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—— Abstract

Coherent control of quantum computations can be used to improve some quantum protocols and
algorithms. For instance, the complexity of implementing the permutation of some given unitary
transformations can be strictly decreased by allowing coherent control, rather than using the
standard quantum circuit model. In this paper, we address the problem of optimising the resources
of coherently controlled quantum computations. We refine the PBS-calculus, a graphical language
for coherent control which is inspired by quantum optics. In order to obtain a more resource-sensitive
language, it manipulates abstract gates — that can be interpreted as queries to an oracle — and
more importantly, it avoids the representation of useless wires by allowing unsaturated polarising
beam splitters. Technically the language forms a coloured PROP. The language is equipped with an
equational theory that we show to be sound, complete, and minimal.

Regarding resource optimisation, we introduce an efficient procedure to minimise the number of
oracle queries of a given diagram. We also consider the problem of minimising both the number of
oracle queries and the number of polarising beam splitters. We show that this optimisation problem
is NP-hard in general, but introduce an efficient heuristic that produces optimal diagrams when at
most one query to each oracle is required.
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1 Introduction

Most models of quantum computation (like quantum circuits) and most quantum program-
ming languages are based on the quantum data/classical control paradigm. In other words,
based on a set of quantum primitives (e.g. unitary transformations, quantum measurements),
the way these primitives are applied on a register of qubits is either fixed or classically
controlled.

However, quantum mechanics offers more general control of operations: for instance in
quantum optics it is easy to control the trajectory of a system, like a photon, based on its
polarisation using a polarising beam splitter. One can then position distinct quantum primit-
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Figure 1 [Left] Coherently controlled quantum computation for solving the commuting problem.
Ounly two queries are used: one query to U and one query to V. [Right] Optimal circuit for solving
the commuting problem, where the 3-qubit gate is a control-swap. Notice that three queries are
necessary in the quantum circuit model.

ives on the distinct trajectories. Since the polarisation of a photon can be in superposition,
it achieves some form of quantum control, called coherent control: the quantum primitives
are applied in superposition depending on the state of another quantum system. Coherent
control is not only a subject of interest for foundations of quantum mechanics [21, 26, 33], it
also leads to advantages in solving computational problems [18, 4, 14, 27] and in designing
more efficient protocols [19, 9, 1, 17, 20].

Indeed, some problems can be solved more efficiently by using coherent control rather than
the usual quantum circuits. This separation has been proved in a multi-oracle model where
the measure of complexity is the number of queries to (a single or several distinct) oracles,
which are generally unitary maps. The simplest example is the following problem [9]: given
two oracles U and V with the promise that they are either commuting or anti-commuting,
decide whether U and V are commuting or not. This problem can be solved using the
so-called quantum switch [10] which can be implemented using only two queries by means of
coherent control, whereas solving this problem requires at least 3 queries (e.g. two queries to
U and one query to V) in the quantum circuit model (see Figure 1).

In this paper, we address the problem of optimising resources of coherently controlled
quantum computations. To do so, we first refine the framework of the PBS-calculus — a
graphical language for coherently controlled quantum computation — to make it more resource-
sensitive. Then, we consider the problem of optimising the number of queries, and also the
number of polarising beam splitters, of a given coherently controlled quantum computation,
described as a PBS-diagram.

PBS-calculus. The PBS-calculus is a graphical language that has been introduced [12] to
represent and reason about quantum computations involving coherent control of quantum
operations. Inspired by quantum optics [11], the polarising beam splitter (PBS for short),
denoted K is at the heart of the language: when a photon enters the PBS, say from the
top left, it is reflected (and hence outputted on the top right) if its polarisation is vertical; or
transmitted (and hence outputted on the bottom right) if its polarisation is horizontal. If
the polarisation is a superposition of vertical and horizontal, the photon is outputted in a
superposition of two positions. As a consequence, the trajectory of a particle, say a photon,
will depend on its polarisation. The second main ingredient of the PBS-calculus are the
gates, denoted which applies some transformation U on a data register. Notice that
the gates never act on the polarisation of the particle.

PBS-diagrams, which form a traced symmetric monoidal category (more precisely a traced
prop [24]), are equipped with an equational theory that allows one to transform a diagram.
The equational theory has been proved to be sound, complete, and minimal [12].

