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—— Abstract
We introduce a family of ZX-calculi which axiomatise the stabiliser fragment of quantum theory
in odd prime dimensions. These calculi recover many of the nice features of the qubit ZX-calculus
which were lost in previous proposals for higher-dimensional systems. We then prove that these
calculi are complete, i.e. provide a set of rewrite rules which can be used to prove any equality of
stabiliser quantum operations. Adding a discard construction, we obtain a calculus complete for
mixed state stabiliser quantum mechanics in odd prime dimensions, and this furthermore gives a
complete axiomatisation for the related diagrammatic language for affine co-isotropic relations.
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1 Introduction

The ZX-calculus is a powerful yet intuitive graphical language for reasoning about quantum
computing, or, more generally, about operations on quantum systems [23, 46]. It allows one
to represent such quantum operations pictorially, and comes equipped with a set of rules
which, in principle, make it possible to derive any equality between those pictures [3, 38, 42].
It has now had several applications in quantum information processing, from MBQC [32, 5]
through quantum error correction codes [31, 29, 20, 33]. More recently, it has been used to
obtain state-of-the-art optimisation techniques for quantum circuits [39, 28, 30] and faster
classical simulation algorithms for general quantum computations [40].

Despite its origins in categorical quantum mechanics and the diagrammatic language
for finite-dimensional linear spaces [1, 22, 23] the literature on the ZX-calculus has been
concerned almost exclusively with small-dimensional quantum systems, and even then mostly
with the case of two-dimensional quantum systems, or qubits. The qubit ZX-calculus is
remarkable in its simple treatment of stabiliser quantum mechanics, along with the fact that
any diagram can be treated purely graph-theoretically, without concern to its overall layout,
and without losing its quantum-mechanical interpretation. Those proposals that go beyond
qubits lose many of these nice features, and are significantly more complicated than the qubit
case [43, 51, 9, 50, 49]. In particular, they eschew the prised “Only Connectivity Matters’
(OCM) meta-rule, often cited as one of the key features in the qubit case. In these calculi,
which can represent any linear map between the corresponding Hilbert spaces, it is also not
necessarily obvious (at least, to us) how to pick out and work with the stabiliser fragment.
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Stabiliser quantum mechanics is a simple yet particularly important fragment of quantum
theory. While much less powerful than the full fragment — it can be efficiently classically
simulated, even in odd prime dimensions [27] — it has seen significant study [34, 36] and forms
the basis for a number of key methods in quantum information theory [35]. Operationally, it
can be described as the fragment of quantum mechanics which is obtained if one allows only
state preparation and measurement in the computational basis, and unitary operations from
the Clifford groups [35]. In the qubit case, the stabiliser fragment of the ZX-calculus was
proved complete in [3] while ignoring global scalars, and extended to include scalars in [4]. A
simplified calculus further reducing the set of axioms of the calculus was presented in [6].

In this article, we present a simple family of ZX-calculi which are complete for stabiliser
quantum mechanics in odd prime dimensions, and which recover as many of the nice features
of the qubit calculus as possible. In odd prime dimensions, stabiliser quantum mechanics can
be given a particularly nice graphical presentation, owing to the group-theory underlying the
corresponding Clifford groups [41, 2, 27]. We then give this calculus a set of rewrite rules
that is complete, i.e. rich enough to derive any equality of stabiliser quantum operations.
In particular, it is a design priority to recover OCM, and to make explicit the stabiliser
fragment and its group-theoretical underpinnings. Adding a discard construction [18], we
obtain a universal and complete calculus for mixed state stabiliser quantum mechanics in
odd prime dimensions. By previous work [26], this gives a complete axiomatisation for the
related diagrammatic language for affine co-isotropic relations, while still maintaining OCM.

Although we do not do so here, these calculi can naturally be extended to represent much
larger fragments of quantum theory, up to the entire theory in odd prime dimensions [51].
However, finding a complete axiomatisation for such calculi will presumably be a much more
complicated task, and we leave this for future work.

