω(n2) steps in the worst case. Interestingly, since
time O(n2) in already achievable with only a single bit at each node (and no memory at the
agent), our lower bound shows that adding a single bit at the agent does not reduce the
exploration time significantly.

3.1 Previous and related work

Only node memory. One approach for exploration using only node memory is Rotor-
Router [41]. It is a simple strategy, where upon successive visits to each node, the agent is
traversing the outgoing edges in a round-robin fashion. Its exploration time is Θ(mD) for
any graph with m edges and diameter D [2, 41]. It is easy to see that this algorithm can be
implemented in port-labelled graphs with zero bits of memory at the agent and only ⌈log dv⌉
bits of memory at each node v with degree dv (note that this is the minimum possible amount
of memory for any correct exploration algorithm using only memory at the nodes). Allowing
even unbounded memory at each node still leads to Ω(n3) time for some graphs, and Ω(n2)
time for paths [34]. These lower bounds hold even if the initial state of the memory at each
node is clean (i.e., each node starts in some fixed state ŝ like in CleanMem model). Hence,
only node memory is insufficient for subquadratic time exploration of trees.

Only agent memory. When the agent is not allowed to interact with the environment, then
such agent, when exploring regular graphs, does not acquire any new information during
exploration. Hence such an algorithm is practically a sequence of port numbers that can
be defined prior to the exploration process. In the model with agent memory, the agent
is endowed with some number of bits of memory that the agent can access and modify at
any step. Thus for the case of the path, the lower bound (for unlimited agent memory)
can be infered from a lower bound Ω(n1.51) for Universal Traversal Sequences (UTS) [9]. If
this number of bits is logarithmic in n (otherwise, the exploration is infeasible [14]), then
in this model it is possible to implement UTS (the agent only remembers the position in
the sequence). The best known upper bound is O(n3) [1] and the best known constructive
upper bound is O(n4.03) [31]. Memory Θ(D log ∆) is sufficient and sometimes required to
explore any graph with maximum degree ∆ [24]. For directed graphs, memory Ω(n log ∆) at
the agent is sometimes required to explore any graph with maximum outdegree ∆, while
memory O(n∆ log ∆) is always sufficient [23].

Finite state automata. An agent equipped with only constant number of bits of persistent
memory can be regarded as a finite state automaton (see e.g. [8, 24, 25]). Movements of such
agent, typically modelled as a finite Moore or Mealy automaton, are completely determined
by a state transition function f(s, p, dv) = (s′, p′), where s, s′ are the agent’s states and p, p′

are the ports through which the agent enters and leaves the node v. A finite state automaton
cannot explore an arbitrary graph in the setting, where the nodes have no unique labels [39].
Fraigniaud et al. [24] showed that for any ∆ ⩾ 3 and any finite state agent with k states, one
can construct a planar graph with maximum degree ∆ and at most k + 1 nodes, that cannot
be explored by the agent. It is, however, possible in this model to explore (without stop) the
trees, assuming that the finite state agent has access to the incoming port number (cf. [14]).
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Two types of memory. Sudo et al. [40] consider exploration of general graphs with two types
of memory, where both memories may have arbitrary initial states. They show that O(log n)
bits at the agent and at each node allows exploration in time O(m + nD). Cohen et al. [8]
studied the problem of exploring an arbitrary graph by a finite state automaton, which
is capable of assigning O(1)-bit labels to the nodes. They proposed an algorithm, that –
assuming the agent knows the incoming port numbers – dynamically labels the nodes with
three different labels and explores (with stop) an arbitrary graph in time O(mD) (if the
graph can be labelled offline, both the preprocessing stage and the exploration take O(m)
steps). They also show that with 1-bit labels and O(log ∆) bits of agent memory it is possible
to explore (with stop) all bounded-degree graphs of maximum degree ∆ in time O(∆10m).

