
On Dynamic α + 1 Arboricity Decomposition and
Out-Orientation
Aleksander B. G. Christiansen #

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Denmark

Jacob Holm #

Department of Computer Science, University of Copenhagen, Copenhagen, Denmark

Eva Rotenberg #

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Denmark

Carsten Thomassen #

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Denmark

Abstract
A graph has arboricity α if its edges can be partitioned into α forests. The dynamic arboricity
decomposition problem is to update a partitioning of the graph’s edges into forests, as a graph
undergoes insertions and deletions of edges. We present an algorithm for maintaining partitioning
into α + 1 forests, provided the arboricity of the dynamic graph never exceeds α. Our algorithm has
an update time of Õ(n3/4) when α is at most polylogarithmic in n.

Similarly, the dynamic bounded out-orientation problem is to orient the edges of the graph such
that the out-degree of each vertex is at all times bounded. For this problem, we give an algorithm
that orients the edges such that the out-degree is at all times bounded by α + 1, with an update
time of Õ(n5/7), when α is at most polylogarithmic in n. Here, the choice of α + 1 should be viewed
in the light of the well-known lower bound by Brodal and Fagerberg which establishes that, for
general graphs, maintaining only α out-edges would require linear update time.

However, the lower bound by Brodal and Fagerberg is non-planar. In this paper, we give a lower
bound showing that even for planar graphs, linear update time is needed in order to maintain an
explicit three-out-orientation. For planar graphs, we show that the dynamic four forest decomposition
and four-out-orientations, can be updated in Õ(n1/2) time.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases Dynamic graphs, bounded arboricity, data structures

Digital Object Identifier 10.4230/LIPIcs.MFCS.2022.34

Funding Aleksander B. G. Christiansen: Partially supported by the VILLUM Foundation grant
37507 “Efficient Recomputations for Changeful Problems”.
Jacob Holm: Partially supported by the VILLUM Foundation grant 16582, “BARC”
Eva Rotenberg: Partially supported by Independent Research Fund Denmark grants 2020-2023
(9131-00044B) “Dynamic Network Analysis” and 2018-2023 (8021-00249B) “AlgoGraph”, and the
VILLUM Foundation grant 37507 “Efficient Recomputations for Changeful Problems”.
Carsten Thomassen: Partially supported by Independent Research Fund Denmark grant 2018-2023
(8021-00249B) “AlgoGraph”.

Acknowledgements We thank Irene Parada for helpful discussions.

1 Introduction

Dynamic graphs have been the subject of much study. Here one is typically interested in
maintaining some property of or information about the graph, as edges of the graph are inser-
ted and deleted. Sometimes one studies more restricted classes of graphs with more structure

© Aleksander B. G. Christiansen, Jacob Holm, Eva Rotenberg, and Carsten Thomassen;
licensed under Creative Commons License CC-BY 4.0

47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022).
Editors: Stefan Szeider, Robert Ganian, and Alexandra Silva; Article No. 34; pp. 34:1–34:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abgch@dtu.dk
mailto:jaho@di.ku.dk
mailto:erot@dtu.dk
https://orcid.org/0000-0001-5853-7909
mailto:ctho@dtu.dk
https://doi.org/10.4230/LIPIcs.MFCS.2022.34
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 On Dynamic α + 1 Arboricity Decomposition and Out-Orientation

in the hopes of improving algorithmic performance. The existence of efficient algorithms for
testing planarity of a fully-dynamic graph [17, 24] motivates efforts to dynamically maintain
well-known properties of planar graphs, such as e.g. bounded out-degree orientations and
colourings.

The arboricity of a graph G is the smallest number α such that α forests can cover the
edges of G. Planar graphs have arboricity at most 3. If a forest is rooted arbitrarily, and all
of the edges in the forest are oriented towards the roots, then every vertex has out-degree 1.
In particular, this implies that the edges of a planar graph resp. graphs of arboricity α can
be oriented such that no vertex has out-degree more than 3 resp. α . We call an orientation
of a graph such that no vertex has more than k out-edges a k-bounded out-orientation. Since
there exists planar graphs on n vertices with more than 2n edges, it follows that there exists
planar graphs for which a 3-bounded out-orientation is the lowest out-orientation possible.

In light of the above, we ask the question: can one efficiently maintain a 3-bounded
out-orientation of a dynamic planar graph? Here the aim is to be more efficient than the
fastest static algorithm – running in linear time – as one could construct a dynamic algorithm
by statically recomputing a new solution after every update.

It turns out that it is not possible to improve upon this; at least not if we want to
maintain an explicit orientation. Here, one has to store the orientation of every edge in
memory opposed to an implicit orientation, where one is allowed to compute the orientation
of an edge at query-time. More precisely we show that any algorithm maintaining an explicit
3-bounded out-orientation of a dynamic planar graph must spend Ω(n) update time, even
amortised. For the broader class of graphs with bounded arboricity, Brodal & Fagerberg [9]
showed that any algorithm maintaining an explicit α-bounded out-orientation must spend
Ω(n) update time, even amortised. However for α = 3 their example is far from planar. Our
lower bound shows that the same bounds indeed hold for planar graphs.

In light of this negative result, it is natural to ask if one can do better if a little slack
on the number of out-edges is allowed. We show that this is indeed the case, as we provide
an algorithm maintaining a 4-bounded out-orientation of a dynamic planar graph with
Õ(

√
n) amortised update time. In fact, this generalises to maintaining an (α + 1)-bounded

out-orientation of a dynamic graph whose arboricity never exceeds α through-out the entire
update sequence. Here the algorithm has an amortised update-time of Õ(n5/7). Here Õ

hides α and log n factors, so one should think of α = O(1).
An arboricity decomposition of a graph is a decomposition of the graph’s edges into forests.

We show how to dynamically maintain a 4-arboricity decomposition of a dynamic planar
graph with Õ(

√
n) amortised update time. This also generalises to graphs of bounded degree

α: here we present an algorithm maintaining an (α + 1) arboricity decomposition with an
amortised update-time of Õ(n3/4).

The presented algorithms all follow the same idea: we show how to update the out-
orientation or arboricity decomposition in such a way that 1) every update only uses very
little of the extra slack provided by having one more out-edge or one more forest available
and 2) the update time scales with the amount of extra slack used. Combining these two
properties allow us to truncate the update algorithm if it runs for too long and instead
statically recompute an optimal solution.

1.1 Results
We consider dynamic graphs on n vertices undergoing a sequence of updates such that the
arboricity of the graph at all times is bounded by α. We refer to such a sequence of updates
as an α preserving sequence of updates.