Notice that a PBS-diagram may have some useless wires, like in the example of the “half
quantum switch”, see Figure 2 (left). We refine the PBS-calculus in order to allow one to
remove these useless wires, leading to unsaturated PBS (or 3-leg PBS) like & or & .
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Figure 2 A coherent control of U and V, also called a half quantum switch: when the initial
polarisation is vertical (V), U is applied on the data register, when the polarisation is horizontal
(H), V is applied. Whatever the polarisation is, the particle always goes out of the top port of the
second beam splitter. On the right-hand side the diagram is made of beam splitters with a missing
leg, whereas on the left-hand side standard beam splitters are used, and a useless trace is added.

To avoid ill-formed diagrams like m, a typing discipline is necessary. To this end,
we use the framework of coloured props: each wire has 3 possible colours: black, red and
blue which can be interpreted as follows: a photon going through a blue (resp. red) wire
must have a horizontal (resp. vertical) polarisation.

The introduction of unsaturated polarising beam splitters requires to revisit the equational
theory of the PBS-calculus. The heart of the refined equational theory is the axiomatisation of
the 3-leg polarising beam splitters, together with some additional equations which govern how
4-leg polarising beam splitters can be decomposed into 3-leg ones. To show the completeness
of the refined equational theory, we introduce normal forms and show that any diagram can
be put in normal form. Finally, we also show the minimality of the equational theory by
proving that none of the equations can be derived from the other ones.

Resource Optimisation. The PBS-calculus, thanks to its refined equational theory, provides
a way to detect and remove dead-code in a diagram. We exploit this property to address
the crucial question of resource optimisation. We introduce a specific form of diagrams that
minimises the number of gates, more precisely the number of queries to oracles, with an
appropriate modelisation of oracles. We provide an efficient procedure to transform any
diagram into this specific form. We then focus on the problem of optimising both the number
of queries and the number of polarising beam splitters. We refine the previous procedure,
leading to an efficient heuristic. We show that the produced diagrams are optimal when every
oracle is queried at most once, but might not be optimal in general. We actually show that
the general optimisation problem is NP-hard using a reduction from the mazimum FEulerian
cycle decomposition problem [8].

Related work. Several languages have been designed to represent coherently controlled
quantum computation: some of them are extensions of quantum circuits, and other dia-
grammatic languages [30, 5, 31, 29]; others are based on abstract programming languages
[2, 32, 16, 15, 6]. While there are numerous works on resource-optimisation of quantum
computation, in particular for quantum circuits [23, 3, 25|, there was, up to our knowledge,
no procedure for resource optimisation of coherently controlled quantum computation.

All omitted proofs can be found in the preprint version of the paper [13].

2 Coloured PBS-diagrams

We use the formalism of traced coloured props (i.e. small traced symmetric strict monoidal
categories whose objects are freely spanned by the elements of a set of colours) to represent
coherently controlled quantum computations. We are going to use the “colours” v, h, T, to
denote respectively vertical, horizontal or possibly both polarisations.
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Figure 3 (Left) An example of diagram of type T@ T @®vdh - Tdh® T & v. (Right) An
example of a diagram of type TAVvHAhETHh —>hETAvH T dh, in a particular form that we
will call normal form (see Definition 15).

» Definition 1. Given a monoid M, let DiagwI be the traced coloured prop with colours
{v,h, T} freely generated by the following generators, for any U € M:

B:S TeT—>TaT B8 TOvo>vaeT B3 T—hov
& hoT—haT & veToTaev & vohT
RS Teéh—Tah RS T—=vdh B hev—T
- T—>T (= v—h (- h—v
T>T Vv h—h

The morphisms of Diag'vI are called M-diagrams or simply diagrams when M is irrelevant
or clear from the context. Intuitively, the diagrams are inductively obtained by compos-
ition of the generators from Definition 1 using the sequential composition Dy o Dy, the
parallel composition D3 & Dy, and the trace Try(D) which are respectively depicted as

follows: @ . Notice that these compositions should type-check,
Dyl d

ie. Dy:a—=bDy:b—cand D:a®d— bdd withd € {T,v,h}. The axioms of
the traced coloured prop guarantee that the diagrams are defined up to deformation: two
diagrams whose graphical representations are isomorphic are equal.

