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Abstract
Constraint satisfaction problems (CSP) encompass an enormous variety of computational problems.
In particular, all partition functions from statistical physics, such as spin systems, are special cases
of counting CSP (#CSP). We prove a complete complexity classification for every counting problem
in #CSP with nonnegative valued constraint functions that is valid when every variable occurs
a bounded number of times in all constraints. We show that, depending on the set of constraint
functions F , every problem in the complexity class #CSP(F) defined by F is either polynomial
time computable for all instances without the bounded occurrence restriction, or is #P-hard even
when restricted to bounded degree input instances. The constant bound in the degree depends
on F . The dichotomy criterion on F is decidable. As a second contribution, we prove a slightly
modified but more streamlined decision procedure (from [15]) for tractability. This enables us to fully
classify a family of directed weighted graph homomorphism problems. This family contains both
P-time tractable problems and #P-hard problems. To our best knowledge, this is the first family
of such problems explicitly classified that are not acyclic, thereby the Lovász-goodness criterion of
Dyer-Goldberg-Paterson [24] cannot be applied.
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1 Introduction

Constraint Satisfaction Problems (CSPs) have been a subject of immense interest due to
their wide applicability and intrinsic elegance. In particular, counting CSPs, or #CSPs, have
been an active subject in computational counting complexity [18, 19, 10, 9, 22, 7, 15, 13],
including their approximate solutions [28, 30, 20, 42, 41]. Roughly speaking, an (unweighted)
constraint satisfaction problem deals with the following scenario, where there is a set of
variables, each taking values over some finite domain D, and a set of constraints, each applied
on an (ordered) subsequence of these variables. The #CSP problem on an instance asks how
many assignments there are of these variables that satisfy all of the given constraints.

Applications of CSP problems are wide-ranging and varied. They range from within
computer science to physical sciences such as physics, chemistry, engineering, even music
[52, 1, 38, 47]. Within computer science, belief propagation has been a popular research
topic in AI, which are ultimately based on some forms of partition function evaluations [5,
39, 40, 46, 29, 48, 51]. The term partition function, which we define formally later, arises
from statistical physics, where one can see special cases of (weighted) counting CSPs in the
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27:2 Bounded Degree Nonnegative Counting CSP

form of spin systems such as the Ising and Potts models, e.g. [25]. As is the case in physical
sciences as well as in applications within computer science, the instances of counting CSP
problems that occur in practice are often with the additional restriction that variables occur
a bounded number of times.

To define (unweighted) #CSP problems formally, let D be a finite domain set, Γ be a
set of constraint relations Θi, where each Θi is a relation on D of arity ri = r(Θi) ≥ 1. An
instance of #CSP(Γ) is then defined by a set X of n variables over D, and a list of constraints
Θ from Γ, and for each constraint Θ in the list a sequence of r(Θ) variables from X that the
constraint is applied to. This defines an n-ary relation R in Dn on the input variables where
an assignment (x1, . . . , xn) ∈ Dn is in R iff all constraints are satisfied. For any fixed Γ, the
counting CSP problem #CSP(Γ) consists of all input instances using constraint relations
from Γ. The computational problem is to compute the size of R given an arbitrary input
instance, where the (worst case) computational complexity is measured in terms of size n

of the set of variables and the size of the list of constraints. For a finite (fixed) Γ, this can
be simplified to just n, up to a polynomial factor. A complexity dichotomy theorem can
classify, depending on Γ, the problem #CSP(Γ) as either computable in polynomial time
(P-time), or #P-complete, with no intermediate cases. Typically, the set Γ is a fixed finite
set, which defines the #CSP problem – this Γ is the name of the problem. However, in most
dichotomy theorems one can allow infinite sets, where in the P-time computable case we
assume the specification of the constraints in the instances counts toward the input size, and
in the #P-complete case there is a finite subset Γ0 ⊆ Γ such that #CSP(Γ0) is #P-hard.

For example, if we let D = {0, 1} and Γ = {ORk|k ≥ 1} ∪ {̸=2}, where ORk is the
k-ary OR function, and ̸=2 the binary disequality function, then the problem #CSP(Γ) is
equivalent to #SAT, the counting Boolean satisfiability problem.

This formulation can be generalized to the weighted setting. In the most general case, the
constraint functions can take real or complex values. In this paper we only consider #CSP
defined by nonnegatively weighted constraint functions. This means that we replace the
constraint language Γ by a set of constraint functions F , where each fi ∈ F has some arity
ri ≥ 1 and maps Dri to nonnegative algebraic reals, denoted as R+.1 Any given instance
I defines a function FI : Dn → R+, such that on each assignment of variables, FI takes
the value the product over the constraint functions in I evaluated on the assignment. The
solution to this instance I of #CSP(F) is then

ZF (I) =
∑

(x1,...,xn)∈Dn

FI(x1, . . . , xn). (1)

This sum-of-products expression in (1) is called the partition function for an instance
of #CSP, with the terminology coming from statistical physics [3]. When all functions in
F are 0-1 valued, then the product is also 0-1 valued and is equivalent to the logical And,
and the partition function counts the number of satisfying assignments. Thus this ZF (I)
generalizes the unweighted case when F is a set of constraint relations Γ.