Tokens. Deterministic, directed graph exploration in polynomial time using tokens has
been considered in [3], where it was shown that a single token is sufficient if the agent has an
upper bound on the number of vertices n and Θ(log log n) tokens are sufficient and necessary
otherwise. In [4] the authors proposed a probabilistic polynomial time algorithm that allows
two cooperating agents without the knowledge of n to explore any strongly connected directed
graph. They also proved that for a single agent with O(1) tokens this is not possible in
polynomial time in n with high probability. Using one pebble, the exploration with stop
requires an agent with Ω(log n) bits of memory [25]. The same space bound remains true for
perpetual exploration [24]. Disser et al. [15] show that for a single agent with O(1) memory,
to explore any undirected anonymous graph (i.e. with unlabelled vertices and port-labelled
edges) with n vertices, Θ(log log n) distinguishable pebbles are necessary and sufficient. They
proposed an algorithm based on universal exploration sequences (UXS, cf. [30, 38]), which
runs in polynomial time and the agent terminates after returning to the starting vertex with
all pebbles. For the lower bound they show that an agent with O((log n)1−ε) bits of memory
(for any constant ε > 0) needs Ω(log log n) pebbles to explore all undirected graphs.

Randomized and collaborative exploration. Although we focus on deterministic graph
exploration by a single agent, there is a vast body of literature on randomized exploration
techniques, see e.g. [1, 12, 18, 19]. A classical and well-studied processes are random walks,
where the agent in each step moves to a neighbour chosen uniformly at random (or does
not move with some constant probability). Exploration using this method takes expected
time Ω(n log n) [20] and O(n3) [21], where for each of these bounds there exists a graph class
for which it is tight. Randomness alone cannot ensure linear time of tree exploration, since
expected time Ω(n2) is required even for paths [32]. However approaches using memory at the
agent [28], local information on explored neighbours [5], or local information on degrees [36]
have shown that there are many methods to speedup random walks. Finally, to achieve fast
exploration, usage of multiple agents is possible, cf. [12, 13, 15, 16, 17, 22, 27, 29, 37].

4 Upper bounds

4.1 Exploration in CleanMem model
To simplify descriptions, let us denote the starting position of the agent as Root. In this
section we show an algorithm exploring any tree in O(n) steps using O(1) bits of memory
at the agent and O(log dv) bits of memory at each node v of degree dv in CleanMem model.
The memory at each node is organized as follows. It contains two port pointers (of ⌈log dv⌉
bits each):

MFCS 2022



22:6 Tree Exploration in Dual-Memory Model

v.parent – at some point of the execution, contains the port number leading to Root,
v.last – points to the last port taken by the agent during the exploration

and two flags (of 1 bit):
v.root – indicates whether the node is Root of the exploration,
v.visited – indicates whether the node has already been visited.

At each node, the initial state of last pointers is 1, initial state of parent is NULL and initial
state of each flag is False. The agent’s memory contains one variable State that can take
one of five possible values: Initial, Roam, Down, Up, Terminated.

For simplicity of the pseudocode we use a flag parentSet, which controls if parent is
correctly set. This flag does not need to be stored because it is set and accessed in the same
round. It is possible to write a more complicated pseudocode without this variable.

In our pseudocode, we use a procedure MOVE(p), in which the agent traverses an edge
labelled with port p from its current location. When the agent changes its state to Terminated,
it does not make any further moves.

Algorithm’s description. For the purpose of the analysis, assume that tree T is rooted at
the initial position of the agent (the Root). The main challenge in designing an exploration
algorithm in this model is that the agent located at some node v may not know which port
leads to the parent of v. Indeed, if the agent knew which port leads to its parent, it could
perform a DFS traversal. In Algorithm 1 the agent would traverse the edges corresponding
to outgoing ports in order 1, 2, 3, . . . , dv (skipping the port leading to its parent) and take
the edge to its parent after completing the exploration of the subtrees rooted at its current
position. Note that it is possible to mark, which outgoing ports have already been traversed
by the agent using only a single pointer at each node hence 0 bits at the agent and ⌈log dv⌉
bits at each node allow for linear time exploration in this case.