All proofs and additional appendices are available in the full version of the paper [14].

2 Stabiliser quantum mechanics in odd prime dimensions

Throughout this paper, p denotes an arbitrary odd prime, and Z, = Z/pZ the ring of integers
with arithmetic modulo p. We also put w = ei%ﬂ, and let Z, be the group of units of Z,.
Since p is prime, Z, is a field and Z; = Z,, \ {0} as a set. We also have need of the following
definition:

1 if thereisnoy € Z, s.t. z = y?;
X ){ : (1)

0 otherwise;

which is just the characteristic function of the complement of the set of squares in Z,,.

The Hilbert space of a qupit [35, 52] is H = span{|m) | m € Z,} = CP, and we write
U(H) the group of unitary operators acting on H. We have the following standard operators
on H, also known as the clock and shift operators: Z |m) := w™ |m) and X |m) = |m + 1)
for any m € Z,. In particular, note that ZX = wXZ.

We call any operator of the form w*X*Z? for k,a,b € Z, a Pauli operator. We say
a Pauli operator is trivial if it is proportional to the identity. The collection of all Pauli
operators is denoted £2; and called the Pauli group. For n € N* the generalised Pauli group
is yn = ®Z:1 ,@1.

Of particular importance to us are the (generalised) Clifford groups. These are defined, for
each n € N*, as the normaliser of &2, in U(H®"): C is a Clifford operator if for any P € 22,,,
CPCt € 2,. 1t is clear that that every Pauli operator is Clifford, but there are non-Pauli

1

Clifford operators. An important example is the Fourier gate: F'|m) = —=3, o, w™"[n)
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which is such that FXFT =7 and FZF'= X~!. We also need the phase gate: S |m) =
w2 mm+1) |m) such that SXST =wXZ and SZST = Z. Yet another important example
is the controlled-phase gate, which acts on H @ H, E |m) |n) = w™" |m) [n). It is important
to emphasise a key difference between the qupit and the qubit case: when p # 2, none of
these operators are self-inverse. In fact, if @ is a Pauli and I the identity operator on H, we
have QP = I, EP = T ® I and F* = I.

As a side note, these equations imply that both X and Z, and in fact every Pauli, have
spectrum {w* | k € Z,}. As a result, we denote |k : Q) the eigenvector of a given Pauli Q

associated with eigenvalue w”, and furthermore use the notation |k,...,k: Q) = Q,_, |k : Q).

It follows from the definition of Z that we can identify |k : Z) = |k).

Now, for any « € [0,27), the operator e[ is Clifford. However, we want to construct
calculi with a finite axiomatisation. As a result, the diagrams in the calculus are countable
and this makes it impossible for us to represent all such phases e’®. Unfortunately, finding a
group of phases that behaves well diagrammatically is somewhat inconvenient, and involves
some elementary number theory. This is why, for an odd prime p, we consider the group of
phases generated by the composition of the previously defined Clifford gates. Explicitly, it is
given by:

ifp=1 mod 4, if p=3 mod 4,
P, = {(-1)°w" | s,t € Z} P, = {i*w’ | s,t € Z}

This of course covers all cases since p is odd. Then, we restrict our attention to the reduced
Clifford group, €, = {\C | A € P,,C € U(H®") is Clifford and special unitary}. We call
€™ the local Clifford group on n qupits. It is clear from these examples that %, is strictly
larger than ﬁa”l@", but it turns out to not be that much larger:

» Proposition 1 ([21, 41]). The reduced Clifford group €, is generated by the gate-set
{Fj,Sj,E‘jyk ‘],k: 1,...7TL}.