As a special case of #CSP, a q-state spin system is a problem on a domain [q] with the
constraint language having only a single binary constraint defined by the q × q interaction
matrix A. An instance to this problem is a graph G = (V, E), where the vertices (sites)
are considered to be variables (spins) and the edges (bonds) correspond to the interactions
between these vertices. The famous Ising model with parameter λ has domain size q = 2,

1 Restricting to algebraic numbers is standard in this research area because we wish to state our results
in the Turing machine model for strict bit complexity. See [14].
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and is defined by its interaction matrix Aλ
Ising =

[
λ 1
1 λ

]
(see Figure 1b). The Potts model

(Figure 1d) and Widom-Rowlinson model (Figure 1c) on 3 states are defined by the following
interaction matrices respectively,

Aλ
3Potts =

λ 1 1
1 λ 1
1 1 λ

 and AWR =

1 1 0
1 1 1
0 1 1

 .

Familiar problems in computer science can also be expressed in this model; e.g., independent

set (IS) is defined by AIS =
[
1 1
1 0

]
(Figure 1a).

(a) Indepenedent Set

λ λ

(b) Ising

(c) WR with 3 states

λ

λ λ

(d) Potts with 3 states

Figure 1 The graphs corresponding to some well known spin systems.

Bulatov [9] proved a sweeping complexity dichotomy for unweighted #CSPs in, which
used deep results from universal algebra. His dichotomy theorem states that #CSP(Γ)
is solvable in polynomial time if Γ satisfies a condition called congruence singularity; it
is #P-complete otherwise. Dyer and Richerby [22] gave another proof of this dichotomy
using a new P-time tractability criterion, which they proved to be equivalent to congruence
singularity.

A nonnegative matrix is block-rank-1 if it becomes a block-diagonal matrix after a
permutation of its rows and a permutation of its columns separately, such that all blocks are
rank 1 except for possibly one all-zero block. (Here the blocks in the block-diagonal form of
the matrix need not be square matrices.) For example, the following matrix (where blank
entries are 0’s)

A0,0 A0,2
A1,0 A1,2

A2,4 A2,6
A3,4 A3,6

A4,1 A4,3
A5,1 A5,3

A6,5 A6,7
A7,5 A7,7

 (2)

is block-rank-1 if each nonzero rectangle of the form
[

Ai,j Ai,j′

Ai′,j Ai′,j′

]
has rank 1.

For unweighted #CSP, the Dyer-Richerby condition in [22] for polynomial time tractability
in the dichotomy theorem is Strong Balance. Let d = |D| be the domain size. We say a
constraint language Γ is Strongly Balanced if every n-ary relation R defined by an instance
of #CSP(Γ) satisfies the following condition:

MFCS 2022



27:4 Bounded Degree Nonnegative Counting CSP

For any a, b ≥ 1 and c ≥ 0 with a + b + c ≤ n, the following da × db matrix M is
block-rank-1:

M(u, v) =
∣∣{w ∈ Dc : ∃z ∈ Dn−c−b−a s.t. (u, v, w, z) ∈ R}

∣∣ .

(If a + b + c = n, then the quantified statement “∃z ∈ Dn−c−b−a such that (u, v, w, z) ∈ R”
simply means that (u, v, w) ∈ R.)

If we are dealing with F rather than Γ, and if F is not a set of 0-1 valued functions,
then the existential quantified statement “∃z” has no meaning. It turns out that there are
several equivalent notions of Balance, which when F is restricted to a set of 0-1 valued
functions (i.e. when F can be identified with a constraint language Γ) are all equivalent to
the notion of Strong Balance; see Lemma 9.4 in [15]. These notions of Balance do not use
existential quantifiers (see Definition 2 in Section 2). These notions are central to the #CSP
dichotomies for #CSP(F) for nonnegative valued F .

The study of #CSPs is closely related to that of counting graph homomorphisms [35,
27, 4, 36]. For two graphs G and H, a graph homomorphism from G to H is a mapping
f : V (G) → V (H) that preserves vertex adjacency. In other words, if e = {u, v} ∈ E(G)
then e′ = {f(u), f(v)} ∈ E(H), for all edges e in G. The question of interest in counting
complexity is the number of graph homomorphisms from one graph to another, which can
also be represented by a partition function. If we let A be the m × m adjacency 0-1 matrix
of the graph H, then the number of homomorphisms from G to H can be represented as a
sum-of-products partition function as follows,

ZA(G) =
∑

f :V (G)→[m]

∏
{u,v}∈E(G)

Af(u),f(v).

Partition functions of graph homomorphism can represent important physical spin systems
such as the Ising, Potts, or Widom-Rowlinson models, as well as many other well known
problems in computer science.

Counting graph homomorphisms is a special case of #CSP. In fact, the vertex-edge
incidence graph of G defines an input to a #CSP problem, where vertices V (G) are vari-
ables and edges E(G) are (applications of binary) constraints, and the constraint language
consists of a single binary relation represented by the adjacency matrix A defining the graph
homomorphism problem G 7→ ZA(G). Just as in #CSPs, the counting graph homomorphism
function ZA(G) can be generalized from the 0-1 unweighted case to the weighted case where
A is a real or complex matrix. It is symmetric for an undirected graph H, in which case
we also only consider undirected G; for directed graph homomorphisms, A need not be
symmetric.