Since in our model, the agent does not know, which port leads to the parent, we need a
second pointer parent at each node. To set it correctly, we first observe that in the model
CleanMem, using flag visited, it is possible to mark the nodes that have already been visited.
Notice that when the agent traverses some edge outgoing from v in the tree for the first time
and enters to a node that has already been visited, then this node is certainly the parent of
v. We can utilize this observation to establish correctly v.parent pointer using state Down.
When entering to a node in this state, we know that the previously taken edge (port number
of this edge is stored in v.last) leads to the parent of v. Our algorithm also ensures, that
after entering a subtree rooted at v, the agent leaves it once, and the next time it enters this
subtree it correctly sets v.parent and in subsequent steps it visits all the nodes of the subtree.
Finally, having correctly set pointers parent at all the nodes, allows the agent to efficiently
return to the starting node after completing the exploration and flag root allows the agent to
terminate the algorithm at the starting node.

▶ Theorem 1. Algorithm 1 explores any tree and terminates at the starting node in O(n)
steps in CleanMem model.

Proof. First note that the algorithm marks the starting node with flag root (line 2). The
algorithm never returns to state Initial, hence only this node will be marked with the root
flag. The only line, where the agent terminates the algorithm is line 14 hence the agent can
only terminate in the starting node. We need to show that the agent will terminate in every
tree and before the termination it will visit all the vertices and the time of the exploration
will be O(n). Let us denote the starting node as Root and for any node v different from
Root, will call the single neighbour of v that is closer to Root as the parent of v.
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Algorithm 1 Tree exploration in CleanMem model.

// Agent is at some node v and the outgoing ports are {1, 2, . . . , dv}
1 if State = Initial then
2 v.root← True, State← Roam, v.visited← True;
3 MOVE(v.last);
4 else
5 if State = Down then
6 v.parent← v.last, State← Roam; // mark edge as leading to parent
7 v.parentSet← True;
8 else
9 v.parentSet← False

10 if ((State = Roam and dv = 1) or State = Up or v.parentSet = True) and
v.root = False and v.last = dv and v.parent ̸= NULL then

11 State← Up; // exploration of this subtree completed
12 MOVE(v.parent) ; // return to the parent
13 else if State = Up and v.root = True and v.last = dv then
14 State← Terminated; // exploration of the whole tree completed
15 else
16 if State = Roam and v.visited = True and v.parentSet = False then
17 State← Down;
18 else if State = Up then
19 State← Roam, v.last← v.last + 1;
20 else
21 if v.visited = True then v.last← v.last + 1;
22 else v.visited← True;
23 MOVE(v.last);

We will show the following claim using induction over the structure of the tree.

▷ Claim 2. Assume that the agent enters to some previously unvisited subtree rooted at v

with nv vertices for the first time in state Roam in step ts. Then the agent:

C.1 returns to the parent of v for the first time in state Roam (denote by tr > ts the step
number of the first return from v to its parent),

C.2 goes back to v in the state Down at step tr + 1,
C.3 returns to the parent of v for the second time in state Up (denote by tf > tr + 1 the

step number of the second return from v to its parent),
C.4 visits all the vertices of this subtree and spends O(nv) steps within time interval [ts, tf ].

Proof. We will first show it for all the leaves. Then, assuming that the claim holds for all the
subtrees rooted at the children of some node v, we will show it for v. To show this claim for
any leaf l, consider the agent entering in state Roam to l. Upon the first visit to l, the agent
sets the flag l.visited to True and leaves (without changing the state of the agent) with port 1.
This proves C.1. In the next step, at the parent of l, a state changes to Down and the agent
uses the same port as during the last time in parent of l. Therefore the agent moves back to
l (C.2) and sets l.parent← 1 (line 6). Then the agent changes its state to Up and moves to
the parent (lines 11–12). This shows C.3. Node l was visited twice within the considered
time steps, which shows C.4. This completes the proof of the claim for all the leaves.