Stabiliser quantum mechanics can be operationally described as the fragment of quantum
mechanics in which the only operations allowed are initialisations and measurements in the
eigenbases of Pauli operators, and unitary operations from the generalised Clifford groups. As
before, we restrict our attention to the fragment of stabiliser quantum mechanics where only
unitary operations from the reduced Clifford group are allowed. Scalars are then taken from
the monoid G, = {0,\/p"\ | r € Z,\ € P,}. Little is lost for the description of quantum
algorithms, since we can always simplify by a global phase to make the Clifford generators
special unitary. Thus, we can embed any stabiliser circuit into the calculus, and then calculate
the relative phases of different branches of a computation without restriction.

» Definition 2. The symmetric monoidal category Stab, has as objects CP™ for each n € N,
and morphisms generated by:

C—CP: A= A|0);
CP™ — CP™ : o) = U o) for any U € €,;
CP — C: ) — (0f).

The monoidal product is given by the usual tensor product of linear spaces.

It is clear that Stab, is a subcategory of the category FLin of finite dimensional C-linear
spaces; it is also a PROP.
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MFCS 2022



24:4

Complete ZX-Calculi for the Stabiliser Fragment in Odd Prime Dimensions

3 A ZX-calculus for odd prime dimensions

In this section, we present our family of ZX-calculi, with one for each odd prime. Relying on
some of the group theoretical properties of the qupit Clifford groups, we can give a relatively
simple presentation of the calculi, which avoids the need to explicitly consider rotations in
p-dimensional space, significantly simplifing the presentation compared to previous work [43].
These calculi are also constructed in order to satisfy the property of flexsymmetry, proposed
n [15, 16], and which allows one to recover the OCM meta-rule. OCM is an intuitively
desirable feature for the design of a graphical language; anecdotally, it greatly simplifies the
human manipulation of diagrams, including in the proofs of this paper. More formally, it
means that the equational theory can be formalised in terms of double pushout rewriting over
graphs rather than over hypergraphs as is necessary in the more general theory [11, 10, 12].

Another key concern is the issue of completeness, which we begin to address in this article.
Outside of qubits [38, 42, 47], there has so far been a complete axiomatisation only for the
stabiliser fragment in dimension p = 3 [48]. We present an axiomatisation which is complete
for the stabiliser fragment for any odd prime p, and leave the general case for future work.

3.1 Generators

For any odd prime p, consider the symmetric monoidal category ZXEtab with objects N and
morphisms generated by:

—— 151 —o— 11 (02 ) 250 X 22
—0—:151 60— 151 —0 :0-2 B— 220 —a 22

—o0—:151 O— 151 —0 052 p— 1250 — 22
where z,y € Z,. We also introduce a generator x : 0 — 0 to simplify the calculus; it
will correspond to a scalar whose representation in terms of the other generators depends
non-trivially on the dimension p. Morphisms are composed by connecting output wires
to input wires, and the monoidal product is given on objects by n ® m = n + m and on
morphisms by vertical juxtaposition of diagrams.

We extend this elementary notation with a first piece of syntactic sugar, which is standard
for the ZX-calculus family: green spiders are defined inductively, for any m,n € N, by

and it is clear that these have types m+1 — 1, 1 — n + 1 and m — n respectively.
Red spiders are defined analogously to ZH-calculus harvestmen:

Do G g e

Labelled spiders are given by: mj(jzl = ‘n and m}( ﬁ(

3.2 Standard interpretation and universality

The standard interpretation of a ZX;’tab

-diagram is a symmetric monoidal functor [—] :
ZXIS)tab — FLin (the category of finite-dimensional complex Hilbert spaces). It is defined on

objects as [m] := CP*™, and on the generators of the morphisms as:
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Hwﬂ: w2 @) | Z) |[ > ﬂ W ED |k X)) [e—] = Y ke Xk 2]
k€Zyp k€Zy k€Zy

