
On Synthesizing Computable Skolem Functions for
First Order Logic
Supratik Chakraborty ! Ï

Department of Computer Science and Engineering, IIT Bombay, India

S. Akshay ! Ï

Department of Computer Science and Engineering, IIT Bombay, India

Abstract
Skolem functions play a central role in the study of first order logic, both from theoretical and practical
perspectives. While every Skolemized formula in first-order logic makes use of Skolem constants
and/or functions, not all such Skolem constants and/or functions admit effectively computable
interpretations. Indeed, the question of whether there exists an effectively computable interpretation
of a Skolem function, and if so, how to automatically synthesize it, is fundamental to their use in
several applications, such as planning, strategy synthesis, program synthesis etc.

In this paper, we investigate the computability of Skolem functions and their automated synthesis
in the full generality of first order logic. We first show a strong negative result, that even under
mild assumptions on the vocabulary, it is impossible to obtain computable interpretations of Skolem
functions. We then show a positive result, providing a precise characterization of first-order theories
that admit effective interpretations of Skolem functions, and also present algorithms to automatically
synthesize such interpretations. We discuss applications of our characterization as well as complexity
bounds for Skolem functions (interpreted as Turing machines).

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Skolem functions, Automated, Synthesis, First order logic, Computability

Digital Object Identifier 10.4230/LIPIcs.MFCS.2022.30

Related Version Full Version: https://arxiv.org/abs/2102.07463

1 Introduction

The history of Skolem functions can be traced back to 1920, when the Norwegian mathem-
atician, Thoralf Albert Skolem, gave a simplified proof of a landmark result in logic, now
known as the Löwenheim-Skolem theorem. Skolem’s proof made use of a key observation:
For every first order logic formula ∃y φ(x, y), the choice of y that makes φ(x, y) true (if at
all) depends on x in general. This dependence can be thought of as implicitly defining a
function that gives the “correct” value of y for every value of x. If Fy denotes a fresh unary
function symbol, the second order sentence ∃Fy ∀x

(
∃y φ(x, y) ⇒ φ(x, Fy(x))

)
formalizes this

idea. Since the implication trivially holds in the other direction too, the second order sentence
∃Fy ∀x

(
∃y φ(x, y) ⇔ φ(x, Fy(x))

)
is valid.

Let ξ1 ≡ ∃y φ(x, y) and ξ2 ≡ φ(x, Fy(x)). The fresh function symbol Fy introduced
in transforming ξ1 to ξ2 is called a Skolem function. Skolem functions play an extremely
important role in logic – both from theoretical and applied perspectives. While it suffices in
some contexts to simply know that a Skolem function Fy exists, in other contexts, we require
an effective procedure to compute Fy(x) for every value of x. This motivates us to ask if
Skolem functions are always computable, and whenever they are, can we algorithmically
generate a halting Turing machine that computes the function? Note that we are concerned
with computability at two levels here: (i) computability of the Skolem function itself, and (ii)
computability of a halting Turing machine that computes the Skolem function. For clarity of

© Supratik Chakraborty and S. Akshay;
licensed under Creative Commons License CC-BY 4.0

47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022).
Editors: Stefan Szeider, Robert Ganian, and Alexandra Silva; Article No. 30; pp. 30:1–30:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:supratik@cse.iitb.ac.in
https://www.cse.iitb.ac.in/~supratik/
https://orcid.org/0000-0002-7527-7675
mailto:akshayss@cse.iitb.ac.in
https://www.cse.iitb.ac.in/~akshayss/
https://orcid.org/0000-0002-2471-5997
https://doi.org/10.4230/LIPIcs.MFCS.2022.30
https://arxiv.org/abs/2102.07463
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 On Synthesizing Computable Skolem Functions for First Order Logic

exposition, we call the Turing machine referred to in (ii) above a computable interpretation
of Skolem function, and the problem of generating it algorithmically the synthesis problem
for Skolem functions.

The synthesis problem for Skolem functions has been studied in detail in the propositional
setting, specifically for quantified Boolean formulas (QBF) with a ∀∗∃∗ quantifier prefix [17,
16, 12, 18, 13, 22, 27, 5, 23, 3, 1, 21, 4, 14, 24]. Surprisingly, a similar in-depth investigation
in the context of general first order logic appears lacking in the literature, despite several
potential applications, viz. automatic program synthesis and repair [26, 19, 28]. Some
notable works in the context of specific theories include those of Kuncak et al [19] (for linear
rational arithmetic), Spielman et al [25] (unbounded bit-vector theory), Preiner et al [20]
(bit-vector theory) etc. in which terms that serve as interpretations of Skolem functions in
specific theories are synthesized. In [17], Jiang presented a partial approach for quantifier
elimination in general first-order theories by relying on the availability of functions that can
be conditionally expressed by a finite set of terms. Unfortunately, such finite conditional
decomposition may not always be possible (as acknowledged in [17]), even when a computable
interpretation of the Skolem function exists. The problem of quantifier-free constraint solving,
i.e. finding assignments of free variables that render a quantifier-free formula true, has been
investigated in depth for several theories, viz. propositional logic, theory of arrays, linear
rational arithmetic, real algebraic numbers, Presburger arithmetic, regular languages of finite
strings etc. If the theory also admits effective quantifier elimination, this yields an algorithm
for synthesizing computable interpretations of Skolem functions. However, not all first order
theories admit effective quantifier elimination, e.g. Presburger arithmetic (without divisibility
predicates) or the theory of evaluated trees [10] does not. We show that for some such
theories, computable interpretations of Skolem functions can be synthesized algorithmically.

Our main contributions are to ask and answer the following questions:
Does there always exist computable interpretations of Skolem functions for a first order
formula interpreted over a structure? We answer this question strongly in the negative
by showing that uncomputable interpretations cannot be avoided even with one binary
predicate and one existential quantifier in the formula.
We next ask if it is possible to algorithmically decide whether computable interpretations
exist for all Skolem functions, given a formula and a structure over which it is interpreted.
We answer this question in the negative.
Next, we ask if it is possible to characterize the class of structures such that effectively
computable interpretations of Skolem functions can be algorithmically synthesized for
all formulas interpreted over a structure in the class. We answer this by showing that
decidability of the elementary diagram of a structure serves as the required necessary and
sufficient condition. Using this result, we show that several important first-order theories
admit synthesis of effectively computable Skolem functions, while others do not.
For structures satisfying the condition in the above characterization, we present lower and
upper complexity bounds for effectively computable interpretations of Skolem functions.
Finally, we distinguish between synthesizing Skolem functions as halting Turing machines
vs terms in the underlying logic and show that the latter is a strictly weaker notion.

Our results reveal a highly a nuanced picture of the computability landscape for synthesizing
interpretations of Skolem functions in first-order logic. We hope that this work will be a
starting point towards further research into the design of practical algorithms (whenever
possible) to synthesize Skolem functions for various first order theories. Proofs that are
missing due to lack of space can be found in the full version at [2].

S. Chakraborty and S. Akshay 30:3

2 Preliminaries

Since every Turing machine with tape alphabet {0, 1} can be encoded as a natural number
(we use N for naturals), and since every finite string over {0, 1}∗ can be encoded as a natural
number, we often speak of Turing machine i, denoted TMi, running on input string j, where
i, j ∈ N.