MFCS 2022



22:8 Tree Exploration in Dual-Memory Model

Now, consider any internal node v of the tree (with dv > 1) and assume that the claim
holds for all its children. When the agent enters to v for the first time, it sets the flag v.visited
to True and moves to its neighbour w (while being in state Roam) via port 1.
Case 1: w is the parent of v. This immediately shows C.1. If the parent of v is not Root,

then it has the degree at least 2, hence the agent will evaluate the if-statement in line 10
to False. Thus the agent will execute line 16 and change its state to Down. The agent
uses the same port as during the previous visit of w, therefore the agent goes back to
v (C.2), hence it will correctly set the pointer v.parent (it will point to the parent of v),
which shows C.3.

Case 2: w is a child of v. In this case we enter to a child of v. We have by the inductive
assumption (C.1), that the agent will return from w to v in state Roam. Since the agent
enters to v in state Roam, then the value of parentSet is False and the agent executes
line 16, transitions to state Down and then line 23 it takes the same edge as during the
last visit to v, hence it moves back to node w (C.2). By C.3 we get that the next time
the agent will traverses the edge from w to v, it will be in state Up. Then the agent
increments pointer v.last (line 19) and moves to the next neighbour of v (line 23).

Thus the agent either finds the parent or explores the whole subtree rooted at one of its
children w in O(nw) steps (by the inductive assumption C.4). An analogous analysis holds
for ports 2, 3, . . . , dv. When the agent returns from the neighbour connected to v via the last
port dv, it is either in state Up or Down (the second case happens if the edge leading from v

to its parent has port number dv). In both cases it executes lines 11 and 12 and leaves to its
parent (the pointer to parent is established since the agent had traversed each outgoing edge,
hence it moved to its parent and correctly set the parent pointer).

By this way, the agent visits all the subtrees rooted at v’s children w1, w2, . . . , wdv−1
(or up to wdv

if v = Root). Hence, the total number of steps for a node v ̸= Root is

O

(
dv−1∑
i=1

nwi

)
= O(nv) and v = Root it is O

(
dv∑

i=1
nwi

)
= O(n). ◁

To complete the proof of Theorem 1 we need to analyse the actions of the agent at
Root. Consider the actions of the agent at Root when the Root.last pointer takes values
i = 1, 2, . . . , dRoot. Let vi be the neighbour of Root pointed by port number i at Root. Observe
that the agent at Root behaves similarly as in all the other internal nodes (only exception is
that the agent will never enter Root in state Down, because by Claim 2 the agent can enter to
it only in states Roam or Up, since the Root has no parent). By Claim 2, the agent visits the
whole subtrees rooted at these nodes in time proportional to the number of nodes in these
subtrees. When the agent returns from node vdRoot in state Up then the algorithm terminates
(line 14). The total runtime is proportional to the total number of nodes in the tree. ◀

4.2 Exploration in Token model
Algorithm’s description. In Algorithm 2, the agent has a single token, which can be
DROPped, TAKEn and MOVEd (i.e., carried by the agent across an edge of the graph).
Moreover, the agent is always in one state from set {Initial, Roam, RR, Down, Up, Terminated}.
Our algorithm ensures, that in states Roam and RR the agent does not hold the token and
in the remaining states, it does. In these four states the agent can eventually DROP it. Each
node v has degree denoted by dv, which is part of the input to the agent, when entering
to a node. Moreover, the memory at each node v is organized into three variables: v.last
and v.parent of size ⌈log dv⌉ and a flag v.root ∈ {True, False} to mark the Root. We assume
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that in all vertices, variables last, parent and root have initially any admissible value (if not,
then the agent would easily notice it and change such a value). Moreover, when the agent is
entering to a node, it can see whether the node contains the token or not.