A. B. G. Christiansen, J. Holm, E. Rotenberg, and C. Thomassen 34:3

We show the following theorem for maintaining an α + 1 out-orientation.

▶ Theorem 1. Given an initially empty dynamic graph undergoing an arboricity α preserving
sequence of updates and a static black box algorithm that computes an α-bounded out-degree
orientation of a graph with n vertices and arboricity α in time S(α, n), the algorithm will
maintain an (α + 1)-bounded out-degree orientation with an amortised insertion time of
O(

√
α · S(α, n)), and a worst-case deletion time of O(1).

Specifying a black box algorithm gives the following corollary:

▶ Corollary 2. Given an initially empty dynamic planar graph undergoing edge insertions
and deletions, there is an algorithm that maintains a 4-bounded out-degree orientation with
an amortised insertion time of O(

√
n), and a worst-case deletion time of O(log n).

Proof. Chrobak & Eppstein gave a linear-time algorithm for computing a 3-bounded out-
degree orientation in planar graphs [12]. Now applying Theorem 1 yields the result. ◀

For bounded arboricity graphs, applying the fastest static algorithm [31] gives an amortised
update time of Õ(n5/7). We show the following theorem for maintaining an α + 1 arboricity
decomposition:

▶ Theorem 3. Given an initially empty dynamic graph undergoing an arboricity α preserving
sequence of updates and a static black box algorithm that computes an α arboricity decompos-
tion of a graph with n vertices and arboricity α in time S(α, n), the algorithm will maintain
an (α + 1) arboricity decomposition with an amortised insertion time of O(α

√
S(α, n) log n),

and a worst-case deletion time of O(log n).

Specifying black box algorithms gives the following corollaries:

▶ Corollary 4. Given an initially empty dynamic planar graph undergoing edge insertions
and deletions, then there exists an algorithm maintaining a 4-arboricity decomposition with
an amortised insertion time of O(

√
n log n), and a worst-case deletion cost of O(log n).

Proof. Chrobak & Eppstein also showed how to compute a 3-forest partition in linear time
in planar graphs [12]. ◀

For bounded arboricity graphs, applying the fastest static algorithm [18, 19] gives an amortised
update time of Õ(n3/4). Finally, we show a lower bound for maintaining explicit 3-bounded
out-orientations in dynamic planar graphs:

▶ Theorem 5. Let A be an algorithm explicitly maintaining a 3-bounded out-degree orientation
of an n-vertex planar graph under insertion and deletion of edges. Then there exists a sequence
of updates taking Ω(n) amortised time per update.

Note that some results rely on ideas similar to those that appeared in the master’s thesis by
A. B. G. Christiansen [10].

1.2 Related Work
Dynamic Planar Graphs. Dynamic planar graphs have been studied both in the incremental
(edge-insertion only) [13, 25, 35, 38] and fully-dynamic (insertion/deletion) setting [16, 17,
20, 24, 26].

MFCS 2022

34:4 On Dynamic α + 1 Arboricity Decomposition and Out-Orientation

Table 1 Overview of dynamic algorithms for maintaining out-orientations. This table is inspired
by a similar table in [11].

Reference Out-degree Update time α preserving seq.
Brodal & Fagerberg [9] 2(α + 1) Õ(log n) am. yes
Kopelowitz et al. [27] βα + logβ n Õ(β2 + β log n) no
He et al. [22] O(α

√
log n) O(

√
log n) am. yes

Berglin & Brodal [5] O(α + log n) O(log n) no
Henzinger et al. [23] 40α O(log2 n) am. no
Kowalik [29] O(α log n) O(1) am. yes
Christiansen & Rotenberg [11] α + 2 Õ(log3 (n))) yes
New (Thm. 1) α + 1 Õ(n5/7) yes

Bounded Out-Orientations. For the more general class of graphs with bounded arboricity,
the out-orientation problem is well studied – both from a dynamic view-point [9, 27, 37, 29, 5]
and a static view-point [18, 34, 6, 1]. For dynamic arboricity-bounded graphs, Brodal &
Fagerberg gave an algorithm maintaining a 2(α + 1)-bounded out-orientation with amortised
O(α + log n) update time. There also exists an algorithm [11] for maintaining an (α + 2)-
bounded out-orientation with worst-case update time in O(poly(log n, α)).See Table 1 for an
overview.

From a static view-point, the fastest algorithms have running time Õ(m10/7) [31] and
Õ(m

√
n) [30]. Furthermore, Kowalik [28] also gave an algorithm computing a (α + 1) out-

orientation in Õ(m) time. Specialising to the planar case, where the graphs are assumed to
be planar at all times, the lowest out-degree one can get in the dynamic setting while still
achieving sublinear update time becomes 5 with update time in O(poly(log n)). In the static
case, Chrobak & Eppstein showed how to compute a 3 out-orientation in linear time [12].

Arboricity Decompositions. There has been a lot of work dedicated to computing an
arboricity decomposition [18, 19, 14, 34]. The state-of-the-art for computing exact arboricity
decompositions run in Õ(m3/2) time [18, 19]. There also exists approximation algorithms.
There is a 2-approximation algorithm [3, 15] as well as an algorithm for computing an
α + 2 arboricity decomposition in near-linear time [7]. From the dynamic side, Bannerjee
et al. [4] give a dynamic algorithm for maintaining the current arboricity. The algorithm
has a near-linear update time. They also provide a lower bound of Ω(log n) for dynamically
maintaining arboricity. Henzinger et al. [23] provide a dynamic algorithm for maintaining a
2α′ arboricity decomposition, given access to any black box dynamic α′ out-degree orientation
algorithm. Combining this technique with the results from Table 1 yields different trade-offs.
Finally there also exists an algorithm maintaining an (α + 2) arboricity decomposition with
O(poly(log(n), α)) update-time [11].

Specialising to the planar case, the last of the algorithms above yields a sublinear update
time dynamic algorithm for computing a 5 arboricity decomposition. In the static case,
Chrobak & Eppstein also showed how to compute a 3-forest partition in linear time [12].

1.3 Paper Outline

In Section 2 we recall preliminaries. Section 3 is dedicated to Theorem 1. In Section 4 we
show Theorem 3. Finally in Section 5, we prove Theorem 5.