We use x, y, z, etc., possibly with subscripts, to denote first order variables, X, Y, Z,
etc., possibly with subscripts, to denote sequences of first order variables. We use φ, ξ, α,
possibly with subscripts, to denote formulas. For a sequence Xi, |Xi| denotes the count of
variables in Xi, and xi,1, . . . xi,|Xi| denotes the variables. A vocabulary V , is a set of function
and/or predicate symbols, along with their respective arities. Constants are function symbols
with arity 0. We assume that V has finitely many predicate and function symbols, except
possibly for countably infinitely many constant symbols. We also assume that a special binary
predicate “=” (equality) is present in every vocabulary.

We consider first order logic formulas over vocabulary V, also called V-formulas. The
notion of bound and free variables is standard, V-formulas without free variables are V-
sentences. A V-term is either a variable or f(t1, . . . tk), where f is a k-ary function symbol in
V and t1, . . . tk are V-terms. When V is implicit from the context, we omit it. A ground term
(resp. ground formula) is a term (resp. formula) without any variables. For x, a free variable
in ξ, t a term in which all variables (if any) are free in ξ, ξ[x 7→ t] denotes the formula
obtained by substituting t for x in ξ, i.e., replacing every free occurrence of x in ξ with t.

A V-structure M consists of a universe UM of elements and an interpretation of every
predicate and function symbol in V over UM. The interpretation of the special predicate
“=” is always the identity relation, and we write t1 = t2 instead of = (t1, t2) for notational
convenience. We denote the interpretation of a predicate symbol P (resp. function symbol
f) in M as PM (resp. fM). In general, an interpretation of a predicate or function symbol
may be well-defined but not computable. We say a V-structure M is computable if UM is
countable and if PM (resp. fM) is computable for all predicate symbol P (resp. function
symbol f) in V. In other words, there exists a halting Turing machine for computing the
interpretations PM (resp. fM). Throughout this paper, we assume that all V-structures are
computable. This is motivated by practical applications of Skolem functions; additionally,
non-computable V-structures may make it difficult (even impossible) to obtain computable
interpretations of Skolem functions in most cases. A computable V structure can be finitely
represented, e.g. by using a single bit to encode whether the universe is finite or countably
infinite, and by giving a natural number encoding of each Turing machine that computes
an interpretation of a predicate or function symbol. If there are countably infinite constant
symbols, we assume that interpretations of all of them can be collectively encoded by a single
Turing machine that computes a mapping from N (index of constant symbol) to N (index of
element in universe). If a V-formula ξ(Z) evaluates to true when interpreted over M and
with Z set to σ ∈

(
UM)|Z|, we say that M is a model of ξ(σ) and denote it by M |= ξ(σ).

An expansion of a vocabulary V is a vocabulary V ′ such that V ⊆ V ′. Given a V-structure
M and a V ′-structure M′, where V ′ is an expansion of V, M′ is an expansion of M if (i)
UM′ = UM, and (ii) all predicate/function symbols in V are interpreted identically in M

and M′.
For a quantifier Q ∈ {∃,∀} and sequence of variables Xi = (xi,1, . . . xi,|Xi|), we use

QXi to denote the block of quantifiers Qxi,1 . . . Qxi,|Xi|. Every first order logic formula
can be effectively transformed to a semantically equivalent prenex normal form, in which
all quantifiers appear to the left of the quantifier-free part of the formula. Henceforth,

MFCS 2022

30:4 On Synthesizing Computable Skolem Functions for First Order Logic

we assume all first order formulas are in prenex normal form, unless stated otherwise.
Let ξ(Z) ≡ ∀X1∃Y1 · · · ∀Xq∃Yq φ(Z,X1,Y1, . . .Xq,Yq) be such a formula, where Z is a
sequence of free variables, and φ is quantifier-free. We say that ∀X1∃Y1 · · · ∀Xq∃Yq is the
quantifier prefix of the formula, and it has q ∀∗∃∗ blocks. The quantifier-free part, i.e. φ,
is called the matrix of the formula. Note that in case the leading (leftmost) quantifier in ξ

is existential, X1 may be considered to be an empty sequence, and similarly, if the trailing
(rightmost) quantifier in ξ is universal. Every variable yi,j that is existentially quantified in
the quantifier prefix is called an an existential variable in ξ. The notion of universal variables
is analogously defined. The quantifier prefix imposes a total order on the quantified variables
in ξ. We say that a variable u is to the left (resp. right) of variable v in the quantifier prefix
iff Qu appears to the left (resp. right) of Q′v in the quantifier prefix, where Q,Q′ ∈ {∃,∀}.

Skolemization. Given a formula ξ in prenex normal form, Skolemization refers to the process
of transforming ξ to a new formula ξ⋆ via the following steps: (i) for every existential variable
yi,j , substitute Fyi,j

(Z,X1, . . .Xi) for yi,j in φ, where Fyi,j
is a new function symbol of arity

|Z|+
∑i

j=1 |Xj |, and (ii) remove all existential quantifiers from the quantifier prefix of ξ. The
functions Fyi,j introduced above are called Skolem functions. In case ξ has no free variables
and the leading quantifier is existential, the Skolem functions for variables in the leftmost
existential quantifier block have no arguments (i.e. they are nullary functions). Such functions
are also called Skolem constants. The sentence ξ⋆ is said to be in Skolem normal form if the
matrix of ξ⋆ is in conjunctive normal form. The key guarantee of Skolemization is as follows:
for every existential variable yi,j , let ξ⋆

yi,j
denote the formula obtained by Skolemizing all

existential variables to the left of yi,j in the quantifier prefix. Formally, ξ⋆
yi,j

is obtained by (i)
substituting the Skolem function Fyk,l

for every existential variable yk,l to the left of yi,j in
the quantifier prefix, and (ii) removing all quantifiers to the left of and including ∃yi,j from
the quantifier prefix. Note that ξ⋆

yi,j
has free variables in Z,X1, . . .Xi, yi,j . Skolemization

guarantees that for every V-structure M over which ξ is interpreted, there always exists an
expansion M⋆ of M that provides an interpretation of Fyi,j

for all existential variables yi,j

such that the following holds for every i ∈ {1, . . . q} and j ∈ {1, . . . |Yi|}:

∀Z∀X1 . . . ∀Xi

(
∃yi,j ξ

⋆
yi,j

⇔ ξ⋆
yi,j

[yi,j 7→ Fyi,j
(Z,X1, . . .Xi)]

)
(1)

▶ Example 1. Consider ξ(z) ≡ ∃y∀x∃u∀v∃wφ(z, x, y, u, v, w). Skolemizing gives ξ⋆ ≡
∀x∀v φ(z, x, Fy(z), Fu(z, x), v, Fw(z, x, v)), where Fy(z), Fu(z, x) and Fw(z, x, v) are Skolem
functions for y, u and w respectively. Using the notation introduced above, we have

ξ⋆
y(z, y) ≡ ∀x∃u∀v∃wφ(z, x, y, u, v, w)
ξ⋆

u(z, x, u) ≡ ∀v∃wφ(z, x, Fy(z), u, v, w)
ξ⋆

w(z, x, v, w) ≡ φ(z, x, Fy(z), Fu(z, x), v, w)
By virtue of Skolemization, we know that for every structure M over which ξ is interpreted,
there exists an expansion M⋆ that interprets Fy, Fu and Fw such that the following hold.