We would like to perform a similar exploration as in CleanMem model – we will use
pointers last and parent as in Algorithm 1. However, the difficulty in this model is that
these pointers may have arbitrary initial values. Especially, if the initial value of parent is
incorrect, Algorithm 1 may fall into an infinite loop. Hence in this section we propose a new
Algorithm 2 that handles dirty memory using a single token. In this algorithm the agent
maintains an invariant that the node with the token, and all the nodes on the path from the
token’s location to the Root are guaranteed to have correctly set parent pointers. To explore
new nodes, the agent performs a Rotor-Router (shortly RR) traversal, starting from node v

with the token to its neighbour w (by the invariant, the agent chooses w as one of its children,
not its parent). During this traversal, the agent is resetting the parent pointers at each node
(and cleaning the root flags). The agent is using last as the pointer for the purpose of RR
algorithm. The agent does not have to reset last as the RR requires no special initialization.
Moreover, by the properties of RR the agent does not traverse the same edge twice in the
same direction before returning to the starting node. Since the agent starts in the node with
the token, it can notice that it completed a traversal. During this traversal each edge is used
at most twice (once in each direction). Moreover, each node visited during this traversal has
cleaned memory (pointer parent points to NULL and root is set to False). After returning
to the node with the token, pointer v.last points at w and w.last points at v. Hence it is
possible to traverse this edge and correctly set pointer w.parent maintaining the invariant.
After moving the token down, the agent starts the RR procedure again. Since the agent
is not cleaning the pointer last, the RR will use different edges than during the previous
traversal. Using this we show in the proof of Theorem 2 that our algorithm traverses every
edge at most 6 times.

Preliminaries. Let us introduce some notation: a variable Token associated with a vertex
currently occupied by the agent, which is 1, when the agent meets the token and 0 otherwise. If
Token = 1, then the agent can TAKE the token and the agent with the token can DROP it. Let
Path(v) denote a set of all vertices, which are on the shortest path from Root to v, excluding
Root. Let Tv denote the subtree of T rooted at v, i.e., (w ∈ Tv) ≡ (w = v ∨ v ∈ Path(w)).
Let Tv,p denote a subtree of Tv, rooted at a node connected by edge labelled by outport p at
vertex v, i.e. if p leads from v to w (where v ∈ Path(w)), then Tv,p = Tw (we do not define
such a tree when p directs towards Root). We say that the action is performed away from
Root (downwards), if it starts in v and ends in Tv. Otherwise the action is towards Root
(upwards). Let Tok(t) and Ag(t) be the positions of the token and the agent, respectively, at
the end of the moment t. Let Act(t) be the action performed during the t-th step. Let the
variable v.visited(t) ∈ {0, 1} indicate whether v was visited by Algorithm 2 until the moment
t. Note that this variable is not stored at the nodes and this notation is only for the analysis.

Additionally, we consider two substates of RR, depending on the value of the Token
variable. Substate RR0 is state RR, if variable Token = 0 at the node to which the agent
entered in the considered step. Similarly RR1 indicates that the agent enters in state
RR to a node with Token = 1. Note that this distinction is only for the purpose of the
analysis, and it does not influence the definition of the algorithm. In our analysis, we
will call Initial, Roam, RR0, RR1, Down, Up, Terminated actions as these states (and substates)
correspond to different commands executed by the agent (see the pseudocode of Algorithm 2).
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Algorithm 2 Tree exploration in Token model.

// Agent is at some node v and the
outgoing ports are {1, 2, . . . , dv}

1 if State = Initial then
2 Clean(), v.last← 1, DROP;

// mark the root for termination
3 v.root← True;
4 State← Roam;
5 else if State = RR and Token = 1 then

// substate RR1
6 TAKE, State← Down;
7 else if State = RR and Token = 0 then

// substate RR0
8 Clean();
9 Progress() ; // increment last

10 else if State = Down then
11 DROP, v.parent← v.last;
12 Progress();
13 State← Roam;
14 IfUp() ; // check if in a leaf

15 else if State = Up then
16 DROP, Progress();
17 State← Roam;
18 if v.last = 1 and v.root = True then
19 State← Terminated;
20 IfUp();
21 else // State = Roam
22 Clean(), State← RR;
23 if State ̸= Terminated then
24 MOVE(v.last);