A. B. G. Christiansen, J. Holm, E. Rotenberg, and C. Thomassen 34:5

2 Preliminaries & Notation

We follow standard graph-terminology. We say that a graph G = (V, E) is k-degenerate if
every subgraph of G has a vertex of degree at most k. If the edges of G receives an orientation,
we let the out-edges of a vertex v be the edges oriented away from v. The out-degree of v is
then the number of out-edges incident to v.

Nash-Williams showed the following density formula for graphs of arboricity α:

▶ Theorem 6 ([33, 32]). Let G be a graph with no loops. Then

α(G) =
⌈

max
J⊂G,|V (J)|≥2

|E(J)|
|V (J)| − 1

⌉
A plane graph is a planar graph together with an embedding into the plane such that no
edges cross. For plane graphs we have the usual notion of faces. A triangulation is a maximal
planar subgraph (wrt. the edges). If the triangulation is equipped with an embedding, we
call it a plane triangulation. For planar graphs, we have the following well-known theorem:

▶ Theorem 7 (Euler’s Theorem). If G is a connected plane graph with n vertices, m edges and
f faces, then n − m + f = 2. In particular, if G is a planar triangulation, then m = 3n − 6.

3 Low Out-orientations

In this section, we present a dynamic algorithm that maintains an (α + 1)-bounded out-
degree orientation. Suppose we are given an initially empty dynamic graph G on n vertices
undergoing an arboricity α preserving sequence of updates. Then the algorithm has an
update time of Õ(

√
S(α, n)) provided that it is given access to a black box static algorithm

for computing an α-bounded out-degree orientation in O(S(α, n)) time.
The idea behind the algorithm is the following: suppose we are given a graph G, an edge

e = uv ∈ G and an α + 1 orientation of G − e. Then we can extend the orientation of G − e

to an α + 1 orientation of G in the following way. Find a minimal oriented path P beginning
at u that ends at a vertex w with out-degree at most α. We will refer to such a path as an
augmenting path. After finding P , we reorient all edges along the path. Finally, we make
uv an out-edge of u. This yields an α + 1 orientation of G since the only vertex to have its
out-degree increased is w, and w was specifically chosen to have out-degree < α + 1.

In order to find P , we look for w by doing a breadth-first-search (BFS) beginning from u.
In Lemma 8, we show that such a BFS always succeeds and that it takes time proportional
to the number of vertices visited. Finally, we show that if the BFS visits too many vertices,
we have witnessed enough updates to be able to truncate the search and recompute an α

orientation.

The Algorithm. Whenever an edge is deleted, we can simply delete it in the graph, so we
focus on insertions. Suppose e = uv is inserted. Either u has out-degree < α + 1 and P = u

is an augmenting path or u has out-degree α + 1 in which case, we push u’s neighbours to a
queue Q and mark them as visited. Now we can recursively visit vertices in Q by pushing the
un-visited neighbours of vertices with degree α+1 to Q, and terminating with an augmenting
path if we locate a vertex with out-degree < α + 1. In the end of the update algorithm, we
mark all visited vertices as un-visited. The search for P has the following properties:

▶ Lemma 8. Suppose that G − uv is given an (α + 1)-bounded out-degree orientation, and
we begin a search from u. Then after visiting t vertices the following holds:
1. If no vertex with out-degree < α + 1 has been visited, then Q is not empty.
2. The algorithm has spent O(α · t)-time.

MFCS 2022

34:6 On Dynamic α + 1 Arboricity Decomposition and Out-Orientation

Proof. We begin by showing that 1) holds. Suppose for contradiction that the algorithm
has visited all vertices pushed to Q without finding a vertex with out-degree < α + 1. Let J

be the set of visited vertices. Since the algorithm pushes all new out-neighbours of a vertex
v to Q, when visiting v, it must be the case that all out-edges of vertices in J go to other
vertices in J . Since the algorithm did not find a vertex with out-degree < α + 1, all vertices
of J have out-degree α + 1, and as a result, there must be at least (α + 1)|J | edges between
vertices in J . But then, |E(J)|

|J|−1 = (α+1)|J|
|J|−1 > α + 1 > α, contradicting Theorem 6.

Now, we show that 2) also holds. After visiting t vertices, the algorithm has traversed
every out-edge out of the visited vertices when pushing new out-neighbours to Q. The time
needed to perform these steps is O(1) per visited vertex and O(1) per out-edge leaving a
visited vertex. Since every visited vertex has out-degree α + 1 by assumption, the total time
spent in the search is O(α · t). ◀

▶ Remark 9. Lemma 2 in [9] implies that P has length O(α log(n)).
Now we make the following observation:

▶ Observation 10. Inserting an edge e into G increases the number of vertices with out-degree
α + 1 by at most one.

Proof. The only vertex that has its out-degree increased during an insertion is the final
vertex of the augmenting path. ◀

In particular this means that if we visit t vertices when searching for P , then we must have
witnessed at least t insertions, since the last time we statically re-computed an α-bounded
out-orientation. As such, we arrive at Theorem 1 (restated below for convenience):

▶ Theorem 11 (Theorem 1). Given an initially empty dynamic graph undergoing an arboricity
α preserving sequence of updates and a static black box algorithm that computes an α-bounded
out-degree orientation of a graph with n vertices and arboricity α in time S(α, n), the
algorithm will maintain an (α+1)-bounded out-degree orientation with an amortised insertion
time of O(

√
α · S(α, n)), and a worst-case deletion time of O(1).

Proof. The algorithm clearly maintains an (α + 1)-bounded out-degree orientation. All
that remains is to analyse the amortised cost of running the black box algorithm. To this
end, say a vertex is bad, if it has out-degree α + 1. Suppose that we have witnessed i

insertions since the last time that the static black-box algorithm was run, and suppose
furthermore that inserting ei+1 causes the insertion search to visit

√
S(α, n)/α bad vertices.

Then Observation 10 implies that i ≥
√

S(α, n)/α, and so setting aside O(
√

α · S(α, n))
credit for each insertion, ensures that at least O(S(α, n)) credit is stored, when the black
box algorithm is run. Furthermore, by Lemma 8 each truncated search spends no more than
O(α ·

√
S(α, n)/α)-time, yielding a total amortised insertion time in O(

√
α · S(α, n)), as

claimed. To delete an edge, we may remove it from the graph in constant time (assuming
that we are given a pointer to the edge as part of the query). ◀

4 Low Arboricity Decompositions

In this section, we present a dynamic algorithm that maintains an (α + 1)-arboricity decom-
position. The setup is the same as in the previous section: we assume that we are given
an initially empty dynamic graph G on n vertices undergoing an arboricity α preserving
sequence of updates. The algorithm has an update time of Õ(

√
S(α, n)) provided that it is

given access to a black box static algorithm for computing an α-arboricity decomposition in
O(S(α, n)) time.