The first dichotomy on counting graph homomorphisms was due to Dyer and Greenhill
[21] for undirected graphs. They showed that there is a simple criterion such that if A satisfies
the criterion then G 7→ ZA(G) is computable in P-time, otherwise it is #P-complete. In fact
they proved that if A does not satisfy the criterion then the problem of evaluating ZA(G)
remains #P-complete even when restricted to graphs G with bounded degree ∆, for some ∆
depending on A. Computing G 7→ ZA(G) when restricted to graphs G with bounded degree
∆ is called EVAL(∆)(A). The Dyer-Greenhill dichotomy was extended to the nonnegatively
weighted case by Bulatov and Grohe in [8]. This dichotomy was then referenced throughout
the field, as many other discoveries, including the results on #CSPs, ended up applying it.
However, the hardness part of the proof of the Bulatov-Grohe dichotomy theorem required
input graphs that have unbounded degrees. When restricted to bounded degree graphs, the
worst case complexity of the Bulatov-Grohe dichotomy was left open for 15 years, until it was
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finally resolved by Govorov, Cai, and Dyer in [26] for graph homomorphisms with nonnegative
weights, and continued by Cai and Govorov in [16] for complex weights. Most problems in
statistical physics [6, 11, 31] use bounded degree graphs, and also most of the approximation
algorithms work on bounded degree graphs [2, 23, 32, 33, 37, 43, 44, 45, 49]. Over the
Boolean domain where variables take 0-1 values, it is known that the #CSP dichotomy for
complex valued constraint functions holds for input instances where each variable occurs at
most three times [17].

It has been an open problem to extend the general domain #CSP dichotomies to include
the bounded degree case, i.e. where each variable occurs a bounded number of times. It was
open even for the 0-1 unweighted case. For the nonnegative cases, this would be the analogous
Govorov-Cai-Dyer extension [26] of the Bulatov-Grohe dichotomy for graph homomorphism,
but apply to a much broader class of problems, as graph homomorphism is the special case
of #CSP(F) where F consists of a single binary function.

In this paper we prove such a dichotomy for bounded degree nonnegative #CSPs. For
any finite domain D, any finite set of nonnegative constraint functions F on D, and any
integer ∆ ≥ 0, we define #CSP(∆)(F) to be the #CSP problem, where the input consists
of n variables x1, . . . , xn over D and a sequence of constraint functions f1, . . . , fm ∈ F each
applied to a subsequence of the n variables, where each variable xi appears no more than ∆
times among f1, . . . , fm. Note that in general, a function f ∈ F may occur multiple times
among f1, . . . , fm. We take n + m as the input size. We prove that the same dichotomy
criterion in [15] applies to the bounded degree case: if the P-time tractability criterion is
not satisfied, then #CSP(∆)(F) remains #P-hard for some ∆ > 0. The dichotomy criterion
of [15] will be explained in more detail after we introduce some more definitions in Section 2.
These notions are further explicated in Theorem 4, and a more technical statement of
Theorem 1 is given in Theorem 6.

▶ Theorem 1. For any finite domain D and any nonnegatively weighted constraint functions
F on D, if F satisfies the tractability criterion in [15], then #CSP(F) is P-time computable;
otherwise, #CSP(∆)(F) is #P-hard 2 for some ∆ > 0.

For any fixed finite set F of constraint functions, the arities of f ∈ F are bounded.
Viewing any instance as a bipartite graph, with the variables x1, . . . , xn on one side and
constraints f1, . . . , fm ∈ F on the other, with an edge between xi and fj if xi is an input to
the function fj , we can see that the condition for a #CSP instance to be bounded degree
corresponds exactly to this bipartite graph having bounded degree.

Our second contribution in this paper is a slightly modified but more streamlined decision
procedure (compared to that of [15]) for polynomial time tractability. This enables us to
fully classify a family of directed weighted graph homomorphism problems. This family
contains both P-time tractable problems and #P-hard problems. To our best knowledge,
this is the first family of such problems explicitly classified that are not acyclic, thereby the
Lovász-goodness criterion of Dyer-Goldberg-Paterson [24] cannot be applied.

2 Balance

Several variants of the Balance condition have been used in the study of counting constraint
satisfaction problems. In addition to the Strong Balance condition [22], the following
conditions have been introduced in [15]. Recall that d = |D| denotes the domain size.

2 The problem #CSP(∆)(F) is also no harder than #P under a polynomial-time Turing reduction for
any F . The statement for Theorem 1 does not state #P-complete only for the technical reason that by
definition functions in #P take nonnegative integer values while the partition function in (1) need not.