∀z
(
∃y ξ⋆

y(z, y) ⇔ ξ⋆
y [y 7→ Fy(z)]

)
∀z∀x

(
∃u ξ⋆

u(z, x, u) ⇔ ξ⋆
u[u 7→ Fu(z, x)]

)
∀z∀x∀v

(
∃wξ⋆

w(z, x, v, w) ⇔ ξ⋆
w[w 7→ Fw(z, x, v)]

)
Let V⋆ be the expansion of V obtained by adding all Skolem function and constant

symbols in ξ⋆ to V. In general, a V-structure M over which ξ(Z) is interpreted can be
expanded to a V⋆-structure by adding interpretations of Skolem functions for all existential
variables in ξ(Z). However, not every such expansion of M may model the sentence (1)
above for every existential variable yi,j . Skolemization guarantees that there exists at least

S. Chakraborty and S. Akshay 30:5

one “correct” expansion M⋆ of M that does so. We call the interpretation of Skolem
functions in such a “correct” expansion as an M-interpretation of the Skolem functions.
There may be multiple “correct” expansions of M, and hence multiple M-interpretations of
Skolem functions. Skolemization guarantees the existence of at least one M-interpretation
of all Skolem functions/constants; however, it doesn’t tell us whether these are computable
interpretations, and if so, can we algorithmically synthesize the interpretation as a halting
Turing machine? These are two central questions that concern us in this paper.

Sometimes, given a V-formulas ξ, we can find an M-interpretation of Skolem functions
that works in the same way for all computable structures M over which ξ is interpreted
(modulo differences in interpreting predicates and functions). Formally, suppose there exists
a halting Turing machine Mξ with access to oracles that compute the interpretations of
predicates and functions in M, and suppose Mξ computes an M-interpretation of Skolem
functions for all existential variables in ξ, and for all V-structures M. Then, we say that ξ
admits a uniform representation of M-interpretations of Skolem functions.

Model theory. We use V(M) to denote the expansion of V obtained by adding a fresh
constant symbol ce for every element e ∈ UM, if not already present in V . Clearly, if UM and
V are countable, so is V(M). We use MC to denote the expansion of M to a V(M)-structure
that interprets the additional constants in V(M) in the natural way, i.e. ce is interpreted to
have the value e, for all e ∈ UM. The elementary diagram of M, denoted ED(M), is the set
of all V(M)-sentences ξ such that MC |= ξ. The diagram of M, denoted D(M), is the set of
all literals in ED(M), i.e. the set of all atomic ground formulas that hold in MC . Clearly,
D(M) ⊆ ED(M). A set Γ of V-sentences is called a V-theory if it is consistent, i.e. there
exists a V-structure that serves as a model for every sentence in Γ. Given a V-structure M,
the set of all first order V-sentences ξ such that M |= ξ is called the theory of M, denoted
Th(M). Note that both ED(M) and D(M) are V-theories, and ED(M) = Th(MC), where
Th(MC) is the V(M)-theory of MC . We say that a V-theory Γ is decidable iff there exists a
Turing machine that takes as input an arbitrary V-sentence ξ and always halts and correctly
reports whether ξ ∈ Γ or not. If M is a computable structure, it follows immediately that
D(M) is a decidable theory, but ED(M) is not necessarily so.

A V-theory Γ is said to admit quantifier elimination if for every V-formula ξ(Z) with
free variables Z, there exists a semantically equivalent quantifier-free V-formula ξ#(Z) such
that the sentence ∀Z

(
ξ(Z) ⇔ ξ#(Z)

)
is in Γ. If, in addition, there exists a Turing machine

that takes an arbitrary V-formula (ξ) as input and computes its quantifier-eliminated form
(ξ#) and halts, we say that Γ admits effective quantifier elimination1. For a V-structure
M, we say that Th(M) admits effective constraint solving if there exists a Turing machine
that takes a V-formula ξ(Z) with free variables Z as input and halts after reporting one
of two things: (i) a |Z|-tuple σ of elements from UM such that M |= ξ(σ), or (ii) no such
|Z|-tuple of elements from UM exists. Note that the formula ξ(Z) may have quantifiers in
general. In case the above Turing machine exists only if ξ(Z) is quantifier-free, we say that
Th(M) admits effective quantifier-free constraint solving. Clearly, if Th(M) admits effective
quantifier elimination and effective quantifier-free constraint solving, then it also admits
effective constraint solving.

1 There is a technique, popularly called “Morleyization”, that trivially makes a theory admit effective
quantifier elimination by expanding the vocabulary to include a separate predicate symbol for each V-
formula. For purposes of this paper, we disallow expansion of the vocabulary (and hence “Morleyization”)
during effective quantifier elimination.

MFCS 2022

30:6 On Synthesizing Computable Skolem Functions for First Order Logic

3 An illustrative example

Consider the vocabulary V = {P, c, d}, where P is a binary predicate symbol, and c and d

are constants, and the first-order V-sentence ξ ≡ ∀x∃yP (x, y) ∧
(
P (x, c) ∨ P (x, d)

)
. We will

use φ(x, y) to denote the matrix of the above formula, i.e. P (x, y) ∧
(
P (x, c) ∨ P (x, d)

)
. On

Skolemizing ξ we get ξ⋆ ≡ ∀xφ(x, Fy(x)), where Fy is a fresh unary Skolem function symbol.
Let M be a computable V-structure. We now ask if there exists an algorithm A[F] that serves
as a computable interpretation of Fy : UM → UM. A careful examination of ξ and ξ⋆ reveals
that such an algorithm indeed exists. Specifically, the algorithm (represented informally as an
imperative “program” for ease of understanding) “input(x); if PM(x, cM) then return cM

else return dM” takes as input x ∈ UM and returns either cM or dM depending on whether
PM(x, cM) evaluates to true or false. If we let this algorithm interpret Fy in the expansion
M⋆ of M, then it is not hard to see that we indeed have M⋆ |= ∀x

(
∃yφ(x, y) ⇔ φ(x, Fy(x)).

However, is this always possible? Consider the V-formula α ≡ ∀x∃y P (x, y) instead of ξ,
whose Skolemized version is α⋆ ≡ ∀xP (x, Fy(x)). As we show in Section 5, it is impossible
to obtain a computable M-interpretation of the Skolem function Fy(x) in this case for all
V-structures M.

There are several observations that one can now make. Clearly, algorithm A[F] described
above is specific to the formula ξ; a different formula would have required a different algorithm
to be designed for its Skolem function(s). Interestingly, algorithm A[F] also requires access
to the interpretations of c, d and P in the V-structure M on which ξ is interpreted. Since
we are given an effectively computable interpretation of P in M, there exists an algorithm
A[P] to compute PM. Algorithm A[F] effectively uses A[P] as a sub-routine to compute the
value of Fy(x) for every x ∈ UM. Note that if the interpretation of P (in perhaps a different
V-structure M′) was not effectively computable, the “program” above would not serve as an
effectively computable interpretation of Fy. This underlines the importance of effectively
computable structures in the synthesis of Skolem functions.