ﬂ” ﬂ: W) (1 g |[ ﬂ RN ﬂ)(ﬂ: STkt ZY0k: Z|
iz kez, k€L,

[<] =3 : 2.k 21 [ =2 1k—kxm:x [ C]=X kk:2)
kEZp kEZT’ k‘EZp and

[Co—] = 3 tkks 205 21 [—]=-> W,k : X| [ ]=3 tr:z

kez, kez, kez,
[—o—1=>_ Ik: 2)k: Z| [—o—1=)_ |-k:X)k:X| [—T=>_ |k:Z)k: 2|
kez, keZ, kez,
[*] = —1. Then, by the functoriality of the standard interpret-
ation, we deduce that Hm/(j{ﬂ kez, @ kR || VO (ks 7| O™ and

ﬂm}glﬂ = Yiez, 0¥ D |k X)® (ks X[O

» Theorem 3 (Universality). The standard interpretation [—] is universal for the qupit
stabiliser fragment, i.e. for any stabiliser operation C : CP™ — CP™ there is a diagram
D e Z)(f;tab such that [D] = C. Put formally, the co-restriction of [—] to Staby, is full.

3.3 Axiomatisation

We now begin to introduce rewrite rules with which to perform a purely diagrammatic
reasoning. By doing so we are in fact describing a PROP by generators and relations [7],
thus the swap is required to verify the following properties:

Note that the last equation is required to hold for any diagram D : n — m. This property
states that our diagrams form a symmetric monoidal category. Furthermore, we want this

category to be self-dual compact-closed, hence the cup and cap must verify:

X-C 2-—-5 >-0

Furthermore, as long as the connectivity of the diagram remains the same, vertices can be
freely moved around without changing the standard interpretation of the diagram. This is a
consequence of the fact that we require our generators to be flexsymmetric, as shown in [15].
This amounts to imposing that all generators except the swap verify:

where o : n +m — n + m stands for any permutation of the wires involving swap maps. We
will consider all the previous rules as being purely structural and will not explicitly state
their use. Using these rules, we can in fact deduce that both the green and red spiders (and
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®p a0
(O_O) (Cnar) o0 (Com) O—
@ = —0e— S o—
(Fusto) a,0
- (G-ELiv)
@ —o0— = —
:g: (BiaEBRA) j.—_?(
(R-ELIM)
00 = —
Tha, o (corom) j{
. . f— . . @z, Yy
: : = : : (oxe) T
GKEF o0 - ! O =0 (o O=0
o0 Lo —0 = —0
ac, 0 da2,0
00250 (s O—0 -2-2,0 (Gauss) (* )®XW(Z) * (rowe) 7777
-—0—o0—0— = —o— o = =
a,0 e,d a,0 c+ad,d Che ©CE * Lo
(0—0)®t Qo= o
(M-Erim) (Murr) 0,z
Gzipo = —o0 zipe- = 0000
a,b -z la,22p 0,z 1 0,z 1
(0—0)®*
ifp=1 mod 8 if p=5 mod 8
(NEG) * (Pos)
o = o =00
0,1 O_O 0,1

Figure 1 A presentation of the equational theory zx,, which is sound and complete for the
stabiliser fragment. The equations hold for any a,b,c,d € Z, and z € Z;. X, is the characteristic
function of the complement of the set of squares in Z,, defined in equation (1).

their labelled varieties) are themselves flexsymmetric. This means that the language follows
the OCM meta-rule, and we can formally treat any ZXIS)tab—diagram as a graph! whose vertices
are the spiders, and whose edges are labelled by the 1 — 1 generators of the language.?

Figure 1 presents the remainder of the equational theory zx,, which as we shall see
axiomatises the stabiliser fragment of quantum mechanics in the qupit ZX-calculus. Firstly
though, we must be sure that all of these rules are sound for the standard interpretation,
i.e. it should not be possible to derive an equality of diagrams whose quantum mechanical
interpretations are different.

» Theorem 4 (Soundness). The equational theory zx, is sound for [—], i.e., for any A, B €
ZX?tab, zxp, A = B implies [A] = [B]. Put formally, [—] factors through the projection
ZX01P 57X [z,

This set of rewriting rule also turns out to be also complete:

» Theorem 5 (Completeness). The equational theory zx, is complete for [—], i.e., for any
A/ Be ZX;tab, [A] = [B] implies zx, - A = B.