Regarding notations, we use actual colours for wires: blue for h-wires, red for v-wires,
and black for T-wires. We also add labels on the wires, which are omitted when clear from
the context, so that there is no loss of information in the case of a colour-blind reader or
black and white printing. Two examples of diagrams are given in Figure 3.

Unless specified, the unit of M is denoted I and its composition is - which will be generally
omitted (VU rather than V - U). The main two examples of monoids we consider in the rest
of the paper are:

The monoid U(H) of isometries of a Hilbert space H with the usual composition. When
H is of finite dimension, the elements of U(H) are unitary maps. With a slight abuse of
notations, the corresponding traced coloured prop of diagrams is denoted DiagH.

The free monoid G* on some set G. The gates, when the monoid is freely generated, can
be interpreted as queries to oracles (each element of G corresponds to an oracle): the
gates implement a priori arbitrary operations with no particular structures. We use the
term abstract diagram when the underlying monoid is freely generated. Notice that the
free monoid case can also be seen as an extension of the bare diagrams [7] whose gates
are labelled with names.



A. Clément and S. Perdrix

3 Semantics

The input of a diagram is a single particle, which has a polarisation, a position and a data
register. A basis state for the polarisation is either vertical or horizontal, and a basis state for
the position is an integer which corresponds to the wire on which the particle is located. The
type of a diagram restricts the possible input/output configurations: if D : v6T - h@hodv
then the possible input (resp. output) configurations are the following polarisation-position
pairs: {(V,0),(V,1),(H,1)} (resp. {(H,0),(H,1),(V,2)}). More generally for any object
a, let [a] be the set of possible configurations, and |a| be its size, inductively defined as
follows: [I| =0, la® T|=la®v|=|la®h|=|a|+1,and [I] =0, [a® V] = [a] U{(V,]a])},
la @ b] = [a] U {(H, |al)} and [a® T] = [a] U {(V, |al), (HL |a])}.

The semantics of a M-diagram D : a — b is a map [a] — [b] x M which associates with
an input configuration (¢, p), an output configuration (¢/,p’) and a side effect Uy, ...U; € M
which represents the action applied on a data register of the particle. Thus the semantics of
a diagram can be formulated as follows:

» Definition 2. Given an M-diagram D : a — b, let [D] : [a] — [b] x M be inductively defined
as: VDy:a—=b,Dy:b—d,Ds:d—e,Dy:a®f—bd f, where f € {T,v,h}:

RS
[ &

a B (V,0) —
MH]—{(H

,0) = ((V,0),1)

(V,0) = ((V,0), - V1) = ((V,0),1)
- ]]_{(H,l):((u , [[k]]_{HJ) > ((H,0),1)
[x] - o {EEZ’?’Z) b [>] = er-nn
[ = @ = (0.0 o> ((EL0),
[[

U] = (©,0) = ((¢,0),0)

[D1] (e, p) if p <|al

D20D1 = DQ o D1
Sa([Ds] (¢,p — |a])) otherwise [[ I=1De D]

[D1 ® Ds] = (¢,p) = {
IID4H (Cap) Zf WPOS(HD‘l]] (C,p)) < ‘bl
[Da] 0 Sa—s([D4] (¢, p))

if Tpos([Da] © Sa—s([D4] (e, p))) < [b] < Tpos([D4] (¢, p))
[Da] 0 Sa—s([Da] © Sa—s([D4] (¢,p))) otherwise

[Trs(Da)] = (¢, p) =

where the composition is: go f(c,p) = ((¢,p"), U'U) with f(c,p) = ((¢,p),U) and g(c,p') =
(", p"),U"); Tpos = [a] x M = N = ((¢,p),U) — p is the projector on the position, and
Se: D] XM = [a®b] x M= ((¢,p),U) — ((e,p+al]),U) and Sa—p : [b] x M — [a] x M =
((¢,p),U) — ((c,p+ |a| — |b]),U) shift the position.