MFCS 2022



27:6 Bounded Degree Nonnegative Counting CSP

▶ Definition 2 (Various notions of Balance). We have the following notions:
1. (Balance) We say F is Balanced if for any n ≥ 2, any a ≥ 1 and b ≥ 1 with a + b ≤ n,

and any instance I of #CSP(F) which defines an n-ary function FI(x1, . . . , xn) over Dn,
the following da × db matrix MI is block-rank-1: The rows and columns of MI are indexed
by tuples u ∈ Da and v ∈ Db respectively, and

MI(u, v) =
∑

w∈Dn−a−b

FI(u, v, w),

for all u ∈ Da, v ∈ Db. If a + b = n then the sum
∑

w∈Dn−a−b FI(u, v, w) is simply
FI(u, v).

2. (Weak Balance) We say F is Weakly Balanced if the definition for Balance holds for
b = 1.

3. (Primitive Balance) We say F is Primitively Balanced if the definition for Balance holds
for a = b = 1.

While these three notions may seem to have varying strengths, all three are in fact equivalent
by combining the proof in [15] and [34]. See Theorem 4 below. We need the following
definition.

▶ Definition 3 (Strong Rectangularity). We say a matrix M is Rectangular if after a row
permutation and a column permutation it is a block diagonal matrix where all diagonal blocks
have no zero entries, except possibly one all zero block. We say a constraint language Γ over
D is Strongly Rectangular if for any input instance I of #CSP(Γ) which defines an n-ary
relation RI over Dn and for any a and b such that 1 ≤ a < b ≤ n, the following |D|a ×|D|b−a

matrix M is rectangular: The rows of M are indexed by u ∈ Da, the columns of M are
indexed by v ∈ Db−a, and

M(u, v) =
∣∣{w ∈ Dn−b : (u, v, w) ∈ RI}

∣∣ .

▶ Theorem 4. The notions of Balance, Weak Balance, and Primitive Balance are equivalent,
and can be taken as the P-time tractability criterion of the dichotomy in [15].

Proof. For any F of nonnegative valued constraint functions, Cai, Chen and Lu proved
in [15] that (1) if F is Balanced then it is Weakly Balanced and that the support constraint
language of F satisfies Strong Rectangularity, and (2) the latter two conditions imply that
#CSP(F) is P-time computable. Here the support constraint language of F is obtained by
taking the support set of each function in F . On the other hand they also proved that if
F is not Balanced then #CSP(F) is #P-hard. Thus their dichotomy criterion is that F is
Balanced. They also proved in [15] that Primitive Balance implies Weak Balance. Lin and
Wang proved in [34] that Weak Balance implies Balance, thus unifying all three notions. ◀

3 Bounded Degree #CSPs

▶ Lemma 5. Let M be a nonnegative matrix. If M is not block-rank-1 then neither is MMT .

Proof. If every two rows of M are either proportional or their nonzero entries are on disjoint
subsets of columns, then M would be block-rank-1. Thus there are rows Mi and Mj , such
that they are linearly independent, and the subsets of columns where their nonzero entries
occur intersect. Being nonnegative, the latter condition implies that they are not orthogonal.
So by the Cauchy-Schwarz inequality we have

0 < (Mi · Mj)2 < (Mi · Mi)(Mj · Mj).

Letting A = MMT we find four nonzero elements Ai,i, Ai,j = Aj,i, and Aj,j satisfying
Ai,iAj,j > A2

i,j > 0, so A is not block-rank-1. ◀
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We can now prove our main result, i.e., if a nonnegative constraint set F does not satisfy
the Balance condition, then #CSP(∆)(F) is #P-hard for some ∆ > 0.

▶ Theorem 6. If F is Primitively Balanced, then the problem #CSP(F) without degree
restriction is computable in polynomial time, otherwise #CSP(∆)(F) is #P-hard for some
∆ > 0.

Proof. We only need to prove the hardness part. Let F be a finite set of nonnegatively
weighted constraint functions that is not Primitively Balanced. Then for some instance I on
n variables, the |D| × |D| matrix M defined by

M(x1, x2) =
∑

(x3,...,xn)∈Dn−2

FI(x1, x2, x3, . . . , xn)

is not block-rank 1. If we let A = MMT , then A is symmetric, nonnegative, and not
block-rank 1 by Lemma 5. This A defines a graph homomorphism problem. We know
from [26] that the bounded degree nonnegative graph homomorphism problem EVAL(∆)(A)
is #P-hard for some ∆ > 0, where the constant ∆ depends on A. Here we show a reduction
EVAL(∆)(A) ≤P #CSP(∆′)(F), for some ∆′ > 0, thereby showing that #CSP(∆′)(F) is
#P-hard for some ∆′ > 0.

To show that, consider graphs G with maximum degree at most ∆ as input instances of
EVAL(∆)(A). We can compute the value ZA(G) by expressing it as the partition function
ZF (I(G)) for some instance I(G) of polynomial size in #CSP(∆′)(F). We will use the
instance I that defines the matrix M as having constant size, as it does not depend on G.
We construct I(G), an input to #CSP(F), with the additional property that every variable
occurs at most ∆′ times, such that ZF (I(G)) = ZA(G), as follows.

We note that each entry in A is a dot product of two row vectors in M , and every entry
of M is a sum over |D|n−2 evaluations of FI .