A. B. G. Christiansen, J. Holm, E. Rotenberg, and C. Thomassen 34:7

The idea behind this algorithm is the same as in the previous section. We give an algorithm
based on a search procedure with slow update time, and arrive at the final algorithm via
truncation of the search. The main difficulty of turning the algorithm from the previous
section into an algorithm maintaining an arboricity decomposition is that it is not clear how
to direct a search to obtain a sequence of forest alterations that allows one to accommodate
the insertion of an edge.

We will now present how to accommodate the edge insertion using techniques that are
inspired by [18] and [21]. To this end, suppose we are given a graph G, an edge e = uv ∈ G

and an α + 1 arboricity decomposition of G − e. We are then interested in extending this to
an α + 1 arboricity decomposition of G. If e cannot be added to forest Fi, it is because u

and v are connected by a path T 1
i in Fi. If this is the case for all i, then we must move one

of the edges in T 1
j for some j to be able to put e into Fj . If this is not possible for any j, it

is because all vertices on T 1
j sit in the same tree in all forests. So for all j we can let T 2

j be

the smallest tree in Fj spanning the vertices
α+1⋃
i=1

V (T 1
i). Continuing like this yields trees T r

i

(see Figure 1). We cannot continue this construction indefinitely since we cannot partition

Figure 1 An illustration of the first two layers of the forests. The forests are represented by
different colours.

G’s edges into α + 1 spanning trees without contradicting the fact that G has arboricity
α. Hence, there must exist a largest k for which T k

j has no movable edges for all choices
of j. For an edge e′ ≠ e, we let the rank r(e′) of e′ be the smallest r such that e′ ∈ T r

i for
some i that we denote t(e′). We set r(e) = 0. Furthermore, we define T r =

⋃
i

T r
i . Similar

to [18, 21], we can now define an augmenting sequence of edges that we can move between
forests to accommodate an insertion of e:

▶ Definition 12. Suppose G is a graph, e0 ∈ E(G) an edge in G, and that we are given an
α + 1 arboricity decomposition F1, . . . , Fα+1 of G − e0. Then an augmenting sequence of
edges is a sequence of edges e0, e1, . . . , ek satisfying the following conditions:
1. For all i ≥ 0, the rank of ei satisfies r(ei) ≤ i.
2. For all i ≥ 1, if ei−1 = xy, then x and y sit in different trees in Ft(ei) − ei.
3. There exists some j ̸= k such that Fj ∪ ek is a forest.
Given such a sequence of edges e1, . . . , ek, we can extend the arboricity decomposition of
G − e to contain e. Indeed, we move ek from Ft(k) to Fj . Now e1, . . . , ek−1 is an augmenting
sequence. Eventually, e can be inserted into Ft(e1).

We shall search for an augmenting sequence differently than in [18]. Here, when visiting
an edge e′ belonging to forest Fi, for j ̸= i they en-queue the entire fundamental cycle in
Fj ∪ ei. However, this cycle could possibly have length Ω(n). Instead, we visit the paths
blocking e′ one edge at time, only en-queuing the visited edge. This ensures that at all
times, the time spent searching for an augmenting sequence is proportional to the number
of vertices that we have processed. This property is key in ensuring that we can afford to
truncate our search and run a static algorithm, if we do not identify an augmenting sequence
fast.

MFCS 2022

34:8 On Dynamic α + 1 Arboricity Decomposition and Out-Orientation

The algorithm. Similar to the previous section, we first describe a slow, search–based
algorithm, and then we obtain a faster algorithm via truncation. We accommodate edge
deletions by simply deleting the edge from the dynamic forest data structure, it resides in.
To handle an insertion of an edge e = uv, we construct a short augmenting sequence as
follows. Beginning with e, we process an edge by trying to insert it into all forests. If this is
not possible, u and v must be connected by a path in Fi for all i. For each i, beginning with
i = 1, we then try to move every edge on this path in Fi. If we fail to do so, it means that
there is no augmenting sequence ending with an edge in T 1 =

⋃
i

T 1
i . Now we search for an

augmenting sequence ending with an edge in T 2. If we fail to locate such an augmenting
sequence, we try to find one ending with an edge in T 3 and so on. To do so for T r, having
already tried all edges in T r−1, we try to move all edges blocking an edge in T r−1 i.e. we
try to move edges blocking the previously explored edges. When we try to move such an
edge, but fail to do so, it is because the endpoints of these edges are connected by blocking
paths in all forests. Conceptually we would like to push these blocking paths to a queue as
we encounter them, in order to remember them. This is relevant, since we might have to
visit them later to try to locate an augmenting sequence. However, these paths might have
length Ω(n), and, similar to the last section, we would like the time spent during a search to
depend on the number of visited vertices. Hence, in practice, we traverse the blocking paths
one by one. Whenever we visit an edge f on a blocking path in a forest Fj , we try to move
it to another forest. If this is not possible, we push f to a queue Q, store that f is blocking
e by saving a value b(f) = e, and mark both endpoints of f as visited in Fj . Now we can
always recover the edges on the paths blocking f one-by-one using standard dynamic forest
data-structures. When we are done trying to move edges from the previous set of blocking
paths, we recursively try to move the un-processed edges blocking e′ = pop(Q). Note that
whenever a blocking path reaches a previously visited edge, we terminate that blocking path
and push no further edges of it to Q. The nature of the search ensures that the blocking
paths form trees in each forest, and therefore no blocking edge is left unvisited by this early
termination. Indeed, one of the endpoints of the blocking path was already in the tree, and
so as soon as the path connects to this tree we can be certain that the rest of the edges on
the path have been processed. If we encounter an edge g that we can move to a new forest,
we extract an augmenting sequence by moving the edge and then recursively moving the
edge it was blocking. We have the following claim:

▷ Claim 13. Let e and g be as above. We have that e = br(g)(g), . . . , b(b(g)), b(g), g is an
augmenting sequence, where bk(g) is the edge obtained by following the blocked edge k steps
back.