It is easy to see that “input(x); if PM(x, cM) then return cM else return dM”
uniformly serves as a computable interpretation of Fy in every computable V-structure
M over which ξ is interpreted. Regardless of the actual structure M, a computable M-
interpretation of Fy is obtained by invoking algorithms to compute interpretations of P , c, d
in M as sub-routines. Thus we get a uniform representation of an M-interpretation of Fy.

Finally, the interpretation of Skolem function F discussed above is represented as an al-
gorithm, and not as a V-term. Is it possible to obtain a V-term that uniformly represents an M-
interpretation of Fy in this case? To answer this, first observe that there are only two terms, viz.
c and d, that can be formed using V . If one of these terms serves as a uniform M-interpretation
of Fy, choose a structure M as follows: UM = {a0, a1}, cM = a0, d

M = a1, P
M(a0, a0) =

PM(a1, a1) = false and PM(a0, a1) = PM(a1, a0) = true. Clearly M |= ∀x∃yφ(x, y). How-
ever, with Fy(x) = c (or Fy(x) = d), we have MM⋆ ̸|= ∀x

(
∃yφ(x, y) ⇔ φ(x, F (x))

)
. Thus

even when an effectively computable interpretation of a Skolem function exists, it may not
be representable as a term over V.

4 Problem statement

We now formulate the primary questions that we wish to address in this paper.
1. Given a vocabulary V, a V-formula ξ(Z) in prenex normal form and a computable V-

structure M, the SkolemExist problem asks if there exists a computable M-interpretation
of Skolem functions for all existential variables in ξ. We have already seen in Section 3
that there are positive instances of SkolemExist. We ask if there are negative instances
as well, i.e. there is no computable M-interpretation of Skolem functions.

S. Chakraborty and S. Akshay 30:7

2. Next, we ask if SkolemExist is decidable.
3. We then consider special cases where either the formula ξ(Z) or structure M is fixed,

and ask if it is possible to characterize the class of problems where the SkolemExist
problem has a positive answer.

4. In cases where the SkolemExist problem has a positive answer, we ask the following:
a. Does there exist an algorithm to synthesize computable M-interpretations of Skolem

functions? We call this problem SkolemSynthesis and consider two variants of it,
where either (i) V and ξ(Z) are fixed and M is the input of SkolemSynthesis, or (ii)
V and M is fixed and ξ is the input of SkolemSynthesis.

b. Is it possible to obtain finite uniform representations of M-interpretations of Skolem
functions, and if so, can we obtain these as V-terms?

c. In case SkolemExist has a positive answer, can we give bounds on the worst-case
running time of computable M-interpretations of Skolem functions?

Note that SkolemSynthesis is not meaningful in cases where SkolemExist has a neg-
ative answer. Hence, we don’t try to answer SkolemSynthesis in negative instances of
SkolemExist. Moreover, all the above problems except the last one is trivial if the universe
UM is finite. Therefore, we focus mostly on structures with countably infinite universe.

5 Hardness of SkolemExist and SkolemSynthesis

We have already seen a positive instance (i.e. problem instance with positive answer) of
SkolemExist in Section 3. The following lemma shows that SkolemExist always has
a positive answer if all Skolem functions are Skolem constants. In the following, we use
(V,M, ξ) to denote an instance of SkolemExist, where V is a vocabulary, M is a computable
V-structure and ξ is a V-formula.

▶ Lemma 2. For every vocabulary V, every computable V-structure M and every V-sentence
∃Yφ(Y), where φ is a quantifier-free V-formula with free variables in Y, the instance
(V,M, ξ) of SkolemExist has a positive answer.

However, there are negative instances of SkolemExist, even with a restricted vocabulary.

▶ Theorem 3. There exists a negative instance of SkolemExist where the vocabulary has
a single binary predicate.

Now that we know there are positive and negative instances of SkolemExist, we ask if
SkolemExist is decidable. Unfortunately, we obtain a negative answer in general.

▶ Theorem 4. SkolemExist is undecidable.

Proof. We prove this theorem by contradiction. Suppose, if possible, there exists a halting
Turing machine M that takes as inputs a vocabulary V , a V-formula ξ(Z) and a computable
V-structure M, and decides if there exists a computable M-interpretation of Skolem functions
for all existential variables in ξ(Z). We show below that we can use M to effectively decide
if an arbitrary Turing machine, say TMi, halts on the empty tape.

Consider V = {Q, a}, where Q is a binary predicate symbol and a is a constant symbol. For
each i ∈ N, define Mi to be a V-structure such that UMi = N, aMi = i and QMi(u, v) = true
for u, v ∈ N iff the Turing machine TMu halts on the empty tape within v steps. It is
easy to see that each Mj is a computable V-structure. We also define the V-sentence
ξ ≡ ∃s∀u∃x

((
Q(a, s) ∧ (x = u)

)
∨

(
¬Q(a, u) ∧ Q(u, x)

))
. Skolemizing this formula gives

ξ⋆ ≡ ∀u
((
Q(a, cs) ∧ (Fx(u) = u)

)
∨

(
¬Q(a, u) ∧Q(u, Fx(u))

))
, where cs is a Skolem constant

for s, and Fx is a Skolem function for x. From the guarantee of Skolemization, the following
must hold:

MFCS 2022

30:8 On Synthesizing Computable Skolem Functions for First Order Logic

∃s∀u∃x
((
Q(a, s) ∧ (x = u)

)
∨

(
¬Q(a, u) ∧ Q(u, x)

))
⇔ ∀u∃x

((
Q(a, cs) ∧ (x = u)

)
∨(

¬Q(a, u) ∧Q(u, x)
))

∀u
(
∃x

((
Q(a, cs) ∧ (x = u)

)
∨

(
¬Q(a, u) ∧ Q(u, x)

))
⇔

((
Q(a, cs) ∧ (Fx(u) = u)

)
∨(

¬Q(a, u) ∧Q(u, Fx(u))
)))

We now consider two cases.
Suppose TMi halts on the empty tape after p ∈ N steps. Then Mi |= Q(a, p). In this
case, by choosing the cMi

s = p and by choosing FMi
x (u) = u for all u ∈ N, both the above

guarantees of Skolemization are easily seen to hold. Clearly, the Skolem functions have
computable interpretations in this case.
If TMi doesn’t halt on the empty tape, then Mi |= ∀u¬Q(a, u). In this case, we choose
an arbitary value, say 0, for s. However, for the guarantee of Skolemization to hold, we
must have the following: for every u ∈ N, if ∃xQ(u, x) holds (i.e. TMu halts on the empty
tape), then Q(u, FMi

x (u)) must also hold (i.e. TMu must also halt in FMi
x (u) steps).