The proof of Theorem 5 will be the object of the following sections.

! Note that the graphs in question must be allowed to have loops and parallel edges, so are perhaps better
called pseudographs or multigraphs.

2 There is a small ambiguity: 1 — 1 spiders can be treated as either edges or vertices. When considering
diagrams, it matters little which, since any given graph is always to be understood as one of the many
equivalent ZXEtab—diagrams constructed formally out of the generators. Any computer implementation
of the calculus will have to carefully resolve this ambiguity in its internal representation.
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3.4 Syntactic sugar for multi-edges

Before we move into the proof of completeness, we introduce some syntactic sugar to the
language. Given axiom (CHAR), in ZXIS)tab, unlike the qubit case, spiders of opposite colours
can be connected by more that one edge, and these multi-edges cannot be simplified. We
therefore add some syntactic sugar to represent such multi-edges. These constructions add
no expressiveness to the language, and are simply used to reduce the size of some recurring
diagrams. They are shamelessly stolen from previous work [13, 53, 17, 19], and we use
them to obtain a particularly nice representation of qupit graph states [54]. Graph states a
central role in our proof of completeness, as they have in previous completeness results of
the stabiliser fragments for dimensions 2 and 3 [3, 30, 48]. In particular, these constructions
permit a nice presentation of how graph states evolve under local Clifford operations.
Firstly, we extend ZXIS)w‘b by multipliers, which are defined inductively by:

o0

S = 06—  and :.
> >

(0—@)®!
Explicitly, then, for x € Z;, —T>— = .

We also define inverted multipliers, using the standard notation for graphical languages
based on symmetric monoidal categories:

e = @

» Proposition 6. Multipliers verify the following equations under zx,: for any x,y € Z, and

z € Ly,
SBISD— = 3T —SFD— = —&— — = D
—O0— = 21— = Sz ty>— —P— = —0—

which amounts to saying that the multipliers form a presentation of the field Z,. They also
verify the following useful copy and elimination identities:

(- om0 == e

We can also unambiguously define Fourier boxes: ‘= S®-{— since
&>} = —{1<@Z-. Fourier boxes exactly match the labelled “Hadamard” boxes intro-
duced for the qutrit case [45] when p = 3. Owing to the flexsymmetry of the language, we
have that for any = € Z,,

(0—@)®=1
—[=}— :ﬁ9§E¥ and %: . (2)

» Proposition 7. zx, proves the following equations:

(]
EHT- = —SaD— —o-
Z 3)
E— —{zHeHz}— = —{=}—

5
I

|

[zH-z]- =

24:7
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4 Completeness

We now have all the necessary tools to show that our equational theory is complete. The
structure of our proof is similar to the one used to show the completeness in the qubit case
[3]. However, if the overall scheme is very similar, each step separately can involve different
approaches more suited to the qupit situation. The plan is as follows. We identify a family
of scalars, called elementary scalars, which correspond to those which appear when applying
the rewrites of zx,. We first show the completeness up to non-zero elementary scalars,
which allows us to work with simpler diagrams without taking care of all the invertible
scalars appearing along the way. Then, we show the completeness for elementary scalars
independently, leading to a general proof of completeness. The proof of completeness up to
non-zero elementary scalars goes something like this:

1. Take two diagrams with the same interpretation.

2. Put them into a simplified form, called the GS+LC form in [3].

3. Define the notion of simplified GS+LC form for a pair of diagrams in which some vertices
are marked. Then show that in a simplified GS4LC pair if a vertex is marked on one
side, it must also be marked on the other side, else the two diagrams cannot have the
same interpretation.

4. Show that two diagram forming an rGS+LC pair such that their marked vertices matches
and having the same interpretation are equal modulo the equational theory.

4.1 Elementary scalars

The following is standard from categorical quantum mechanics:

> Lemma 8. If A, B € ZX}**"[0,0], then [A® B] = [A] - [B] = [Ao B], where - is the
usual multiplication on C restricted to the monoid G.