Proof. Observe that we process all edges of rank i before processing any edges of rank i + 1.
In particular, we only visit edges of rank i + 1 when processing edges of rank i. Therefore,
for all processed edges h, we have that r(b(h)) = r(h) − 1. Hence, br(g)(g) = e, as e is the
only edge of rank 0. It is now easy to verify that the conditions of Definition 12 hold. ◁

By storing each vertex in a data structure for maintaining dynamic forests for instance
top-trees [2] or link-cut trees [36], we can determine whether a blocking path exists, and if it
does, we can traverse it spending O(log n) time to find the path and O(1) time per visited
edge on the path. Thus the search satisfy the following properties:

▶ Lemma 14. Suppose that we have an α + 1 arboricity decomposition of G − uv, and we
begin a search to extend it to an α + 1 arboricity decomposition of G. Then after visiting t

vertices the following holds:
1. If no moveable edge has been located, then Q is not empty.
2. The algorithm has spent O(α2 · t · log n)-time.

A. B. G. Christiansen, J. Holm, E. Rotenberg, and C. Thomassen 34:9

Proof.

1. Let E denote the set of edges, visited by the algorithm. Every time we unsuccessfully
try to move an edge e = xy, we conceptually push all edges on the unique x to y path
in Fi to Q for all i. Thus, the blocking paths necessarily form trees in each forest. In
particular, this means that if Q is empty, the graph formed by all the visited edges,
J = G[E], will be a tree if restricted to Fi for all i. Indeed, suppose it is not true, and
that the restriction of J to Fj is not a tree. Then we must have visited some first edge
leaving the component, containing u, of the restriction of J to Fj for which we did not
explore a blocking path in Fj , contradicting the fact that Q is empty. This means, in
particular, that |E(J)| ≥ (α + 1)(|V (J)| − 1), and hence J contradicts Theorem 6, as in
the proof of Lemma 8.

2. Since the algorithm has visited t vertices, it cannot have visited more than α · t edges.
Otherwise, the t visited vertices form a subgraph with a density contradicting Theorem 6.
Each time the algorithm visits an edge, it spends only O(α log n)-time. Indeed, it takes
O(α log n)-time to check if the edge can be moved and O(1)-time to push it to Q. Finally,
we can update pointers to the blocked edge with only O(1) overhead per visit. Since the
algorithm has visited no more than α · t edges, 2) follows. ◀

Furthermore, we make the following observations:

▶ Observation 15. If the search phase is unsuccessful after visiting t vertices, then every
vertex visited by the algorithm during the search phase must belong to the same tree in every
forest Fi. In particular, this means that |E(Fα+1)| ≥ t − 1.

Proof. We prove the observation by contraposition. Suppose that we initially tried to insert
uv. If at some point we try to move an edge e = xy ∈ Fj with endpoints belonging to different
trees in Fk, k ̸= j, then e could be moved to Fk rendering the search phase successful. In
particular, this means that if u ∈ T ⊂ Fi and there is some other vertex w in a different tree
T ′ in Fi that we also visit, then at some point, we must have tried to move an edge e′ with
only one endpoint in T . But then e′ could have been moved to Fi, contradicting the fact
that the search was unsuccessful. ◀

▶ Observation 16. Augmenting along an augmenting sequence e0, e1, . . . , ek increases the
size of the forest that ek is moved to by one. All other forests remain the same size.

Proof. We prove the statement by induction on k. The induction basis is clear, so we move to
the induction step. After moving ek from Ft(ek) to some forest Fi, the size of Fi is increased
by one, the size of Ft(ek) is decreased by one, and all other forests have the same size. Now
e0, e1, . . . , ek−1 is an augmenting sequence, so we can apply induction on it. This sequence
increases the size of Ft(ek) by exactly one, and all other forests remain the same size. Hence,
we arrive at the statement. ◀

Since a deletion never increases the size of a forest, the two above observations together
imply that choosing the truncation t =

√
S(α,n)

α2 + 1 means that we witness at least
√

S(α,n)
α2

insertions between any two runs of the static black box algorithm. Since we can extend
the black box algorithm to maintain the dynamic forests using only O(log n) overhead
per operation, the total time needed for each run is in O(S(α, n) log n). Combining this
with Lemma 14, we find that setting aside O(α

√
S(α, n) log n) per insertion yields a total

amortised update time in O(α
√

S(α, n) log n). Hence:

MFCS 2022

34:10 On Dynamic α + 1 Arboricity Decomposition and Out-Orientation

▶ Theorem 17 (Identical to Theorem 3). Given an initially empty dynamic graph undergoing
an arboricity α preserving sequence of updates and a static black box algorithm that computes
an α arboricity decompostion of a graph with n vertices and arboricity α in time S(α, n), the
algorithm will maintain an (α + 1) arboricity decomposition with an amortised insertion time
of O(α

√
S(α, n) log n), and a worst-case deletion time of O(log n).

5 Dynamic 3-Out Orientations in planar graphs

In this section, we show that any dynamic algorithm maintaining a 3-bounded out-orientation
of a dynamic planar graph can be forced to spend Ω(n) update time. The idea is to first
consider a different problem: let G be a plane triangulation. Then G has an outer face xyz.
Every vertex incident to the outer face is an outer vertex. All vertices that are not outer
vertices are inner vertices. A 3-orientation of G is then an orientation of all edges incident
to inner vertices such that all inner vertices have out-degree 3. Given a plane triangulation,
we have the notion of a diagonal flip: a diagonal flip is the action of removing an edge xy

incident on faces xyz and vxy and replacing it with the edge vz (see Figure 2). note that
such a flip is only possible, if the edge vz does not already exist. The flip distance between
two undirected graphs is then the minimum number of diagonal flips needed to go from one
one graph to the other. We show that any algorithm explicitly maintaining a 3-orientation

Figure 2 A diagonal flip.

of a dynamic plane triangulation under diagonal flips of inner edges, can be made to spend
linear update time. This is done by constructing two planar graphs of constant flip distance,
but with unique 3-orientations differing on Ω(n) edges. By slightly generalising and by
considering a graph containing multiple copies of this construction, we arrive at the explicit
lower bound for maintaining 3-orientations in dynamic planar graphs.

3-Orientations. Brehm [8] showed that a plane triangulation has a unique 3-orientation
if and only if it is stacked which is equivalent to being 3-degenerate. In fact this can be
slightly generalised - and we will use this slight generalisation later on, when dealing with
graphs where no embedding is specified. The proof of the generalisation is similar, so we
only provide a sketch:

▶ Lemma 18. Let G be a planar triangulation with a 3-bounded out-degree orientation O.
Let x, y, z form a triangle in G, and let H be a component of G − {x, y, z}, such that
the out-degree d+

G(v) = 3 for all v ∈ H. Then the restriction of any 3-bounded out-degree
orientation of G to all edges incident to H is unique if and only if G[V (H) ∪ {x, y, z}] is
3-degenerate.