We will define a (binary) gadget, which is an instance of #CSP(F) of bounded size, with
two specially labelled variables called x∗ and x∗∗. Copies of this gadget will be used in the
construction of (global) #CSP(F) instances. A (binary) gadget may have other variables,
but in the global #CSP(F) instances all constraints applied to the variables other than x∗

and x∗∗ in each copy are from within the gadget. We define I(G) by replacing every edge
in G by a copy of this gadget. Formally, the construction is as follows, where the gadget
simulates the edge weights in A in the #CSP setting.

1. Define a variable xv over D for every v ∈ V (G).
2. For each e = uv ∈ E(G) we add 2n − 3 variables ye, ze = (ze,3, . . . , ze,n), and z′

e =
(z′

e,3, . . . , z′
e,n) over the same domain D. We then apply two copies of I as constraints,

one copy over the variables (xu, ye, ze) and another over (xv, ye, z′
e). There are no other

constraints applied on the variables ye, ze and z′
e.

Thus one copy of the binary gadget is used to replace each edge uv ∈ E(G), with the two
specially labelled variables x∗ and x∗∗ identified with xu and xv. This gadget defines the
following constraint function with input variables xu and xv taking values in D,

∑
ye∈D

 ∑
ze∈Dn−2

FI(xu, ye, ze)
∑

z′
e∈Dn−2

FI(xv, ye, z′
e)


=

∑
ye∈D

MI(xu, ye)MI(xv, ye)

= (MMT )(xu, xv)
= A(xu, xv).

MFCS 2022



27:8 Bounded Degree Nonnegative Counting CSP

Therefore the gadget defines the edge constraint function represented by the matrix A,
which is exactly the edge weights in ZA(G).

Since G has bounded degrees, and I also has constant size, I(G) also has bounded degrees.
The variables ye are “local” to each edge e ∈ E(G) in the sense that there are no other
constraints on them except in the definition of the gadget for this edge e, which has constant
size. The same is true for ze and z′

e.
Also, the size of I(G) is linear in the size of G, so this is a polynomial time reduction.

That ZF (I(G)) = ZA(G) follows from the fact that A is the edge constraint function by our
construction. ◀

The constant ∆ in Theorem 1 depends on F . In [21], Dyer and Greenhill conjectured that
a universal constant ∆ = 3 suffices for EVAL(∆)(A) where A is a 0-1 symmetric matrix. This
is still open. It is open whether a universal constant ∆, or a constant that only depends on the
domain size |D|, may suffice for even the 0-1 case, for both EVAL(∆)(A) and #CSP(∆)(F).
In [17] it is known that the constant 3 suffices for the Boolean domain. Xia [50] proved that
a universal ∆ does not exist for EVAL(∆)(A) for complex symmetric matrices A, assuming
#P does not collapse to P.

4 Effective Dichotomy and a Family of Directed GH

The condition of Balance (Definition 2) in the dichotomy refers to all instances I of #CSP(F),
which is an infinitary statement. Thus it is not immediate that the tractability condition
in Theorem 6 is decidable. However the condition is the same as the one in [15] for the
unbounded degree case, and in that paper a decision procedure is given. Here we give a
slight modification of the same decision procedure for the dichotomy in Theorem 6. This
form is more symmetric and allows us to apply the procedure more effectively.

▶ Theorem 7. The polynomial-time tractability condition of balance in Theorem 6 can be
tested by the following two conditions. Measured in the size of D and F , this shows that the
decision problem for testing balance is in NP.
(A) There is a Mal’tsev polymorphism φ : D3 → D for (the support of) every function in

F . This means that φ preserves all relations defined as the support of some function
in F (this is called a polymorphism), and satisfies φ(a, a, b) = φ(b, a, a) = b for all
a, b ∈ D (Mal’tsev property). The existence of such a mapping φ is equivalent to Strong
Rectangularity.

(B) For all α ̸= β, κ ≠ λ ∈ D there is a bijection π : D6 → D6 satisfying the following three
properties:
1. π((α, α, α, β, β, β)) = (α, α, α, β, β, β).
2. π((κ, λ, κ, λ, κ, λ)) = (λ, κ, λ, κ, λ, κ).
3. Any function f ∈ F with arity r is invariant under π, that is, for any sequence

(y1, . . . , yr) of length r of 6-tuples where yi = (yi,1, . . . , yi,6) ∈ D6 for 1 ≤ i ≤ r, the
following holds:∏

j∈[6]

f(y1,j , . . . , yr,j) =
∏

j∈[6]

f(π(y1)j , . . . , π(yr)j). (3)

The only difference in the statement of this decision criterion compared to the one stated
in [15] is a more symmetric expression for condition B2 of (B). We omit the proof here as
it closely follows the proof in [15]3 However, this more symmetric form makes the criterion

3 Alternatively, one can apply a perm π =
(1 2 3 4 5 6

1 3 2 4 6 5

)
which is an automorphism of the

relational structure (D,F), the 6th power of #CSP(F), to derive this form of the decision criterion from
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more easily applicable. We demonstrate this by proving new tractable and intractable
cases of directed graph homomorphisms that were previously unknown. The tractability or
intractability of these problems were decidable in principle by previous methods; however,
the decision procedure of the previous method was in practice too complicated to be useful.