Given D : a — b and (c,p) € [a], we denote respectively by cgp, pgp and Uc[,)p the
polarisation, the position and the element of M, such that [D] (¢,p) = ((c2,, pE,),UL,). In
the case where M is the free monoid G*, its elements can be seen as words, so we will use the

: D D
notation w.,, instead of Ug,.
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Notice that the semantics of the trace is not defined as a fixed point but as a finite number
of unfoldings. Indeed, like for PBS-diagrams, one can show that any wire of a diagram is
used at most twice, each time with a distinct polarisation.

» Proposition 3. [.] is well defined, i.e. the axioms of the traced coloured prop are sound
and the semantics of the trace is well defined.

3.1 Quantum semantics

Any diagram whose underlying monoid consists of linear maps, admits a quantum semantics
defined as follows:

» Definition 4 (Quantum semantics). Given a monoid M of linear maps (with the standard
composition) on a complex vector space V, for any M-diagram D : a — b the quantum
semantics of D is the linear map Vp : ClY @V — CPl @V = |c, p)@|p) — |l pL,) QUL |9).

c,p?

The diagrams in Diag’ are valid by construction, in the sense that their semantics are
valid quantum evolutions:

» Proposition 5. For any D € Diag™, Vp : Cll @ # — C¥ @ H is an isometry.
Note that [D] = [D']] implies Vp = Vp; the converse is true if and only if 0 ¢ M:

» Proposition 6. Given a monoid M of complex linear maps, we have YD, D', [D] = [D'] &
Vp = Vpr, if and only if 0 ¢ M.

In particular, two diagrams in DiagH have the same action semantics if and only if they
have the same quantum semantics.

3.2 Interpretation

Given a monoid homomorphism v : M — M’, one can transform any M-diagram into a
M’-diagram straightforwardly, by applying v on each gate of the diagram:

» Definition 7. Given a M-diagram D : a — b and a monoid homomorphism v: M — M/,
we define its y-interpretation v(D) : a — b as the M'-diagram obtained by applying v to each
gate of D. It is defined inductively as: (< ta—a)= W» :a — a, for any other
generator g, v(g9) = g, v(Dz o D1) = v(D2) o ¥(D1), (D1 ® D2) = v(D1) @ v(D2), and
V(Tre(D)) = Tre(y(D)).

» Proposition 8. Any M-diagram is the interpretation of an abstract diagram.

It is easy to see that the action of monoid homomorphisms on diagrams is well-behaved
with respect to the semantics:

» Proposition 9. Given any M-diagram D : a — b and any monoid homomorphism
7 M = M, for any configuration (c,p) € [a], if [D] (c:p) = ((¢',#/),U) then [y(D)] (¢, p) =
((¢,p"),~(U)).

As a consequence, given two abstract diagrams Dy, Dy € Diagg*7 if [D1] = [D2] then
for any homomorphism 7 : G* — M, [v(D1)] = [y(D2)]. The converse is not true in general.
Notice that in the framework of graphical languages an equation holds in graphical languages
for traced symmetric (resp. dagger compact closed) monoidal categories if and only if it
holds in finite-dimensional vector (resp. Hilbert) spaces [22, 28]. We prove a similar result
by showing that interpreting abstract diagrams using 2-dimensional Hilbert spaces is enough
to completely characterise their semantics:
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» Proposition 10. Given a Hilbert space H of dimension at least 2 and a set G, VD1, Dy €
Diag?", there exists a monoid homomorphism v: G* — U(H) s.t. [D1] = [D2] < [v(D1)] =
[v(D2)]-

A stronger result, where the homomorphism ~ is independent of the diagrams, is also
true, assuming the axiom of choice:

» Proposition 11. Given a Hilbert space H of dimension at least 2, and a set G of cardinality
at most the cardinality of U(H), there exists a monoid homomorphism v: G* — U(H) s.t.
VD1, Dy € Diag? , [D1] = [Da] & [y(D1)] = [v(D2)].

» Remark 12. Notice that the cardinality of 2(#) is max(2%0, 24m(*H)) (where 2% is the car-
dinality of R).

4 Equational theory

In this section, we introduce an equational theory which allows one to transform any M-
diagram into an equivalent one. Indeed, all the equations we present in this section preserve
the semantics of the diagrams (see Proposition 14).