Now, as when we were defining the group of phases P, the set of normal forms for phases
must depend on the prime p in question:

» Definition 9. An elementary scalar is a diagram A € ZX?tab [0, 0] which is a tensor product
of diagrams from the collection O, U P U Q: where

- ==-n"

r-{ iBglsez} . a-{or La@eirez} .

If A,B ¢ ZX?tab, we say that A and B are equal up to an elementary scalar if there is
an elementary scalar C such that A= B® C. In that case, we write A ~ B.

Comparing with the definition of G, the interpretation of the elements of P correspond to
powers of w, the elements of @ to (possible negative) powers of |/p, and the elements of O,
to powers of —1 or ¢ depending on the value of p. This remark will naturally lead to the
normal for for scalars in a few sections.

Now, as written, equality up to an elementary scalar might seem like a relation that is
not symmetric and therefore not an equivalence relation.
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» Proposition 10. Every elementary scalar C € ZX?tab [0,0] has a multiplicative inverse, i.e.
an elementary scalar C~1 € ZXS“’”b [0,0] such that CR C~'=CoC~t=1".

In light of this fact, if A ~ B, there is an elementary scalar C' such that A = B® C, and
then B=BRC®C!'=A®C™!, sothat B~ A.

» Proposition 11. Every equation in zx, can be loosened to equality up to an elementary
scalar by erasing every part of the LHS and RHS diagrams which is disconnected from the
inputs and outputs.

Probably the most important case of equality up to elementary scalars is the completeness
of the single-qupit Clifford groups, on which the entire proof of completeness of the calculus
rests. The fragment of Zthab which corresponds to % is that generated by the 1 — 1

®, Yy ®, Yy
diagrams: —O— , —O— , —=— and —{=}— . We call any such diagram a single-qupit
Clifford diagram or %;-diagram.

» Proposition 12. If A € ngmb [0,0] is a single-qupit Clifford diagram, then zx, proves
that

s, t
~ —@O0-O0— or ~ <mOO00— , (4)
for some s,t,u,v € Z, and w € Zj,. Furthermore, this form is unique.

4.2 Relating stabiliser diagrams to graphs

The completeness proof begins by relating every diagram to simpler one in the form of a
graph state diagram. Graph states are defined as usual — diagrammatically, we have an
embedding of graphs given (informally) by:

More specifically, we want to relate the diagram to the following form:

» Definition 13 ([3, 48]). A GS+LC diagram is a ZXIS)wb—diagmm which consists of a graph
state diagram with arbitrary single-qupit Clifford operations applied to each output. These
associated Clifford operations are called vertex operators.

» Proposition 14. Every ZXEtab—diagmm 0 — n can be rewritten, up to elementary scalars,
to GS+LC form under zxp.

In other words, zx, proves that, for any stabiliser ZX?tab—diagram D : m — n, there is a

graph G on m + n vertices and a set (vg)7""," of 6;-diagrams such that

C 1]
o ——{vn ]
D ~ m (6)

and we need only consider the question of whether zx,, can prove the equality of two GS+LC
diagrams.

24:9
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4.3 Completeness modulo elementary scalars

Now, as a first step, we show that zx, can normalise any pair of diagrams with equal
interpretations, up to elementary scalars. In particular, as was shown in the previous section,
we can relax zx, to reason about equality up to elementary scalars by simply ignoring the
scalar part of each rule, and make free use of the “scalarless” equational theory. We will take
care of the resulting scalars in the next section.

This part of the completeness proof follows the general ideas of [3]. The first step on the
way to completeness is to note that, considering a diagram in GS+LC form, where the vertex
operators have been normalised, we can obtain a yet more reduced diagram by absorbing as
much as possible of the vertex operators into local scalings and local complementations. We
then obtain the following form for the vertex operators:

» Definition 15 ([3]). 4 ZXZS,tab—diagmm is in reduced GS+LC (or rGS+LC) form if it is
in GS+LC form, and furthermore:

s, 1

s, t
1. All vertex operators belong to the following set: R = {% y —O—0—

0,1

s,tEZp}.