Proof (Sketch). A counting argument shows that all edges between H and x, y, z are oriented
away from H. Indeed, G[H ∪ {x, y, z}] is planar and so contains at most 3(|H| + 3) − 6 edges.
3 of these go between x, y, z, so the remaining 3|H| edges must be out-edges of vertices in H.

Next, we show that the restriction of any 3-bounded out-degree orientation O to H

is unique iff it is acyclic. Indeed, suppose it is not acyclic. Then it has a directed cycle.
Reversing the orientation along this cycle creates a new 3-bounded out-degree orientation

A. B. G. Christiansen, J. Holm, E. Rotenberg, and C. Thomassen 34:11

with a different restriction. The other direction is as follows: suppose that there exists
an orientation for which the restriction to H is acyclic, but that this restriction is not
unique. Comparing two such restrictions gives an edge which is oriented differently in the
two orientations. Now, since every point has out-degree 3 an endpoint cannot be incident to
only one such edge, so there is a new edge - oriented differently by the two orientations -
that one can follow. Continuing like this eventually gives you a directed cycle in H as, by
above, one never reaches x, y, z. This is a contradiction.

The Lemma then follows by noting that having an acyclic 3-bounded out-degree orientation
is equivalent to being 3-degenerate. Indeed, beginning at an arbitrary vertex in H and
following incoming edges backwards ensures that one ends up in a source in H. This source
has degree at most 3. We can remove this vertex and apply induction to see that any
subgraph not containing this vertex also has a vertex of degree at most 3. The other direction
follows, since the 3-degeneracy implies that in any non-empty subgraph S ⊂ H one can
always find a vertex v ∈ S of degree 3 in G[S ∪ {x, y, z}]. Beginning from H one can remove
such a vertex and orient its incident edges so that it becomes a source. Continuing like this
never creates cycles and therefore yields an acyclic 3-bounded out-degree orientation. ◀

As noted earlier, we give the lower bound by first considering explicit 3-orientations in plane
graphs. We have the following lemma:

▶ Lemma 19. Let A be an algorithm explicitly maintaining a 3-orientation of an n-vertex
plane triangulation under diagonal flips. Then the flip operation can be made to spend Ω(n)
update time, even when considering amortised complexity.

Proof. Consider the following plane triangulation containing a path s1, s2, . . . , sk of length
k = n − 5 = Ω(n) (see Figure 3). The plane triangulation is 3-degenerate, and hence by
Lemma 18, it has a unique 3-orientation: By diagonal flipping the edge uv and subsequently

Figure 3 The plane triangulation along with its unique 3-orientation.

the edge s1x, one gets a new plane triangulation. It is again 3-degenerate, and hence by
Lemma 18 it has a unique 3-orientation. (see Figure 4). By diagonally flipping the same
edges in the opposite order, one reclaims the original graph. The new 3-orientation has
Ω(n) edges oriented differently compared to the original 3-orientation, but it only requires a
constant number of diagonal flips to go between the two graphs. Hence, a constant number
of flips forces A to change the orientation of Ω(n) edges, and thus, the update time for the
diagonal flip operation must be Ω(n), even amortised, as one can force this update sequence
as many times as desired. ◀

MFCS 2022

34:12 On Dynamic α + 1 Arboricity Decomposition and Out-Orientation

Figure 4 Going between two unique 3-orientations.

3-Bounded Out-Orientations. The goal now is to extend this lower bound to 3-bounded out-
degree orientations of planar graphs under insertion/deletion of edges. There are only three
things to consider before doing such an extension. Firstly, now we support the operations
insertion/deletion of edges and not the diagonal flip. This is however a non-issue since a
diagonal flip can be simulated by first deleting the edge and then inserting the other diagonal.
Secondly, we now consider 3-bounded out-degree orientations and so outer vertices also have
out-edges, and not all inner vertices are required to have out-degree 3. Lastly, the lower
bound should apply not only to plane graphs where an embedding is chosen, but also to
planar graphs. We deal with the last two points by using at least 13 copies of the graph from
above. Then, in at least one of the copies, all inner vertices must have out-degree 3 - both
before and after a sequence of updates. Hence, we can do the aforementioned updates in all
13 copies, and this will then ensure that at least one copy has to behave as in Lemma 19.
Now, we show Theorem 5:

▶ Theorem 20 (Identical to Theorem 5). Let A be an algorithm explicitly maintaining a
3-bounded out-degree orientation of an n-vertex planar graph under insertion and deletion of
edges. Then there exists a sequence of updates taking Ω(n) amortised time per update.

Proof. Create a planar graph G by placing 13 copies of the graph P from the proof of
Lemma 19 in the plane, and triangulating the outside arbitrarily. Let n = |V (G)|. For each
copy Pi of P , we let the set Ii resp. Oi be the set of vertices that are inner resp. outer
vertices of Pi, if Pi is embedded as in Lemma 19. In particular, for a specific copy of P , say
Pi, the corresponding set Ii has size |Ii| = n

13 − 3 = Ω(n). Since G is a plane triangulation,
it follows from Euler’s Theorem that |E(G)| = 3n − 6. This implies that at most 6 vertices
of G can have out-degree strictly less than 3. Hence, in at least 7 of the 13 copies of P ,
every vertex in I has out-degree 3. Since the O vertices of each of these specific copies of P

form a triangle, it follows from Lemma 18 that the edges incident to I must have the same
orientation as in the plane embedding in Lemma 19 and that this orientation is unique.

Now, we simulate the flip sequence used in Lemma 19 in each copy. Doing this in all
13 copies only requires 26 insertions and 26 deletions in total. After these alterations, it
is still the case that in at least 7 of the 13 copies of P every vertex in I has out-degree 3.
Furthermore, since the O vertices of each of these specific copies of P form a triangle, it
follows from Lemma 18 that the edges incident to I must have the same orientation as in
the altered plane embedding in Lemma 19 and that this orientation is unique. At least one
copy Pi of P has out-degree 3 at every vertex in Ii in both the orientation before and in

A. B. G. Christiansen, J. Holm, E. Rotenberg, and C. Thomassen 34:13

the orientation after the update sequence. Consequentially, A must have reoriented at least
|Ii| − 3 = Ω(n) edges during the update sequence. The update sequence consists of only a
constant number of updates, and it can be reversed by first deleting uv and re-inserting it
across the opposite diagonal in each copy, and then doing the same for sky in every copy of
P . Each reversal of the update sequence, requires only a constant number of updates, but
forces A to change at least Ω(n) edge-orientations. It follows that there exists a sequence of
updates taking Ω(n) amortised time per update. ◀

6 Conclusion

We have shown how to dynamically maintain 4-bounded out-orientations and 4-arboricity
decompositions with sublinear update time. We extended these algorithms to compute α + 1-
bounded out-orientations and arboricity decompositions in α-arboricity bounded dynamic
graphs. Finally, we also showed that maintaining a 3-bounded out-orientation of a planar
graph explicitly, must take Ω(n) update time, even amortised. This extends the explicit
lower bound of Brodal & Fagerberg to the planar case.