These equations are summarised in Figure 4. They form what we call the CPBS-calculus:

» Definition 13 (CPBS-calculus). Two M-diagrams D1, Dy are equivalent according to the
rules of the CPBS-calculus, denoted CPBS - D1 = Ds, if one can transform Di into Do
using the equations given in Figure 4. More precisely, CPBS F - = - is defined as the smallest
congruence which satisfies equations of Figure 4 in addition to the axioms of coloured traced

prop.

v - v (1) G @ * (7) X _ w{; (13)

oV = o @) o= 8) o

oA

=1 CHES NS SN

Figure 4 Axioms of the CPBS-calculus. U,V € M. Equations (1) and (2) reflect the monoid
structure of M; Equations (3) to (5) show how the three generators commute; Equation (6) means
that a disconnected diagram (with no inputs/outputs) can be removed; Equations (7) to (10) witness
the fact that the negation and the 3-leg PBS are invertible; Equations (11) and (12) are essentially
topological rules; Equations (13) to (17) show how 4-leg PBS can be decomposed into 3-leg PBS.
Notice in particular that the other rules do not use 4-leg PBS, as a consequence one could define the
language using 3-leg PBS only and see the 4-leg PBS as syntactic sugar.
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Figure 5 An example of a CPBS-diagram (left) and its equivalent diagram in normal form (right).

Notice that the CPBS-calculus subsumes the PBS-calculus: the fragment of monochro-
matic (black) H-diagrams of the CPBS-calculus coincides with the set of PBS-diagrams,
moreover, for any two PBS-diagrams D1, Dy, PBS - Dy = D5 if and only if CPBS F Dy = Ds.

» Proposition 14 (Soundness). For any two M-diagrams Dy and Ds, if CPBS F Dy = Dy
then [[Dlﬂ = [[Dgﬂ

We introduce normal forms, that will be useful to prove that the equational theory is
complete, and will also play a role in optimising the number of gates in a diagram in Section 5.

» Definition 15. A diagram is said to be in normal form if it is of the form MoPoFoGoS,
where:
S is of the form by @ --- ® by, where each b; is either Y, - or &
G is of the form g1 ® - - - @ gi, where each g; is either ¥, B or or
with U; # 1
F is of the form ny @ - - - ® ny, where each n; is either -, B Y& — or LEH—
P is a permutation of the wires, that is, a trace-free diagram in which all generators are
identity wires or swaps
M s of the form wy @ - - - ® Wy, where each w; is either ~— , 2 or & .

For example, the diagram shown in Figure 8 (right) is in normal form.

» Theorem 16. For any M-diagram D, there exists a M-diagram in normal form N such
that CPBS+ D = N.

Note that the structure of the normal form as well as the proof of Theorem 16 use in
an essential way the removal of useless wires made possible by the use of colours, and in
particular Equation (10), which has no equivalent in the monochromatic PBS-calculus of [12].
An example of CPBS-diagram and its normal form are given in Figure 5.

Now we use the normal form to prove the completeness of the CPBS-calculus:

» Lemma 17 (Uniqueness of the normal form). For any two diagrams in normal form N and
N', if [N] = [N'] then N = N'.

» Theorem 18 (Completeness). Given any two M-diagrams Dy and Da, if [D1] = [D2] then
CPBSt+ Dy = Ds.

Finally, each equation of Figure 4 is necessary for the completeness:

» Theorem 19 (Minimality). None of the equations of Figure 4 is a consequence of the others.

5 Resource optimisation

We show in this section that the equational theory of the CPBS-calculus can be used for
resource optimisation.
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5.1 Minimising the number of oracle queries

We consider the problem of minimising the number of oracle queries: given a set G of

(distinct) oracles and a G*-diagram D, the objective is to find a diagram D’ equivalent to D

(i.e. [D] = [D’]) such that D’ is using a minimal number of queries to each oracle. Since

there are several oracles, the definition of the optimal diagrams should be made precise.
First, we define the number of queries to a given oracle:

» Definition 20. Given a G*-diagram D, for any U € G, let #y(D) be the number of queries
to U in D, inductively defined as follows: #y(Hw-) = |w|y, #v(g) = 0 for all the other
generators, and #y (D1 @ D2) = #u (D20 D1) = #u(D1) +#u(D2), #u(Tra(D)) = #uv(D),
where |w|y is the number of occurrences of U in the word w € G*.