1 Procedure Clean()
2 v.root← False, v.parent← NULL;

1 Procedure Progress()
2 v.last← (v.last mod dv) + 1;

1 Procedure IfUp()
2 if v.parent = v.last then
3 TAKE, State← Up;

We assume that Initial action is performed at time step 0. Let Root denote the initial
position of the agent. Let v.last(t) and v.parent(t) denote, respectively, the values of v.last
and v.parent pointers at the end of the moment t. If v is the starting point of the t-th step,
then we say that v.last(t) is the outport related to t-th moment. Moreover, v.last(·) cannot
be changed until the node v will be visited for the next time. Each MOVE(v.last) involves
traversing an edge outgoing from the current position of the agent via the port indicated by
the current value of variable last at the current position.

Properties of the algorithm. Let us define the following set of properties P(t) (the k-th
property at moment t is denoted as P.k(t); in this definition we denote Ag(t) = w) that
describe the structure of the walk and the interactions with the memory at the nodes by an
agent performing Algorithm 2.

P.1 During t-th step:
a. If Down or Roam is performed, the move of the agent is away from Root (downwards).
b. If Up or RR1 is performed, the move of the agent is towards Root (upwards).

P.2 w ∈ TTok(t).
P.3 If w is visited for the first time at step t (Act(t) ∈ {Initial, Roam, RR0}), then it is also

cleaned, which means that w.parent is set to NULL and w.root is set to False.
P.4 For every v ∈ Path(Tok(t)), v.parent(t) ̸= NULL.
P.5 If w.visited(t− 1) = 1 and w.parent(t− 1) ̸= NULL, then Act(t) ̸∈ {Roam, RR0}.
P.6 If w.visited(t) = 1 and w.parent(t) ̸= NULL, then w.parent(t) points towards Root.
P.7 If the state at the end of t-th moment is Up, then Tw is explored.
P.8 If t > 0, then for every x ≤ Root.last(t− 1), TRoot,x is explored before t-th moment.
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P.9 If w.parent(t) = NULL, then there do not exist s1 < s2 < t such that w.last(s1) =
w.last(t) ̸= w.last(s2), where w.parent(s1) = NULL (w.last(·) cannot be changed to the
same value two times before w.parent(·) was established).

P.10 There do not exist s1 < s2 < t such that w.last(s1) = w.last(t) ̸= w.last(s2) and
w.parent(s1) ̸= NULL (w.last(·) cannot be changed to the same value two times after
w.parent(·) was established).

▶ Lemma 3. At time 0, Initial phase of Algorithm 2 guarantees P(0).

▶ Lemma 4. If Algorithm 2 satisfies P(s) for all s ≤ t, then it also fulfills P(t + 1).

All the omitted proofs from this section are deferred to the full version of the paper [6].

Initial
Clean()
last = 1

root = True
DROP

Roam
Clean()

RR1

TAKE
RR0

Clean()
Progress()

Down
DROP

Progress()

Up

DROP
Progress()

Terminated
End

Tok =
1

with Tok

parent = last
TAKE then MOVE

parent = last
TAKE then MOVE

paren
t ̸=

last

To
k =

0

Tok = 0

Tok = 1

parent ̸= last

last = 1
root = True

Figure 1 Illustration of actions and state transitions in Algorithm 2.

We will use properties P(t) to show correctness and time complexity of our Algorithm 2.

▶ Theorem 5. Algorithm 2 explores any tree and terminates at the starting node in at most
6(n− 1) steps in the Token model.

Proof. Using Lemmas 3 and 4, we get that Algorithm 2 satisfies P(t) for each step t. First
of all, from P.3, all visited vertices are cleaned upon the first visits.

Consider some vertex v and its arbitrary outport p. If v ̸= Root, then from P.9 and
P.10, p may be used two times instantly after the incrementation of v.last(·) (once when
v.parent(·) = NULL and once when v.parent(·) ̸= NULL). Realize that, when v = Root, then
from P.2 and the fact, that any vertex with the token cannot be cleaned by RR0 and Roam
moves, we claim that Root.parent(·) will always be NULL. By P.9, p may be used once
instantly after the incrementation of Root.last(·). Moreover, regardless of the choice of p, it
may be used also after Roam or RR1 action without a change of v.last(·).