2. Two adjacent vertices do not have verter operators that both include red spiders.

» Proposition 16. If D € ZXZS)tab is a Clifford diagram, then there is a diagram G € ZX]S)tab
in rGS+LC form such that zx, - D ~ G.

Then, given two diagrams with equal interpretations, taking them both to rGS+LC makes
the task of comparing the diagrams considerably easier. In particular, we can guarantee that
the corresponding vertex operators in each diagram always have matching forms:

» Definition 17 ([3]). A pair of rGS+LC of the same type (i.e. whose graphs have the same
vertex set V') is said to be simplified if there is no pair of vertices q,p € V' such that q has a
red vertex operator in the first diagram but not the second, q has a red vertex operator in the
second diagram but not the first, and q and p are adjacent in at least one of the diagrams.

» Proposition 18. Any pair A, B of rGS+LC diagrams of the same type (i.e. on the same
vertex set) can be simplified.

For the sake of clarity, we shall say that a vertex operator (or equivalently, the vertex itself)
is marked if it contains a red spider (i.e. it belongs to the right-hand form of definition 15).
Then, two diagrams with the same interpretation can always be rewriten so that the marked
vertices match:

» Proposition 19. Let C,D € ZXIS,tab be a simplified pair in rGS+LC form, then [C] = [D]
only if the marked vertices in C and D are the same.

We have enough control over the pair of diagrams to finish the completeness proof:
» Theorem 20. zx, is complete for [—], i.e. if for any pair of diagrams A, B € ZX}S,tab [0, n]

withn # 0, [A] = [B], then zx, - A~ B.

4.4 Completeness of the scalar fragment

Finally, we are ready to leap-frog off of the previous section into the full completeness
(including scalars). First, we need to find a normal form for diagrams which evaluate to 0.
In fact, we need pick one normal form for each type m — n:
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» Proposition 21. The zero scalar “destroys” diagrams: for any m,n € N and D €
Stab o — = —0 10 0—
ZX,;**’m,n], © ® m: | D | n = m: O _ ‘n. We take the RHS diagram to be the

“zero” diagram of type m — n.

A scalar diagram is in normal form if it is either the zero scalar, or it belongs to the set

5,0

{*}®{ o '8622}®{<<H>>®ﬂ ,(@)@Wez},

when p =1 mod 4, or to the set

‘7777 0,1 0,1 ‘7777 5,0 " ‘7777
{ , O ,%, %O }@{ , O-0 |seZp}®{(O{>)®’y ,((@o)‘@wrez}.
e__ | 1,0 b

when p = 3 mod 4. Tt is straightforward to see, by evaluating [—] on each element, that
these sets contain exactly one diagram for each scalar in Gy, \ {0} (and the zero scalar O 1.0
corresponds to 0 € G).

» Theorem 22. zx, proves any scalar diagram equal to a scalar in normal form (depending
on the congruence of p modulo 4), or to the zero scalar O 1.0 .

The completeness for the whole stabiliser fragment follows immediately, combining
theorems 20 and 22:

» Theorem 23. The equational theory zx, is complete for Stab,, i.e. for any ZXEtab—diagmms
A and B, if [A] = [B], then zx, - A = B.

5 Mixed states and co-isotropic relations

In this last section we use the work of [18] to extend our completeness result to the mixed-state
case. We then unravel the connection to the Lagrangian relation investigated in [26].