We can now define a query-optimal diagram as follows:
» Definition 21. A G*-diagram D is query-optimal if VD' € Diagg*, YU € G, [D] = [D']
implies #u (D) < #u(D').

Notice that given a diagram, it is not a priori guaranteed that there exists an equivalent

diagram which is query-optimal, if for instance, all the diagrams which minimise the number
of queries to some oracle U do not minimise the number of queries to another oracle V. We

actually show (Proposition 23) that any diagram can be turned into a query-optimal one.

To this end, we first need a lower-bound on the number of queries to a given oracle:
» Proposition 22 (Lowerbound). For any G*-diagram D :a — b and any U € G, #y(D) >

’LUD
[Z(w})ex C;’IU—‘ where wgp € G* is such that [D] (¢,p) = (c’,p’,wgp).

Notice that Proposition 22 provides a lower bound on the minimal number of queries
to U one can reach in optimising a diagram since the right-hand side of the inequality only
depends on the semantics of the diagram.

We are now ready to introduce an optimisation procedure that transforms any diagram
into an equivalent query-optimal one:

Query optimisation procedure of a G*-diagram D.

1. Transform D into its normal form Dyp. A recursive procedure for doing this can easily
be deduced from the proof of Theorem 16.

2. Split all gates into elementary gates (that is, gates whose label is a single letter), using the
following variants of Equation (2), which are consequences of the equations of Figure 4
(see [13]): VU € G, Yw € G*, w # I:

Hut}- - HoHHul—- (18) A ur}- - “{u}-{m— (19) — —{uHwl— (20)

3. As long as the diagram contains two nonblack gates with the same label, merge them.

To do so, deform the diagram to put one over the other, and apply one of the following
equations, which are also consequences of the equations of Figure 4 :

. o — —
b - ¥ v & ~ (22)
- - Hul-

S @
- < 5 (23) - & 2 (24)
@, @ — —

<

<
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— —
:

Figure 6 Two equivalent diagrams: the diagram on the left is optimal in terms of number of
polarising beam splitters, the diagram on the right is optimal in terms of queries. Notice there is no
equivalent diagram with no polarising beam splitter and at most a single query.

An example of query-optimised diagram is given in Figure 8. The query-optimisation
procedure transforms any diagram into an equivalent query-optimal one:

» Proposition 23. The diagram Dy output by the query optimisation procedure is query-
optimal: for any U and any D' s.t. [D'] = [Do], one has #u (Do) < #u(D’).

Notice that the query-optimisation procedure is efficient: one can naturally define the size
|D| of a diagram D € Diag?  as follows: |“Hwl—| = |wl|, |g| =1 for all the other generators,
and |D1 @ Da| = |Dso D1| = |D1| + |Ds|, |Tre(D)| = |D| + 1. Step 1 of the procedure, which
consists in putting the diagram in normal form, can be done using a number of elementary
equations of Figure 4 which is quadratic in the size of the diagram, the other two steps being
linear. Notice that here we only count the number of basic equations, but it requires also
some diagrammatic transformations, which can be handled efficiently using appropriate data
structures.

5.2 Optimising both queries and PBS

We refine the resource optimisation of a diagram by considering not only the number of
queries but also the number of instructions, and in particular the number of polarising beam
splitters. Notice that the number of beam splitters and the number of queries cannot be
minimised independently, in the sense that there might not exist a diagram that is both
query-optimal and PBS-optimal (see such an example in Figure 6). As the implementation of
an oracle is a priori more expensive than the implementation of a single PBS, we optimise the
number of queries and then the number of PBS in this order, i.e. the measure of complexity
is the lexicographic order number of queries, number of polarising beam splitters.

» Definition 24. A diagram D is query-PBS-optimal if D is query-optimal and for any
query-optimal diagram D’ equivalent to D (i.e. [D] = [D']), #pBs(D) < #pps(D’), where
#pps(D) be the number of PBS of D.

We introduce an efficient heuristic, called PGT procedure that, when applied on a query-
optimal diagram Dy, preserves the number of queries. Moreover, the produced diagram,
called in PGT form (see Figure 7), is query-PBS-optimal when there is at most one query to
each oracle:

» Theorem 25. Any query-optimal diagram in PGT form that does not contain two queries
to the same oracle (i.e. VU € G, #y (D) < 1) is query-PBS-optimal.