Dyer, Goldberg and Paterson in [24] proved a decidable complexity dichotomy for
(unweighted) directed graph homomorphisms that is restricted to directed acyclic graphs.
Their polynomial-time tractability criterion is an interesting condition of being layered and
Lovász-good for directed acyclic graphs. They state in [24] that “An interesting feature of
the dichotomy, which is absent from previously-known dichotomy results, is that there is a
rich supply of tractable graphs H with complex structure”. Going beyond directed acyclic
graphs, as it is done with Theorem 6 and 7, is expected to yield even more polynomial-time
tractable problems. However, up until now we don’t have any interesting concrete examples.
(Part of the reason is probably that testing for the tractability criterion, while decidable, is
not a simple matter; see below.) The dichotomy theorem in this paper applies more generally
without the acyclicity restriction. We now give a family of non-acyclic directed graph
homomorphism problems that we can completely classify using our tractability criterion in
Theorem 7. To our best knowledge, this is the first such explicit family that can be classified,
going beyond the Lovász-goodness criterion [24].

To start, if we take all nonzero Ai,j = 1 in equation (2), we get a binary relation that
defines a polynomial-time tractable problem. This represents an adjacency matrix of a
directed graph H illustrated in Figure 2. In fact, we can give an infinite family of tractable
#CSP based on a weighted binary constraint function given in equation (4). These problems
were considered in [12], where it was shown that, while the complexity of the #CSP defined
by these relations is provably decidable, the decision criterion was yet too complicated,
therefore for what values of Ai,j in equation (2) the problem it defines is tractable for #CSP
was not resolved.

We will show that a nonnegative binary constraint function given in the form of equation
(2) with positive entries Ai,j defines a tractable #CSP iff the constraint function is a positive
multiple of the function in equation (4)

A =


1 v
u uv

y yv
yu yuv

x xv
xu xuv

z zv
zu zuv

 (4)

for some positive reals u, v, x, y, z, with the condition that z = xy.
The #CSP problem it defines is on a domain of size 8 and has a constraint function set

F consisting of a single binary (but not symmetric) constraint function given by the matrix
in (4). The directed graph defined by the support of the function is not acyclic.

We first prove the relation in (4) for any positive u, v, x, y and z = xy defines a tractable
problem. After that we prove the reverse direction.

To apply Theorem 7, we treat D = {0, . . . , 7} as a vector space (GF[2])3 of size 8,
represented by three bit strings {0, 1}3. Then we can take the Mal’tsev polymorphism
φ : D3 → D where φ(x, y, z) = x − y + z. (Here − is the same as + in GF[23].) It is Mal’tsev
because φ(a, a, b) = φ(b, a, a) = b for all a, b ∈ D. The directed edge relation given by the
matrix (2) (by setting all 16 nonzero entries Ai,j = 1) is given symbolically as follows:

Ai,j = 1 where i = i1i2i3, j = j1j2j3 ∈ D ⇐⇒ j1 = i2 and j3 = i1. (5)

the form proved in [15]. For detailed definitions of (D,F) and automorphism of relational structures see
page 2190 in [15].
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Figure 2 A tractable binary relation represented by a directed graph. The adjacency matrix is
given in equation (4).

One can easily check that φ is a polymorphism, i.e. for any (x, x′), (y, y′) and (z, z′), if
Ax,x′ = Ay,y′ = Az,z′ = 1 then Aφ(x,y,z),φ(x′,y′,z′) = 1.

For the second requirement (B), there are |D|6! = 262144! > 101306590 bijections from D6

to D6, so it is infeasible to enumerate them. However the following map π works.
Let M : {0, 1}6 → {0, 1}6 be the bijection that swaps (010101) and (101010) and acts

as the identity on the rest. In particular, M preserves the Hamming weight. Let Mi be
the ith output bit of M , and let x1, x2, . . . , x6 ∈ D where each xi consists of three bits
xi = aibici ∈ {0, 1}3.

We write x = (x1, . . . , x6) = (a1b1c1, . . . , a6b6c6) ∈ D6. We will also represent x bitwise
using a = (a1, . . . , a6) ∈ {0, 1}6, b = (b1, . . . , b6) ∈ {0, 1}6, and c = (c1, . . . , c6) ∈ {0, 1}6,
and write x = abc.

Then we define

π(x) = π(x1, x2, . . . , x6) = π(a1b1c1, a2b2c2, . . . , a6b6c6)
= (M1(a)M1(b)M1(c), M2(a)M2(b)M2(c), . . . , M6(a)M6(b)M6(c))

▷ Claim 8. The mapping π : D6 → D6 satisfies properties B1, B2, and B3 of (B) in
Theorem 7 for all α ̸= β, κ ̸= λ ∈ D. 4

Proof Sketch. Property B1 holds by construction, because M fixes pointwise 06, 16, 0313,
1303. It satisfies property B2 because in addition it swaps (010101) and (101010).