Clearly, such an interpretation FMi
x is not computable, as otherwise it can be used to

decide the halting problem.
The above reasoning shows that there exist computable Mi-interpretations of all Skolem
functions of existential variables in ξ iff TMi halts on empty tape. Thus, if we feed the
instance (V,Mi, ξ) as input to the supposed Turing machine M that decides SkolemExist,
we can decide if TMi halts on the empty tape, for every i ∈ N. This gives a decision procedure
for the halting problem on the empty tape – an impossibility! ◀

It is easy to see that the proof of Theorem 4 can be repeated with ξ ≡ ∀u∃s∃x
((
Q(a, s) ∧

(x = u)
)

∨
(
¬Q(a, u) ∧Q(u, x)

))
as well. This gives the following interesting result.

▶ Theorem 5. If the vocabulary contains a binary predicate and a constant, SkolemExist
is undecidable for the quantifier prefix classes ∃∀∃ and ∀∃∃. However it is decidable for the
class ∃+∀∗.

The second part of the above Theorem follows from an easy generalization of the proof
of Lemma 2. This leaves only the case of ∀∃ quantifier prefix, for which the decidability of
SkolemExist remains open. We consider the case of the vocabulary having only monadic
predicates later in Theorem 7.

The above negative results motivate us to consider special cases of SkolemExist and
SkolemSynthesis, where either the V-formula ξ(Z) or the V-structure M is fixed.

Fixing the formula. The proof of Theorem 4 is quite damning: even if we allow the
possibility of a potentially different algorithm, say AV,ξ, for deciding SkolemExist for each
combination of V and ξ, we cannot hope to have an algorithm AV,ξ for every (V, ξ) pair. This
is because in the proof of Theorem 4, we had indeed kept the vocabulary and formula fixed.
This leaves only a few questions to be investigated if we fix the vocabulary and formula. If
we consider V and ξ as fixed, the V-structure M is the only input to our problems of interest.
The following theorem shows that SkolemSynthesis cannot be answered positively in this
case even under fairly strong conditions.

Recall from Lemma 2 that SkolemExist has a positive answer if all Skolem functions are
Skolem constants. Hence, by choosing ξ to be a V-sentence with only existential quantifiers,
we are guaranteed that all problem instances are positive instances of SkolemExist.

▶ Theorem 6. There exists a vocabulary V, a V-sentence ξ and a family of V-structures
F = {Mi | i ∈ N}, such that (V,Mi, ξ) is a positive instance of SkolemExist for all
i ∈ N, yet there is no uniform representation of Mi-interpretations of the Skolem constants.
Additionally, the SkolemSynthesis problem has a negative answer for the class of problem
instances {(V, ξ,Mi) | i ∈ N}.

S. Chakraborty and S. Akshay 30:9

It is interesting to ask now if there is a characterization of V-formulas, such that for
each V-formula satisfying this characterization, the SkolemExist and SkolemSynthesis
problems have positive answers for all V-structures. The proof of Theorem 3 tells us that
we must disallow binary predicates and ∀∃ blocks in the quantifier prefix, which severely
restricts the vocabulary and formulas. What happens if we allow a relational vocabulary
with only monadic predicates (Löwenheim class with equality) [9]?

▶ Theorem 7. Let the vocabulary V contain only monadic predicates and equality. Then
SkolemExist has a positive answer, but not so for SkolemSynthesis.

Proof. With k monadic predicates, the universe can be partitioned into 2k equivalence classes
based on predicate valuations. By an argument (based on Ehrenfeucht-Fraisse games) similar
to that used to prove small-model property of Löwenheim class (see [9]), if a prenex formula ξ
has quantifier rank r, the range of each Skolem function can be restricted to ≤ r.2k elements.
Using an argument similar to that in proof of Lemma 2, there exists a TM that enumerates
the required set, say S, of ≤ r.2k elements. Since elements of an equivalence class can only
be distinguished using =, for each Skolem function of arity p, we must search for its correct
interpretation over all Sp → S mappings. Since there are finitely many such mappings,
we can enumerate the TMs computing these mappings, and one of them must effectively
serve as the correct interpretation for the Skolem function under consideration. Since ξ has
finitely many existential variables, it follows that there exists computable interpretations of
all Skolem functions in ξ.

To see why SkolemSynthesis has a negative answer in general even with one monadic
predicate P and one existential quantifier, consider V = {P}, ξ ≡ ∃xP (x), and a structure
Mi having universe N and PMi(x) = true iff TMi halts on empty tape within x steps. If
there exists an algorithm to synthesize computable Mi-interpretations of the Skolem constant
for x in ξ, we can use it to decide if TMi halts on empty tape – an impossibility! Thus, we
must disallow even monadic predicates if we want to characterize V-formulas that admit
positive answer to SkolemSynthesis for all V-structures. ◀

Fixing the structure. We now fix the structure M (and vocabulary V) and take the formula
ξ as the only input of our problems of interest. Since the structure M is fixed, we use the
notation U for UM henceforth. Theorem 3 already shows that even when the structure is
fixed, the SkolemExist problem has a negative instance. However, the V-structure used in
that proof may appear hand-crafted. This leads us to ask if there is a “natural” vocabulary
V and V-structure M, such that SkolemExist has a negative instance when considering
V-formulas. It turns out that this is indeed the case, and we show it by appealing to the
classical Matiyasevich-Robinson-Davis-Putnam (MRDP) theorem [11].

▶ Proposition 8. Skolem functions for the first order theory of natural numbers over the
vocabulary {×,+, 0, 1} do not admit computable interpretations.

Finally, in the setting of a fixed V-structure M, even if SkolemExist is answered in the
positive for all V-formulas in a class Ξ, the SkolemSynthesis problem may have a negative
answer for the class of problem instances {(V,M, ξ) | ξ ∈ Ξ}.

▶ Theorem 9. There exists a vocabulary V, a V-structure M and a class of V-sentences
Ξ = {ξi | i ∈ N} s.t., (V,M, ξ) is a positive instance of SkolemExist for all ξi ∈ Ξ, yet
SkolemSynthesis has a negative answer for the class of instances {(V,M, ξi) | i ∈ N}.

MFCS 2022

30:10 On Synthesizing Computable Skolem Functions for First Order Logic

6 Necessary & sufficient condition for synthesizing Skolem functions

Given these strong negative results is there hope for proving existence and synthesizability of
computable interpretations for Skolem functions. Indeed, there do exist many natural theories
where computable interpretations of Skolem functions exist and can indeed be synthesized,
e.g., Boolean case, Presburger arithmetic etc. So, what determines when a V-theory admits
effective synthesis of computable interpretations of Skolem functions for all V-formulas? Our
first positive result is a surprising characterization of a necessary and sufficient condition for
algorithmic synthesis of computable interpretations of Skolem functions.

▶ Theorem 10. Let M be a computable V-structure for vocabulary V. The SkolemSynthesis
problem for V-formulas, i.e. for problem instances {(V,M, ξ) | ξ is a V-formula}, has a
positive answer iff ED(M) is decidable.