The procedure relies on equations of Figure 4, together with easy to derive variants of
these equations. The procedure, with all steps detailed, more pictures and explicit statement
of the variants of the equations, is given in the preprint version of the paper [13].
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Figure 7 Schematic description of a diagram in PGT form (for Permutation, Gates and Traces).

- Bl

- e |-

T e e

A diagram is in PGT form if it is of the form (A), with P of the form (B), and the C; of the forms
depicted on the second line. %)~ denotes either -~ or ~(=— with a € {v,h}, and 01,02 are
permutations of the wires.

PGT procedure. Given a query optimal diagram Dy:

0.

During all the procedure, every time there are two consecutive negations, we remove
them using Equation (7), (8) or their all-black version.

. Deform the gate-optimal diagram Dy to put it in the form (A) with P gate-free. The

goal of the following steps is to put P in stair form.
a

. Split all PBS of the form ;, &  into combinations of & , & , & and &

using Equations (13) to (17).

As long as there are two PBS connected by a black wire, with possibly a black negation
on this wire, push the possibly remaining negation out using Equation (4), and cancel
the PBS together using Equation (10) and its variants. For example:

Cene o (e e

When there are not two such PBS anymore, all black wires are connected to at least one
side of P (possibly through negations), and the PBS are connected together with red and
blue wires with possibly negations on them.

Remove all isolated loops. Note that since Dy is query-optimal, there cannot be loops
containing gates at this point.

. Deform P to put it in the form (B) with the C; of the form @ and o7 and o9

being wire permutations, where () is either - or “-(=)— with a € {v,h}, <& is
either & or & and - iseither & or & .

Remove the negations in the middle of the C; by pushing them to the bottom by means
of variants of Equation (4).

Transform each C;, which is now, up to deformation, a ladder of PBS without negations,

into one of the five kinds of stairs depicted in Figure 7, depending on its type. To do
so, deform it and apply Equations (11) and (12) appropriately, and repeatedly apply the
appropriate equation among (14), (15), (16), and a variant of (13). This gives us Dj.

An example of diagram produced by the PGT procedure is given in Figure 8.
Since the PGT procedure consists in putting a subdiagram of Dg in stair form (except

Step 1 which is just deformation and does not change the number of PBS), this procedure
does not increase the number of PBS in Dy:
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S
e O < & #0

Figure 8 The diagram on the left is the obtained by applying the query-optimisation procedure on
the example of Figure 5. The diagram on the right is (up to deformation) obtained by applying the
PGT procedure to the diagram on the left. Notice that this diagram is both query- and PBS-optimal.

» Proposition 26. The diagram D, output by the PGT procedure contains at most as many
PBS as the initial diagram Dy.

This also implies that given any diagram D, there exists an equivalent query-PBS-optimal
diagram in PGT form. Indeed, by Proposition 23, there exist query-optimal diagrams
equivalent to D, and among these diagrams, some of them have minimal number of PBS
and are therefore query-PBS-optimal. Finally, applying the PGT procedure to one of these
diagrams gives us an equivalent diagram in PGT form, which, since the PGT procedure does
not change the gates or increase the number of PBS, is still query-PBS-optimal.

Applying the PGT procedure after the query optimisation procedure produces an inter-
esting heuristic: the output diagram is necessarily query-optimal and can even be query-
PBS-optimal when it does not contain two queries to the same oracle.

Notice that, like the query optimisation procedure, the PGT procedure is efficient, i.e.
it can be done using a number of elementary graphical transformations (those of Figure 4)
which is linear in the size of the diagram. Moreover, it also requires some diagrammatic
transformations, which can be handled using appropriate data structures, leading to a
quadratic algorithm.

5.3 Hardness
We show in this section that the query-PBS optimisation problem is actually NP-hard.

» Theorem 27. The problem of, given an abstract diagram, finding an equivalent query-
PBS-optimal diagram, is NP-hard.