For property B3, equation (3) is expressed as (more details are given below)

u

∑
ci v

∑
di x

∑
ai y

∑
bi

(
z

xy

)∑
aibi

= u

∑
Mi(c)

v

∑
Mi(d)

x

∑
Mi(a)

y

∑
Mi(b)

(
z

xy

)∑
Mi(a)Mi(b)

(6)

4 In Theorem 7 the mapping π may depend on α ̸= β, κ ̸= λ ∈ D, but the π in Claim 8 is in fact the
same for all α, β, κ, λ.
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where all sums (as well as those below) range from i = 1 to 6. Because M preserves Hamming
weight, we get

∑6
i=1 ai =

∑6
i=1 Mi(a), and similarly for b, c, d, and since z = xy, this

equation holds. ◀

We now investigate all possible tractable cases of A in (2) with positive entries Ai,j . By
the necessary condition of Balance applied to the binary function A itself, all relevant four
2 × 2 blocks must be of rank 1, in order to be tractable, i.e., it takes the form in (4) with
some positive u, v, x, y and z, up to a global positive factor. We prove that, up to a global
positive factor, a nonnegative matrix A in (2) with the given support structure defines a
tractable partition function ZF (·) where F = {A} iff A has the form in (4) for some positive
reals u, v, x, y and z = xy; otherwise ZF (·) is #P-hard.

This #CSP problem has F consisting of a single binary (nonsymmetric) constraint
function defined by the matrix A. By its support structure and the Mal’tsev polymorphism
we already satisfied condition (A) of Theorem 7. So, the problem is tractable if and only if
for all α ̸= β, κ ≠ λ ∈ D, there is a bijection π : D6 → D6 that satisfies the following three
properties:
1. π((α, α, α, β, β, β)) = (α, α, α, β, β, β).
2. π((κ, λ, κ, λ, κ, λ)) = (λ, κ, λ, κ, λ, κ).
3. For the binary function represented by the matrix A, and any 6-tuples x, y ∈ D6, where

x = (x1, . . . , x6) and y = (y1, . . . , y6), we have the following invariance under π,∏
i∈[6]

Axi,yi
=

∏
i∈[6]

Aπ(x)i,π(y)i
. (7)

Suppose there is a bijection π : D6 → D6 that satisfies these properties. Let π(x1, . . . , x6)
= (π1(x1, . . . , x6), . . . , π6(x1, . . . , x6)), where πi : D6 → D, and πi(x1, . . . , x6) is the ith
output entry in D of π. Denote the three bits of πi(x1, . . . , x6) as fi(x1, . . . , x6), gi(x1, . . . , x6),
and hi(x1, . . . , x6). To satisfy property 3, we need each πi to preserve the edge relation 5,
i.e., preserve the support set. Since π is a bijection, if we verify that a nonzero LHS of (7)
implies a nonzero RHS of (7), we will also have proved that it maps a zero LHS to a zero
RHS; thus it preserves the support set. So, consider arbitrary

x = (x1, . . . x6) = (a1b1c1, . . . , a6b6c6) ∈ D6, y = (y1, . . . , y6) = (b1d1a1, . . . , b6d6a6) ∈ D6.

This is a generic pair of tuples such that Axi,yi
≠ 0, for 1 ≤ i ≤ 6. We need Aπi(x),πi(y) ≠ 0

for each i. As before we will also represent x bitwise using a = (a1, . . . , a6) ∈ {0, 1}6,
b = (b1, . . . , b6) ∈ {0, 1}6, c = (c1, . . . , c6) ∈ {0, 1}6 and d = (d1, . . . , d6) ∈ {0, 1}6, and write
x = abc and y = bda.

Therefore, by the edge relation, we have fi(abc) = hi(bda). Hence fi is independent
of the third part of the input c. Also, gi(abc) = fi(bda), so fi is also independent of the
second part of the input, and therefore is in fact a function on the first part of the input
only. Thus there is a function f ′

i : {0, 1}6 → {0, 1}, such that fi(abc) = f ′
i(a). Then, from

f ′
i(a) = hi(bda), we know that hi is actually a function of its third part of the input only.

From gi(abc) = f ′
i(b), we know that gi is a function of its second part of the input only. Thus,

there are functions g′
i, h′

i : {0, 1}6 → {0, 1}, such that gi(abc) = g′
i(b) and hi(abc) = h′

i(c).
Putting these together, we see f ′

i(a) = g′
i(a) = h′

i(a). Since a ∈ {0, 1}6 is arbitrary, we get
f ′

i = g′
i = h′

i. We now rename these as Mi := f ′
i = g′

i = h′
i. In other words, π : D6 → D6

has the form π = (π1, π2, . . . , π6) where πi(abc) = Mi(a)Mi(b)Mi(c). We will name the
mapping M = (M1, M2, . . . , M6) : {0, 1}6 → {0, 1}6 with Mi being its ith bit output. Since
π is a bijection, so must be M .
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Now we pick α =
[

0
1
0

]
, β =

[
1
0
0

]
, κ =

[
1
0
1

]
, λ =

[
0
1
1

]
∈ D. (We write them as column

vectors to visually aid the readers.) Then clearly α ̸= β, κ ̸= λ. We have (α, α, α, β, β, β) =[
0 0 0 1 1 1
1 1 1 0 0 0
0 0 0 0 0 0