Proof. (⇐=) Let ξ(Z) be a V-formula with free variables Z, where ξ(Z) ≡
∀X1∃Y1 . . . ∀Xn∃Yn

ξn(Z,X1,Y1,. . . , Xn,Yn), where X1, . . . ,Xn are n sequences of universally quantified vari-
ables, Y1, . . .Yn are sequences of existentially quantified variables, Z is a sequence of free
variables and ξn is quantifier-free. We will show that there is an algorithm, that for every
i ∈ {1, . . . , n}, takes as input a (|Z|+ |X1|+ . . .+ |Xi|) tuple of values from the universe U , say,
µ ∈ U |Z|, σ1 ∈ U |X1|, . . . , σi ∈ U |Xi| and halts after computing a (|Y1|+. . .+|Yi|)-dimensional
vector of values, F1(µ, σ1) ∈ U |Y1|, . . .Fi(µ, σ1, . . . σi) ∈ U |Yi| where for each 1 ≤ j ≤ i, Fj is
a |Yj |-dimensional vector of Skolem functions, each of arity |Z| + |X1| + . . .+ |Xj |.

The proof is by induction on i. For i = 1, let ξ(Z) ≡ ∀X1∃Y1 ξ1(Z,X1,Y1), where ξ1
has one less number of quantifier alternations than ξ. On Skolemizing, we get ξ⋆(Z) ≡
∀X1 ξ1(Z,X1,F1(Z,X1)), where F1 is a |Y1|-dimensional vector of Skolem functions each
of arity |Z| + |X1|. We now design a Turing machine (or algorithm) M1 that takes any
|Z| + |X1|-tuple of elements from U , say (µ, σ1), as input and halts after computing F1(µ, σ1):
(a) It first determines if ∃Y1 ξ1(µ, σ1,Y1) holds, using the decision procedure for ED(M).
(b) If the answer to the above question is “Yes”, the machine M1 recursively enumerates

|Y1|-tuples of elements of U , and for each tuple ν thus enumerated, it checks if ξ1(µ, σ1, ν)
evaluates to true. Again the decidability of ED(M) ensures that this check can also be
effectively done. The machine M1 outputs the first (in recursive enumeration order)
element of U |Y1|, for which ξ1(µ, σ1, ν) is true as F1(µ, σ1), and halts.

(c) If the answer is “No”, i.e. there is no ν ∈ U |Y1| s.t. ξ1(µ, σ1, ν) is true, M1 outputs the
first (in recursive enumeration order) tuple of U |Y1| as F1(µ, σ1), and halts.

It is easy to verify that the vector of functions F1 computed by M1 satisfies
∀X1

(
∃Y1 ξ1(Z,X1,Y1) ⇔ ξ1(Z,X1,F1(Z,X1))

)
for every valuation of the free variables Z

in U |Z|, i.e., we have a (correct) M-interpretation of Skolem function F1. This completes the
base case for i = 1.

For the general case of i ≥ 1, we write ξ(Z) as ∀X1∃Y1 . . .

∀Xi∃Yiξi(Z,X1,Y1, . . .Xi,Yi), where ξi is a formula with i less ∀∗∃∗ blocks than
ξ. By induction hypothesis, we know that there exists a Turing machine Mi that takes as
input any values for free variables Z and universally quantified variables X1, . . .Xi and out-
puts values for Y1, . . .Yi so that they correspond to outputs of (correct) M-interpretations
of vectors of Skolem functions F1, . . .Fi.

We need to show the existence of a computable interpretation of the vector of Skolem
functions Fi+1 for Yi+1. Thus, we are given a (|Z| + |X1| + . . . + |Xi| + |Xi+1|)-tuple
of values from U , and we need to show how to define a Turing machine Mi+1 that

S. Chakraborty and S. Akshay 30:11

takes this vector as input and halts after computing values of vectors of Skolem func-
tions F1(µ, σ1), . . .Fi+1(µ, σ1, . . . σi, σi+1). Let (µ, σ1, . . . , σi, σi+1) be the given set of input
values. The Turing machine Mi+1 first simulates Mi on input (µ, σ1, . . . , σi). This re-
turns i vectors of values ν1 = F1(µ, σ1) ∈ U |Y1|, . . . νi = Fi(µ, σ1, . . . σi) ∈ U |Yi| such that
each of F1, . . . ,Fi is a Skolem function vector. Plugging in all these values in ξi gives
a sentence ξ̂i = ξi[Z 7→ µ,X1 7→ σ1,Y1 7→ ν1, . . . ,Xi 7→ σi,Yi 7→ νi]. Observe that
ξ̂i ≡ ∀Xi+1∃Yi+1ξ̂i+1(Xi+1,Yi+1) for some formula ξ̂i+1(Xi+1,Yi+1). We can then apply
the same argument as in the base case above and conclude.

Note that the values of Z,X1, . . .Xn used above were arbitrary tuples from U |Z|,
U |X1|, . . .U |Xn|. Hence lifting the notation introduced in sentence (1) of Section 2 to talk
about vector of variables Yi+1 instead of single variables yi,j , we conclude that the vector of
functions Fi+1 computed by Turing machine Mi+1 satisfies ∀Z∀X1 . . . ∀Xi+1(
∃Yi+1ξ

⋆
Yi+1

⇔ ξ⋆
Yi+1

[Yi+1 7→ Fi+1(Z,X1, . . .Xi+1)]
)
. Thus, Fi+1 gives a (correct)

M-interpretation of a vector of Skolem functions for Yi+1, which completes the proof.
(⇒) In the other direction, we will show that if there exists a halting Turing machine,

say M , that synthesizes computable M-interpretations of Skolem functions for all existential
variables in all V-formulas, then ED(M) must be decidable. We assume that there are at
least two elements in U ; let’s call them d1, d2. To show that ED(M) is decidable, we need to
show a decision procedure for the V(M)-theory of MC . Consider any V(M)-sentence φ. This
sentence may have finitely many constants that are not in V. Let us say c1, . . . ck are these
constants, for some non-negative integer k. We introduce k fresh variables y1, . . . yk and define
φ′ to be the formula obtained by taking φ and replacing each occurrence of the constant ci

by variable yi respectively. Note that φ′ is a V-formula. We introduce 3 more fresh variables
x, z1, z2 and consider the sentence ψ ≡ ∀y1 . . . ∀yk∀z1∀z2∃x

(
((x = z1)∧φ′)∨((x = z2)∧¬φ′)

)
.

We can easily rewrite this formula in prenex normal form, but doing so still leaves x as
the leftmost existentially quantified variable. We now feed this prenex normal form of ψ
as the input to Turing machine M (that synthesizes computable interpretations of Skolem
functions for all existential variables in all V-formulas). Let the computable interpretation of
the Skolem function for x, as output by M , be the Turing machine Mx. Therefore, Mx takes
as inputs values of y1, . . . yk, z1, z2 (as these are the only universally quantified variables to
the left of x in the quantifier prefix) and it always halts after computing a value for x. Now
we run the Turing machine Mx with the inputs: ci as the value for yi for i ∈ {1, . . . k}, d1 as
the value for z1 and d2 as the value for z2. Let the value computed by Mx with these inputs
be t. We then check if t = d1. If yes, we conclude that MC |= φ, else MC ̸|= φ. Thus, we
have a decision procedure for V(M)-theory of MC , i.e., ED(M) is decidable. ◀

The construction in the first part of the above proof shows that there exists a Turing machine
that runs in time polynomial in the length of ξ and in the length of a decision procedure for
ED(M), and generates a computable interpretation (i.e. code for a halting Turing machine)
that computes M-interpretations of all Skolem functions in ξ. Further, since a positive
answer to SkolemSynthesis implies a positive answer to SkolemExist, Theorem 10 also
gives a sufficient condition for SkolemExist to have a positive answer.