Case 1. Assume that Act(t) = RR1 is taken via port p. From P.1(t) and P.2(t), p directs
upwards towards the token. Then Act(t + 1) = Down is performed downwards (from
P.1(t + 1)) via the same edge as p (but with the opposite direction) and changes the
position of the token to Tok(t + 1) = v and establishes v.parent(t + 1) ← p. By P.1, p

cannot be used during Roam action. Realize that if p = v.last(s− 1) for some moment
s > t and Act(s) = RR1, then Tok(s− 1) is one step towards Root from v (from P.1(s)).
Since the token can be moved only during Up and Down actions, then there exists a
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moment s′ such that t < s′ < s and Act(s′) = Up changes the position of the token from
v to Tok(s). However then Tok(s).last(s) ̸= Tok(s).last(s− 1) (Tok(s) is not a leaf) and
by P.10, P.6 and P.4, it cannot be changed back since parent(Tok(s)) ̸= NULL.

Case 2. Assume that Act(t) = Roam is taken from node v = Tok(t−1) via port p (downwards,
by P.1(t)). The first action after time t, which leads to the token, is always RR1. However,
as showed before, after RR1 action there is an instant Down action, which moves the
token via p to some vertex w and sets w.parent ̸= NULL. Hence by P.5, Roam action
cannot be performed via p once again. By P.1, p cannot be used during RR1 action.

Our considerations show that each outport can be used at most 3 times. Since each tree
of size n has 2(n− 1) outports, Algorithm 2 terminates after at most 6(n− 1) moves.

It remains to show that all vertices are then explored. Realize that Algorithm 2 terminates
in (t + 1)-st moment only when the agent is in Tok(t), Tok(t).last(t) = 1, Tok(t).root = True
and the state is Up at the end of t-th moment. From P.3, we know that the first visit in
some v sets root flag to True in Root and to False in all other nodes, and this flag does not
change (Roam and RR0 do not clean the vertices with the token, so by P.2, Root cannot be
cleaned by these moves). Hence the termination entails Tok(t) = Root. Since Root.parent(t)
= NULL, then from P.9 we know that each port p in Root will be set by Root.last(·) only
once (since the first moment) and P.8 means that each subtree TRoot,p for p ∈ {1, . . . , dRoot}
were explored before returning to Root, hence the exploration of TRoot was completed. ◀

5 Lower bound

In this section we analyse the exploration of paths with one bit of memory at each node and
one bit at the agent. We show that in this setting, in the DirtyMem model, the exploration
of the path sometimes requires Ω(n2) steps.

Notation. In the following lower bound on the path, we will focus on the actions of the
algorithm performed in vertices with degree 2. In such vertices, there are four possible inputs
to the algorithm S = {(0, 0), (0, 1), (1, 0), (1, 1)}, where in a pair (a, v), a denotes a bit on
the agent and v is a bit saved on the vertex. Let us denote the sets of agent and vertex
states by As and Vs, respectively. We also use elements from Ps = {0, 1} to denote ports in
vertices of degree 2. Moreover, a shorthand notation b indicates the inverted value of a bit.
For example, if a = 0, then a = 1 and vice versa. The goal of this section is to prove:

▶ Theorem 6. Every deterministic algorithm that can explore any path in the DirtyMem
model with one bit at the agent and one bit at each node requires time Ω(n2) to explore some
worst-case path with n nodes.

Assume, for a contradiction, that there exists algorithm A, which explores every path in
o(n2) steps. Without loss of generality, we may assume that the adversary always sets the
agent in the middle point of the path. For algorithm A, for every s ∈ S, by A(s), V (s), P (s)
we denote, respectively, the returned agent state, vertex state and the chosen outport in each
vertex with degree 2. Moreover, let R3(s) := (A(s), V (s), P (s)) and R2(s) := (A(s), V (s)).
We will show that A either falls into an infinite loop or performs no faster than Rotor-Router.