5.1 A complete graphical language for CPM(Stab,,)

We now extend our completeness result form Stab,, to CPM(Stab,,), the category of completely
positive maps corresponding to mixed state stabiliser quantum mechanics, see [44, 23] for
a formal definition. We will rely on the discard construction of [18] to define a graphical

language (ZXIS)tab)j. It consists in adding to the equational theory one generator, the discard
< : 1 — 0 and equations stating that this generator erases all isometries. In Stab,, the
isometries are generated by a small family of diagrams, the equations to add are then:

%‘ O—O‘ 0,1 a,01,0
| |

#“— ! ﬂ—H\:%y—H\Z%M CO%D: O =00 =« =

A new interpretation [ ] : Zthab% — CPM(Stab,,) is defined as [Ii] : p — Tr(p) for
the ground and for all ZXZS)tab—diagram D:n—m:

24:11
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Corollary 22 of [18] provides a sufficient condition for the previous construction to extend
to a universal and complete graphical language for Stab, into a universal complete graphical
language for CPM(Stab,,). This condition is for Stab, to have enough isometries in the sense
of [18], By similar arguments as is the qubit case, we can show that Stabs indeed has enough
isometries and then it follows that:

=+

» Theorem 24. (ZXStab) is universal and complete for CPM(Stab,,).

5.2 Co-isotropic relations

It has been shown in [26, 25, 24] that CPM(Stab,) is equivalent to the category of affine
co-isotropic relations up to scalars. More formally, we endow Zi with the symplectic form:

w ({Z} , Li]) = ad — bc, and Zf,m =, Z?D with the direct sum symplectic form.

» Definition 25. The symmetric monoidal category AffColsoRelz, has as objects N, and as
morphisms, relations R : Z?,m — ZIQ," such that R viewed as a subset of Z;)' X Zy, is an affine
co-isotropic subspace thereof.

Since [26] works in the scalarless ZX-calculus, we need to add one extra axiom, which suffices
to eliminate all remaining (non-zero) scalars in Stab,,: we impose the rule (MoD) that p = 1.
Diagrammatically, this amounts to quotienting (ZXStab) by the rule: O—© = 1 1.

Then we can give an interpretation [—] of (Zthab) making it universal and complete
for AffColsoRelz,, and which is defined uniquely by the commutative diagram:

(zx3by= L AffColsoRely,

1) 1

CPM(Stab,) ——» CPM(Stab,)/(MoD)

Explicitly, it is given by the identity on objects, [m] = m, and is defined on morphisms
by: for z,y € Z, and 2z € Zj,

o {(o. o) o 1]
{CL Dl e es)
[l B} ro{h 2)les)

Note that all of these are actually affine Lagrangian relations. The only generator which
has a co-isotropic but not Lagrangian semantics is the discard map: [—I] = {(v,e)|v € Z2}.

a,bk,ckEZP and Zkbkizkck}

(==}

o

As pointed out in [7, 8, 26], the related category of affine Lagrangian relations over the
field R[x, y]/(xy — 1) can be used to represent a fragment of electrical circuits. We expect
that the axiomatisation of figure 1 can be adapted to that setting, but leave this for a future
article.
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6 Conclusion

We have constructed a ZX-calculus which captures the stabiliser fragment in odd prime
dimensions, whilst retaining many of the “nice” features of the qubit ZX-calculus. Of course,
there are a few obvious questions that we leave for future work.

First amongst these is the question of whether a fully universal calculus can be obtained
from the ideas we used here. The spiders we have used here labelled with elements a,b €
Zy x Zy, and which can be interpreted as polynomials x + az + br? which parametrise the
phases of the spider. Adding one additional term of degree 3 is already sufficient to obtain
a universal calculus in prime dimensions (strictly) greater than 3 [37]. In fact, one might
as well add all higher order of polynomials (mod p) since access to such higher degrees will
hopefully prove useful in finding commutation relations for the resulting spiders.

Secondly, it remains to be seen how to formulate a universal ZX-calculus for non-prime
dimensions, even for just the stabiliser fragment. For this, the methods in this article are
clearly inadequate: for example local scaling is no longer an invertible operation and thus
certainly not in the Clifford group.

Finally, the set of axioms we provide here is probably not minimal. It would be nice to
see if a simplified version can be obtained, as was done in [6] for the qubit case.
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