7 Applications and complexity

We now look at some consequences of the above characterization. We first ask if we can
algorithmically synthesize computable interpretations of Skolem functions in some well-known
theories in first-order logic. We start with a lemma.

MFCS 2022

30:12 On Synthesizing Computable Skolem Functions for First Order Logic

▶ Lemma 11. Let M be a computable V-structure with universe U . Suppose for every
element e ∈ U , there exists an effectively computable uni-variate V-formula αe(x) such that
αe(x) is true iff x = e. Then Th(M) is decidable iff ED(M) is decidable.

One may wonder if decidability of Th(M) automatically implies decidability of ED(M).
However, this is not true in general (see [2] for more details), emphasizing the need for
Lemma 11. From Lemma 11 and Theorem 10 we now have,

▶ Corollary 12. For the following theories, both SkolemExist and SkolemSynthesis
have positive answers, and we can effectively synthesize computable M-interpretations for
Skolem functions for a V-formula: 1. Presburger arithmetic; 2. Linear rational arithmetic
(LRA); 3. Theory of real algebraic numbers; 4. Theory of dense linear orders without
endpoints.

For the theory of natural numbers with addition, multiplication and order, we have seen
in Proposition 8 that SkolemExist has a negative answer, which of course implies that
SkolemSynthesis cannot have a positive answer. Using Lemma 11 and Theorem 10 we get
a direct proof for the latter fact. To see this note that the premise of Lemma 11 holds for
this theory as for Presburger arithmetic. Hence, ED(M) is decidable iff Th(M) is decidable.
But we know from the MRDP theorem [11] that the latter is indeed undecidable. Thus, from
Theorem 10, we obtain that SkolemSynthesis has negative instances in this theory.

We remark that the above discussion can also be seen as an alternate proof of the fact
that the elementary diagram is undecidable, since Theorem 10 is a characterization.

Complexity bounds on M-interpretations. When it applies, the proof of Theorem 10 gives
us a construction of a Turing machine M that takes a formula ξ as input and outputs a
computable M-interpretation (i.e. code for another Turing machine, say M ′) of Skolem
functions for all existential variables in ξ. What bounds can we give on the worst case
running time of M ′ (Problem 4.c in Section 4)? We start with a lower bound that follows
from the second part of the proof of Theorem 10.

▶ Theorem 13. Let M be a computable V-structure with a decidable ED(M). The worst
case running time of any computable M-interpretation of Skolem functions for a V-formula
is at least as much as that of a decision procedure for ED(M).

This shows for instance that for Presburger arithmetic, there exists formulas for which
any computable M-interpretation of Skolem functions will take at least (alternating) double
exponential time [8, 15] Next, for upper bounds, the computable M-interpretation of Skolem
functions, as detailed in the proof of Theorem 10, relies on enumeration. Hence, it does not
help in giving complexity upper bounds. However, if a theory admits effective constraint
solving (see Sec. 2 for a definition), then we can do better.

▶ Theorem 14. Let M be a V-structure such that ED(M) is decidable. Suppose ED(M)
admits effective constraint solving with worst-case time complexity T (n) and the solution
is represented as a tuple of domain elements requiring at most S(n) bits. Then we can
synthesize M-interpretations of Skolem functions for V-formulas of size n, such that the
running time and output size of the M-interpretations are bounded by recursive functions of
T (n) and S(n).

As an example, if S(n) is linear, i.e., S(n) ≤ C.n for a constant C > 0, then we get
time(n) ≤ k.T (k.(max{C, 1})k.n) and size(n) ≤ k.(max{C, 1})k.n. Finally, one way to
obtain an algorithm for effective constraint solving is by using effective quantifier elimination

S. Chakraborty and S. Akshay 30:13

repeatedly and then using quantifier-free constraint solving. Thus, we could further bound
the complexity as functions of the complexity for effective quantifier elimination and that
of quantifier-free constraint solving. This can be applied, for example, for LRA, theory of
reals etc. Significantly, there are first-order theories that do not admit effective quantifier
elimination but admit effective constraint solving, e.g., theory of evaluated trees [10]. In such
cases, we can still use our approach to synthesize Skolem functions.

8 Expressing Skolem functions as terms

Whenever Skolem functions are computable, one can further ask: Can Skolem functions be
represented as terms? Notice that in the Boolean setting, the notions of terms, functions and
formulas are often conflated (as noted by Jiang [17] as well). Note that there are theories
without any terms, for which Skolem functions can still be synthesized as halting Turing
machines. For instance, the theory of (countable) dense linear order without endpoints does
not admit any terms. Yet, from Corollary 12, we know that we can effectively synthesize
computable Skolem functions for this theory. In fact, we can show a stronger result, viz, even
when the theory admits terms, we may not be able to interpret a Skolem function as a term.
To see this, consider the Presburger formula: ∀y∀z∃x(((x = y)∨(x = z))∧((x ≥ y)∧(x ≥ z))).
The unique Skolem function for x is max(y, z), which can be written as an imperative program
as: “input(y,z); if y ≥ z then return y else return z”. This is a uniform representation
(see Sec. 2) of a computable M-interpretation of the Skolem function for x. However, this
function cannot be written as a term in Presburger arithmetic. Indeed, any term of y, z that
uses only +, 0, 1 must be linear, while max is a non-linear function. Thus, we have

▶ Proposition 15. There exist first order theories for which Skolem functions can be effectively
computed, but they cannot be expressed as terms.

As described in [17], if Skolem functions in a first order theory can be represented using
a finite set of conditional terms (like in the case of max(y, z) above), the theory admits
effective quantifier elimination. However, we already have first order theories, e.g. the theory
of evaluated trees, that don’t admit quantifier elimination, but admit effective synthesis of
computable interpretations of Skolem functions. In such cases, Skolem functions can’t be
represented as a finite set of conditional terms either.

Note that there is a related notion of deskolemization in proof theory (see e.g., [6], [7])
in which proofs of Skolemized formulas are related to the proofs of corresponding formulas
without Skolem functions. However, this does not necessarily yield computable interpretations
of Skolem functions as terms.

9 Conclusion

The study of algorithmic computation of Skolem functions is highly nuanced. We explored
what it means for Skolem functions for first order logic to be computable and synthesizable.
Defining computable interpretations of Skolem functions as Turing machines, we showed that
they may not always exist and checking if they exist is undecidable in general. However,
when we fix a computable structure, we gave a precise characterization of when they exist
and show several applications for specific theories. While we have made some preliminary
progress regarding complexity issues, the question of synthesizing succinct interpretations is
still open as is the question of when Skolem functions can be represented as terms in the
logic. We hope that the theoretical framework set up here will lead to research towards
implementable synthesis of Skolem functions for first order logic.