The proof of Theorem 6 is divided into several parts. In the first one, we provide several
properties of potential algorithms A that can eventually explore the path in o(n2) time.
These properties are used in the second part, where we prove that the agent does not change
its internal state every time, however it has to change the state of the vertex in each step.
Further, we check two algorithms (called X and Y), which turn out to explore the path
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even slower than the Rotor-Router algorithm. The analysis of those two algorithms is quite
challenging. Next we show that if three states of A return the same outport, then either it
falls into an infinite loop or explores the path in Ω(n2) steps. In the latter part we consider
the rest of amenable algorithms, which can either be reduced to previous counterexamples or
fall into an infinite loop. A big part of the proof is technical and due to space limitations it
is moved to the full version of the paper [6]. Nevertheless, in here we present two parts of
the proof to let the reader feel the flavour of high-level ideas and utilized techniques.

▶ Fact 7. (∀ a ∈ As)(∃ v ∈ Vs) A(a, v) = a.

Proof. Assume that (∃ a ∈ As)(∀ v ∈ Vs) A(a, v) = a. If a is the initial state of the agent,
then the agent will never change its state before reaching an endpoint of the path. Hence,
the time to reach the endpoint cannot be faster than Rotor-Router algorithm, hence the
adversary can initialize ports in such a way that the endpoint will be reached after Ω(n2)
steps. If a is the starting state, then either the agent state never changes which reduces to
the previous case or A(a, w) = a for some w ∈ Vs. Then, the adversary sets w as the initial
state of the starting vertex and after the fist step the state of the agent changes to a and by
the same argument as in the first case, the algorithm requires Ω(n2) steps. ◀

▶ Fact 8. (∀ a ∈ As)(∀ v ∈ Vs) R2(a, v) ̸= (a, v).

Proof. We will show that otherwise algorithm A falls into an infinite loop for some initial
state of the path. Assume that R3(a, v) = (a, v, p) for some a ∈ As, v ∈ Vs, p ∈ Ps. Then if a

is the starting agent state, the agent falls into an infinite loop on the left gadget from Figure 2
(double circle denotes the starting position of the agent and a above the node indicates its
initial state). If a is the starting state, then by Fact 7, (∃ w ∈ Vs) A(a, w) = a. Let q = P (a, w)
and note that the agent falls into an infinite loop in the right gadget at Figure 2. ◀

v

a

v

p p

pp

w

a

v v

q p p

ppq

Figure 2 Two looping gadgets for an algorithm with R2(a, v) = (a, v).

Independently of the above facts, let us consider the foregoing Algorithm Q and more
complicated gadgets, which force the agent to fall into an infinite loop (see Figure 3).
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v

a

v

a

v

a

v

p

p

p p

v

a

v v v

p p p p

pppp

v

a

v v v v

p p p p p

ppppp

Figure 3 Definition of Algorithm Q (left) and gadgets on which it falls into an infinite loop.

MFCS 2022



22:14 Tree Exploration in Dual-Memory Model

6 Conclusions and open problems

One conclusion from our paper is that certain assumptions of the model of mobile agents can
be exchanged. We showed, that in the context of linear time tree exploration, the assumption
of clean memory at the nodes can be exchanged for a single token or the knowledge of the
incoming port. The paper leaves a number of promising open directions. We showed that
token and clean memory allow for linear time exploration of trees, however, we have not
ruled out the possibility that linear time exploration of trees is feasible without both these
assumptions. Our lower bound suggests that memory ω(1) at the agent is probably necessary
in DirtyMem model. Another open direction would be to consider different graph classes, or
perhaps directed graphs. Finally, a very interesting future direction is to study dual-memory
exploration with team of multiple mobile agents. Such approach could lead to even smaller
exploration time, however, dividing the work between the agents in such models is very
challenging since the graph is initially unknown.
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