The proof, given in [13], is based on a reduction from the maximum Eulerian cycle de-
composition problem (MAX-ECD) which is known to be NP-hard [8]. The MAX-ECD
problem consists, given a graph, in finding a partition of its set of edges into the max-
imum number of cycles. Intuitively, the reduction goes as follows: given an Eulerian
graph G = (V = {vy,...vn-1}, E), let o be a permutation of the vertices of the graph s.t.
Vi, (vi,0(v;)) € E (such a o exists since G is Eulerian), we construct a V*-diagram D such
that the number of occurrences of each v; in D is half its degree in G; and such that Vi,
[D] (V,i) = ((V,i),v;) and [D] (H,¢) = ((H,4),0(v;)). Roughly speaking, we show that the
edge-partitions of G into cycles correspond to the possible implementations of D, and that
a partition with a maximal number of cycles leads to an implementation with a minimal
number of PBS.

In the following, we explore a few variants of the problem, which remain NP-hard.

First, query-PBS optimisation is still hard when restricted to negation-free diagrams:

» Corollary 28. The problem of, given a negation-free abstract diagram, finding an equivalent
diagram which is query-PBS-optimal among negation-free diagrams, is NP-hard.

Additionally, it is also hard, in a query-optimal diagram, to optimise the gates and
the negations together by, respectively, defining a cost function (at least in the case where
the negation cost is not less than the PBS), prioritising the negations over the PBS, and
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prioritising the PBS over the negations. Note that the NP-hardness is clear in the third
case since the considered problem is a refinement of the query-PBS-optimisation problem
addressed in Theorem 27.

» Corollary 29. For any o > 1, the problem of, given an abstract diagram D, finding an
equivalent query-optimal diagram D’ such that #pps(D’) + a#t-(D") is minimal, is NP-hard,
where #_(D) is the number of negations in D.

» Corollary 30. The problem of, given an abstract diagram D, finding an equivalent query-
—-PBS-optimal' diagram is NP-hard.

6 Discussions and Future Work

The power and limits of quantum coherent control is an intriguing question. Maybe surpris-
ingly, we have proved that coherently controlled quantum computations, when expressed
in the PBS-calculus, can be efficiently optimised: any PBS-diagram can be transformed in
polynomial time into a diagram that is optimal in terms of oracle queries. We have refined
the procedure to also decrease the number of polarising beam splitters. It leads to an optimal
diagram when each oracle is queried only once, but the corresponding optimisation problem
is NP-hard in general. We leave to future work an experimental evaluation of the PGT
procedure when each oracle is not necessarily queried only once.

To perform the resource optimisation, we have introduced a few add-ons to the framework
of the PBS-calculus. First, we have refined the syntax in order to allow the representation of
unsaturated (or 3-leg) polarising beam splitters. They are essential ingredients for resource
optimisation, as they provide a way to decompose a diagram into elementary components and
then remove the useless ones. However, notice that one can perform resource optimisation
of vanilla PBS-diagrams, using the refined one only as an intermediate language. Indeed,
given a vanilla PBS-diagram (where all wires are black), one can apply the optimisation
procedures described in this paper. The resulting optimised PBS-diagram may contain some
unsaturated PBS, but all these 3-leg PBS can be saturated by adding useless traces and then
one can make the diagram monochromatic. The resulting vanilla PBS-diagram keeps the
same number of queries and PBS.

We have also generalised the gates of the diagrams, by considering arbitrary monoids.
This is a natural abstraction that allows one to consider various examples and in particular
the one of the free monoid which is appropriate to model the oracle queries. The query
complexity is a convenient model to prove lower bounds, but note that the optimisation
procedures described in this paper can be applied with any arbitrary monoid (for instance
using Proposition 8). However, there is no guarantee of minimality with an arbitrary monoid.

Another direction of research is to consider resource optimisation in a more expressive
language for quantum control. Indeed, the polarisation of a particle can only be flipped
within a PBS-diagram. The PBS-calculus is well suited for most applications of coherent
control in quantum computing, by allowing the description of superpositions of classical
controls (in particular superposition of causal orders) since the input particle can be in
any superposition of polarisations. However, it would be interesting to develop resource
optimisation techniques for quantum computation involving arbitrary quantum control.

1 A diagram is query-—-PBS-optimal if it is optimal according to the lexicographic order: the number of
queries then the number of negations and finally the number of polarising beam splitters.
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