MFCS 2022

30:14 On Synthesizing Computable Skolem Functions for First Order Logic

References
1 S. Akshay, J. Arora, S. Chakraborty, S. Krishna, D. Raghunathan, and S. Shah. Knowledge

compilation for Boolean functional synthesis. In Formal Methods in Computer Aided Design,
FMCAD 2019, San Jose, CA, USA, pages 161–169. IEEE, 2019.

2 S. Akshay and S. Chakraborty. On synthesizing Skolem functions for first order logic formulae.
CoRR, abs/2102.07463, 2021. arXiv:2102.07463.

3 S. Akshay, S. Chakraborty, S. Goel, S. Kulal, and S. Shah. What’s hard about Boolean
functional synthesis? In Computer Aided Verification – 30th International Conference, CAV
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, Part I, volume 10981 of Lecture Notes in Computer Science, pages 251–269.
Springer, 2018.

4 S. Akshay, S. Chakraborty, S. Goel, S. Kulal, and S. Shah. Boolean functional synthesis:
hardness and practical algorithms. Form Methods Syst Des., 57(1):53–86, 2021.

5 S. Akshay, S. Chakraborty, A. K. John, and S. Shah. Towards parallel boolean func-
tional synthesis. In TACAS 2017 Proceedings, Part I, pages 337–353, 2017. doi:10.1007/
978-3-662-54577-5_19.

6 J. Avigad. Eliminating definitions and Skolem functions in first-order logic. ACM Trans.
Comput. Log., 4(3):402–415, 2003. doi:10.1145/772062.772068.

7 M. Baaz, S. Hetzl, and D. Weller. On the complexity of proof deskolemization. J. Symb. Log.,
77(2):669–686, 2012. doi:10.2178/jsl/1333566645.

8 L. Berman. The complexity of logical theories. Theoretical Computer Science, 11(1):71–77,
1980. doi:10.1016/0304-3975(80)90037-7.

9 E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Perspectives in
Mathematical Logic. Springer, 1997.

10 T. Dao and K. Djelloul. Solving first-order constraints in the theory of the evaluated trees. In
Proceedings of the Constraint Solving and Contraint Logic Programming 11th Annual ERCIM
International Conference on Recent Advances in Constraints, CSCLP’06, pages 108–123.
Springer-Verlag, 2006.

11 M. Davis, Y. Matijasevic, and J. Robinson. Hilbert’s tenth problem. Diophantine equations:
positive aspects of a negative solution. In Proceedings of symposia in pure mathematics,
volume 28, pages 323–378, 1976.

12 K. Fazekas, M. J. H. Heule, M. Seidl, and A. Biere. Skolem function continuation for quantified
Boolean formulas. In International Conference on Tests and Proofs (TAP), volume 10375 of
Lecture Notes in Computer Science, pages 129–138. Springer, 2017.

13 D. Fried, L. M. Tabajara, and M. Y. Vardi. BDD-based boolean functional synthesis. In
Computer Aided Verification – 28th International Conference, CAV 2016, Toronto, ON,
Canada, July 17-23, 2016, Proceedings, Part II, pages 402–421, 2016.

14 P. Golia, S. Roy, and K. S. Meel. Manthan: A data-driven approach for boolean function
synthesis. In Computer Aided Verification – 32nd International Conference, CAV 2020, Los
Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II, volume 12225 of Lecture Notes in
Computer Science, pages 611–633. Springer, 2020.

15 C. Haase. A survival guide to presburger arithmetic. ACM SIGLOG News, 5(3):67–82, 2018.
16 M. Heule, M. Seidl, and A. Biere. Efficient Extraction of Skolem Functions from QRAT Proofs.

In Formal Methods in Computer-Aided Design , FMCAD 2014, Lausanne, Switzerland, pages
107–114, 2014.

17 J.-H. R. Jiang. Quantifier elimination via functional composition. In Proc. of CAV, pages
383–397. Springer, 2009.

18 A. John, S. Shah, S. Chakraborty, A. Trivedi, and S. Akshay. Skolem functions for factored
formulas. In Formal Methods in Computer-Aided Design, FMCAD 2015, pages 73–80, 2015.

19 V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete functional synthesis. In Proceedings
of the 2010 ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010, pages 316–329. ACM, 2010.

http://arxiv.org/abs/2102.07463
https://doi.org/10.1007/978-3-662-54577-5_19
https://doi.org/10.1007/978-3-662-54577-5_19
https://doi.org/10.1145/772062.772068
https://doi.org/10.2178/jsl/1333566645
https://doi.org/10.1016/0304-3975(80)90037-7

S. Chakraborty and S. Akshay 30:15

20 M. Preiner, A. Niemetz, and A. Biere. Counterexample-guided model synthesis. In TACAS
(1), volume 10205 of Lecture Notes in Computer Science, pages 264–280, 2017.

21 M. N. Rabe. Incremental determinization for quantifier elimination and functional synthesis.
In Computer Aided Verification – 31st International Conference, CAV 2019, New York City,
NY, USA, July 15-18, 2019, Proceedings, Part II, pages 84–94, 2019.

22 M. N. Rabe and S. A. Seshia. Incremental determinization. In Theory and Applications of
Satisfiability Testing – SAT 2016 – 19th International Conference, Bordeaux, France, July 5-8,
2016, Proceedings, pages 375–392, 2016. doi:10.1007/978-3-319-40970-2_23.

23 M. N. Rabe, L. Tentrup, C. Rasmussen, and S. A. Seshia. Understanding and extending
incremental determinization for 2QBF. In Computer Aided Verification – 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, Part II, pages 256–274, 2018.

24 Preey Shah, Aman Bansal, S. Akshay, and Supratik Chakraborty. A normal form characteriz-
ation for efficient boolean skolem function synthesis. In 36th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 – July 2, 2021, pages 1–13.
IEEE, 2021.

25 A. Spielmann and V. Kuncak. Synthesis for unbounded bit-vector arithmetic. In Automated
Reasoning – 6th International Joint Conference, IJCAR 2012, Manchester, UK, June 26-29,
2012. Proceedings, volume 7364 of Lecture Notes in Computer Science, pages 499–513. Springer,
2012.

26 S. Srivastava, S. Gulwani, and J. S. Foster. From program verification to program synthesis.
SIGPLAN Not., 45(1):313–326, 2010. doi:10.1145/1707801.1706337.

27 L. M. Tabajara and M. Y. Vardi. Factored boolean functional synthesis. In Formal Methods in
Computer Aided Design, FMCAD 2017, Vienna, Austria, October 2-6, 2017, pages 124–131,
2017.

28 S. Verma and S. Roy. Debug-localize-repair: a symbiotic construction for heap manipulations.
Formal Methods Syst. Des., 58(3):399–439, 2021. doi:10.1007/s10703-021-00387-z.

MFCS 2022

https://doi.org/10.1007/978-3-319-40970-2_23
https://doi.org/10.1145/1707801.1706337
https://doi.org/10.1007/s10703-021-00387-z

	1 Introduction
	2 Preliminaries
	3 An illustrative example
	4 Problem statement
	5 Hardness of {SkolemExist} and {SkolemSynthesis}
	6 Necessary & sufficient condition for synthesizing Skolem functions
	7 Applications and complexity
	8 Expressing Skolem functions as terms
	9 Conclusion