It would be interesting to see, if one can maintain α + 1 out-edges or forests in sub-
polynomial time. Results of Brodal & Fagerberg [9] and Harris et al. [21] show that the
problems of maintaining α + 1 out-edges resp. forests have O(α log n) recourse – how close
to this worst-case recourse can one get the update times?

References
1 Oswin Aichholzer, Franz Aurenhammer, and Günter Rote. Optimal graph orientation with

storage applications. SFB-Report , SFB ’Optimierung und Kontrolle’. TU Graz, 1995. Reportnr.:
F003-51.

2 Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Maintaining
information in fully dynamic trees with top trees. ACM Trans. Algorithms, 1(2):243–264,
October 2005. doi:10.1145/1103963.1103966.

3 Srinivasa Rao Arikati, Anil Maheshwari, and Christos D. Zaroliagis. Efficient computation
of implicit representations of sparse graphs. Discret. Appl. Math., 78(1-3):1–16, 1997. doi:
10.1016/S0166-218X(97)00007-3.

4 Niranka Banerjee, Venkatesh Raman, and Saket Saurabh. Fully dynamic arboricity mainten-
ance. In Computing and Combinatorics – 25th International Conference, COCOON 2019,
Xi’an, China, July 29-31, 2019, Proceedings, volume 11653 of Lecture Notes in Computer
Science, pages 1–12. Springer, 2019. doi:10.1007/978-3-030-26176-4_1.

5 Edvin Berglin and Gerth Stolting Brodal. A Simple Greedy Algorithm for Dynamic Graph
Orientation. In 28th International Symposium on Algorithms and Computation (ISAAC
2017), volume 92 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–
12:12, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.ISAAC.2017.12.

6 Markus Blumenstock. Fast algorithms for pseudoarboricity. In Proceedings of the Eighteenth
Workshop on Algorithm Engineering and Experiments, ALENEX 2016, Arlington, Virginia,
USA, January 10, 2016, pages 113–126. SIAM, 2016. doi:10.1137/1.9781611974317.10.

7 Markus Blumenstock and Frank Fischer. A constructive arboricity approximation scheme. In
SOFSEM 2020: Theory and Practice of Computer Science – 46th International Conference
on Current Trends in Theory and Practice of Informatics, SOFSEM 2020, Limassol, Cyprus,
January 20-24, 2020, Proceedings, volume 12011 of Lecture Notes in Computer Science, pages
51–63. Springer, 2020. doi:10.1007/978-3-030-38919-2_5.

8 Enno Brehm. 3-orientations and schnyder 3-tree-decompositions, 2000.

MFCS 2022

https://doi.org/10.1145/1103963.1103966
https://doi.org/10.1016/S0166-218X(97)00007-3
https://doi.org/10.1016/S0166-218X(97)00007-3
https://doi.org/10.1007/978-3-030-26176-4_1
https://doi.org/10.4230/LIPIcs.ISAAC.2017.12
https://doi.org/10.4230/LIPIcs.ISAAC.2017.12
https://doi.org/10.1137/1.9781611974317.10
https://doi.org/10.1007/978-3-030-38919-2_5

34:14 On Dynamic α + 1 Arboricity Decomposition and Out-Orientation

9 Gerth Stolting Brodal and Rolf Fagerberg. Dynamic representations of sparse graphs. In In
Proc. 6th International Workshop on Algorithms and Data Structures (WADS), pages 342–351.
Springer-Verlag, 1999.

10 Aleksander B. G. Christiansen. Dynamic algorithms for implicit vertex-colouring of graphs
with bounded arboricity. Master’s thesis, Technical University of Denmark, Kgs. Lyngby,
Denmark, October 2021.

11 Aleksander B. G. Christiansen and Eva Rotenberg. Fully-dynamic α + 2 arboricity decom-
positions and implicit colouring. In ICALP, volume 229 of LIPIcs, pages 42:1–42:20. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

12 Marek Chrobak and David Eppstein. Planar orientations with low out-degree and compaction
of adjacency matrices. Theor. Comput. Sci., 86(2):243–266, 1991.

13 Giuseppe Di Battista and Roberto Tamassia. Incremental planarity testing (extended abstract).
In 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park,
North Carolina, USA, 30 October – 1 November 1989, pages 436–441, 1989. doi:10.1109/
SFCS.1989.63515.

14 Jack Edmonds. Minimum partition of a matroid into independent subsets. Journal of Research
of the National Bureau of Standards Section B Mathematics and Mathematical Physics, page 67,
1965.

15 David Eppstein. Arboricity and bipartite subgraph listing algorithms. Inf. Process. Lett.,
51(4):207–211, August 1994. doi:10.1016/0020-0190(94)90121-X.

16 David Eppstein. Dynamic generators of topologically embedded graphs. In Proceedings of
the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 12-14, 2003,
Baltimore, Maryland, USA., pages 599–608, 2003. URL: http://dl.acm.org/citation.cfm?
id=644108.644208.

17 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator based
sparsification: I. planarity testing and minimum spanning trees. Journal of Computer and
Systems Sciences, 52(1):3–27, February 1996. doi:10.1006/jcss.1996.0002.

18 Harold Gabow and Herbert Westermann. Forests, frames, and games: Algorithms for matroid
sums and applications. In Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, STOC ’88, pages 407–421, New York, NY, USA, 1988. Association for Computing
Machinery.

19 Harold N. Gabow. Algorithms for graphic polymatroids and parametric s-sets. In Proceedings
of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’95, pages 88–97,
USA, 1995. Society for Industrial and Applied Mathematics.

20 Zvi Galil, Giuseppe F. Italiano, and Neil Sarnak. Fully dynamic planarity testing with
applications. Journal of the ACM, 46(1):28–91, 1999. doi:10.1145/300515.300517.