]
. For any π defined by a bijection M as above, it satisfies property 1. above iff M

pointwise fixes 000000, 000111 and 111000. We also have (κ, λ, κ, λ, κ, λ) =
[

1 0 1 0 1 0
0 1 0 1 0 1
1 1 1 1 1 1

]
, and

(λ, κ, λ, κ, λ, κ) =
[

0 1 0 1 0 1
1 0 1 0 1 0
1 1 1 1 1 1

]
. Hence π satisfies property 2. above iff M fixes 111111 and

swaps 010101 with 101010. Below we assume M is a bijection that satisfies these properties.
It is easy to verify that for any bijection M : {0, 1}6 → {0, 1}6, the mapping π defined

above preserves the support (defined by nonzero values of the LHS in (7)). Since M is a
bijection, in the following we only need to verify that (7) holds for any nonzero LHS of (7)
(as any zero LHS automatically has a zero RHS).

Now we show that equation (7) in property 3 is the same as (6).
To see that, take any nonzero of the LHS in (7) with x = abc and y = bda, then the

LHS is evaluated as∏
i∈[6]

(uci vdi )(1−ai)(1−bi)(yuci vdi )(1−ai)bi (xuci vdi )ai(1−bi)(zuci vdi )aibi

=
∏
i∈[6]

uci vdi xai ybi

(
z

xy

)aibi

= u
∑

ci v
∑

di x
∑

ai y
∑

bi

(
z

xy

)∑
aibi

The expression for the RHS is nearly identical, with Mi(a) substituting ai, and so on.
Now it is clear that if z = xy, then the partition function ZF (·) is tractable, witnessed

by any π defined by a bijection on {0, 1}6 that preserves Hamming weight, pointwise fixes
000000, 111111, 000111, 111000, and swaps 010101 and 101010.

Next, assume z ̸= xy. We can multiply both sides of (6) over all 26 possible c and all 26

possible possible d, and using the fact that M is a bijection, to get

u6·211
v6·211

x212
∑

aiy212
∑

bi

(
z

xy

)212
∑

aibi

=

u6·211
v6·211

x212
∑

Mi(a)y212
∑

Mi(b)
(

z

xy

)212
∑

Mi(a)Mi(b)
,

which is equivalent to

x
∑

aiy
∑

bi

(
z

xy

)∑
aibi

= x
∑

Mi(a)y
∑

Mi(b)
(

z

xy

)∑
Mi(a)Mi(b)

. (8)

Then multiplying over all 26 possible 6-tuples b,

x26
∑

aiy6·211
(

z

xy

)25
∑

ai

= x26
∑

Mi(a)y6·211
(

z

xy

)25
∑

Mi(a)
,

we get
(

xz

y

)∑
ai

=
(

xz

y

)∑
Mi(a)

.

Suppose xz ≠ y, it follows that
6∑

i=1
ai =

6∑
i=1

Mi(a) for any a, i.e., M preserves Hamming

weight. Then it follows from (6) that(
z

xy

)∑
aibi

=
(

z

xy

)∑
Mi(a)Mi(b)

.
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But if we take a = 000111 and b = 010101, we have M(a) = a and M(b) = 101010. Then
6∑

i=1
aibi = 2, but

6∑
i=1

Mi(a)Mi(b) = 1. This is a contradiction to (6), since z ̸= xy. Hence we

conclude that the partition function ZF (·) is #P-hard.
Next, suppose that xz = y, then (8) is simplified to

x
∑

aiy
∑

bix−2
∑

aibi = x
∑

Mi(a)y
∑

Mi(b)x−2
∑

Mi(a)Mi(b). (9)

Multiplying over all possible a, this becomes

x25
y26

∑
bix−2·25

∑
bi = x25

y26
∑

Mi(b)x−2·25
∑

Mi(b).

This simplifies to( y

x

)∑
bi

=
( y

x

)∑
Mi(b)

.

If x ̸= y, M preserves weight and we are done by the same argument as for when xz ̸= y.
Otherwise if x = y, (9) becomes

x
∑

ai+
∑

bi−2
∑

aibi = x
∑

Mi(a)+
∑

Mi(b)−2
∑

Mi(a)Mi(b).

This is equivalent to

x
1
2 − 1

2

∑
(2ai−1)(2bi−1) = x

1
2 − 1

2

∑
(2Mi(a)−1)(2Mi(b)−1),

which can be written as

x
∑

a′
ib′

i = x
∑

Mi(a)′Mi(b)′

where a′
i = 2ai − 1 ∈ {−1, 1}, and similarly for b′

i, and Mi(a)′, Mi(b)′. We can fix the same
a and b as above, and this gives a′ = (−1, −1, −1, 1, 1, 1) and b′ = (−1, 1, −1, 1, −1, 1). Then

we get 2 =
6∑

i=1
a′

ib
′
i ≠

6∑
i=1

Mi(a)′Mi(b)′ = −2. Thus we must have x = 1, and then y = 1 and

z = 1, which contradicts z ̸= xy. We have proved that if z ̸= xy the partition function ZF (·)
is #P-hard.
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