21 David G. Harris, Hsin-Hao Su, and Hoa T. Vu. On the locality of nash-williams forest
decomposition and star-forest decomposition. In Avery Miller, Keren Censor-Hillel, and
Janne H. Korhonen, editors, PODC ’21: ACM Symposium on Principles of Distributed
Computing, Virtual Event, Italy, July 26-30, 2021, pages 295–305. ACM, 2021. doi:10.1145/
3465084.3467908.

22 Meng He, Ganggui Tang, and N. Zeh. Orienting dynamic graphs, with applications to maximal
matchings and adjacency queries. In ISAAC, 2014.

23 Monika Henzinger, Stefan Neumann, and Andreas Wiese. Explicit and implicit dynamic
coloring of graphs with bounded arboricity. CoRR, abs/2002.10142, 2020. arXiv:2002.10142.

24 Jacob Holm and Eva Rotenberg. Fully-dynamic planarity testing in polylogarithmic time. In
Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC
2020, Chicago, IL, USA, June 22-26, 2020, pages 167–180. ACM, 2020. doi:10.1145/3357713.
3384249.

25 Jacob Holm and Eva Rotenberg. Worst-case polylog incremental spqr-trees: Embeddings,
planarity, and triconnectivity. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January
5-8, 2020, pages 2378–2397. SIAM, 2020. Full version: arXiv:1910.09005. doi:10.1137/1.
9781611975994.146.

https://doi.org/10.1109/SFCS.1989.63515
https://doi.org/10.1109/SFCS.1989.63515
https://doi.org/10.1016/0020-0190(94)90121-X
http://dl.acm.org/citation.cfm?id=644108.644208
http://dl.acm.org/citation.cfm?id=644108.644208
https://doi.org/10.1006/jcss.1996.0002
https://doi.org/10.1145/300515.300517
https://doi.org/10.1145/3465084.3467908
https://doi.org/10.1145/3465084.3467908
http://arxiv.org/abs/2002.10142
https://doi.org/10.1145/3357713.3384249
https://doi.org/10.1145/3357713.3384249
https://arxiv.org/abs/1910.09005
https://doi.org/10.1137/1.9781611975994.146
https://doi.org/10.1137/1.9781611975994.146

A. B. G. Christiansen, J. Holm, E. Rotenberg, and C. Thomassen 34:15

26 Giuseppe F. Italiano, Johannes A. La Poutré, and Monika Rauch. Fully dynamic planarity
testing in planar embedded graphs (extended abstract). In Algorithms – ESA ’93, First Annual
European Symposium, Bad Honnef, Germany, September 30 – October 2, 1993, Proceedings,
pages 212–223, 1993. doi:10.1007/3-540-57273-2_57.

27 Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon. Orienting fully dynamic
graphs with worst-case time bounds. In Automata, Languages, and Programming – 41st
International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings,
Part II, volume 8573 of Lecture Notes in Computer Science, pages 532–543. Springer, 2014.
doi:10.1007/978-3-662-43951-7_45.

28 Łukasz Kowalik. Approximation scheme for lowest outdegree orientation and graph density
measures. In Proceedings of the 17th International Conference on Algorithms and Computation,
ISAAC’06, pages 557–566, Berlin, Heidelberg, 2006. Springer-Verlag. doi:10.1007/11940128_
56.

29 Łukasz Kowalik. Adjacency queries in dynamic sparse graphs. Inf. Process. Lett., 102(5):191–
195, May 2007. doi:10.1016/j.ipl.2006.12.006.

30 Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving
linear programs in Õ(vrank) iterations and faster algorithms for maximum flow. In 2014
IEEE 55th Annual Symposium on Foundations of Computer Science, pages 424–433, 2014.
doi:10.1109/FOCS.2014.52.

31 Aleksander Madry. Navigating central path with electrical flows: From flows to matchings,
and back. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages
253–262, 2013. doi:10.1109/FOCS.2013.35.

32 C. St.J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal of the London
Mathematical Society, s1-36(1):445–450, 1961. doi:10.1112/jlms/s1-36.1.445.

33 C. St.J. A. Nash-Williams. Decomposition of finite graphs into forests. Journal of the London
Mathematical Society, s1-39(1):12–12, 1964. doi:10.1112/jlms/s1-39.1.12.

34 Jean-Claude Picard and Maurice Queyranne. A network flow solution to some nonlinear 0-1
programming problems, with applications to graph theory. Networks, 12(2):141–159, 1982.
doi:10.1002/net.3230120206.

35 Johannes A. La Poutré. Alpha-algorithms for incremental planarity testing (preliminary
version). In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing,
23-25 May 1994, Montréal, Québec, Canada, pages 706–715, 1994. doi:10.1145/195058.
195439.

36 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. In Proceedings
of the Thirteenth Annual ACM Symposium on Theory of Computing, STOC ’81, pages 114–122,
New York, NY, USA, 1981. Association for Computing Machinery. doi:10.1145/800076.
802464.

37 Shay Solomon and Nicole Wein. Improved dynamic graph coloring. ACM Trans. Algorithms,
16(3), June 2020. doi:10.1145/3392724.

38 Jeffery Westbrook. Fast incremental planarity testing. In Automata, Languages and Pro-
gramming, 19th International Colloquium, ICALP92, Vienna, Austria, July 13-17, 1992,
Proceedings, pages 342–353, 1992. doi:10.1007/3-540-55719-9_86.

MFCS 2022

https://doi.org/10.1007/3-540-57273-2_57
https://doi.org/10.1007/978-3-662-43951-7_45
https://doi.org/10.1007/11940128_56
https://doi.org/10.1007/11940128_56
https://doi.org/10.1016/j.ipl.2006.12.006
https://doi.org/10.1109/FOCS.2014.52
https://doi.org/10.1109/FOCS.2013.35
https://doi.org/10.1112/jlms/s1-36.1.445
https://doi.org/10.1112/jlms/s1-39.1.12
https://doi.org/10.1002/net.3230120206
https://doi.org/10.1145/195058.195439
https://doi.org/10.1145/195058.195439
https://doi.org/10.1145/800076.802464
https://doi.org/10.1145/800076.802464
https://doi.org/10.1145/3392724
https://doi.org/10.1007/3-540-55719-9_86

	1 Introduction
	1.1 Results
	1.2 Related Work
	1.3 Paper Outline

	2 Preliminaries & Notation
	3 Low Out-orientations
	4 Low Arboricity Decompositions
	5 Dynamic 3-Out Orientations in planar graphs
	6 Conclusion

