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Abstract
We show that the Identity Problem is decidable in polynomial time for finitely generated sub-
semigroups of the group UT(4,Z) of 4 × 4 unitriangular integer matrices. As a byproduct of our
proof, we also show the polynomial-time decidability of several subset reachability problems in
UT(4,Z).
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1 Introduction

Among the most prominent algorithmic problems for matrix semigroups are the Identity
Problem and the Membership Problem. For the Membership Problem, the input is a finite
set of square matrices A1, . . . , Ak and a target matrix A. The problem is to decide whether
A lies in the semigroup generated by A1, . . . , Ak. The Identity Problem is the Membership
Problem restricted to the case where A is the identity matrix. These two problems are closely
related to each other, and, as shown in many circumstances, studying the Identity Problem
is usually the first step in studying the Membership Problem.

For general matrices, the Membership Problem is undecidable by a classical result of
Markov [10]. Indeed, it is one of the earliest undecidability results on algorithmic problems
in matrix semigroups. Most variants of the problem remain undecidable in low dimension.
For example, the Mortality Problem, which is the Membership Problem in which the target
matrix is 0, is undecidable in dimension three [12]. In dimension four, the Membership
Problem is undecidable for matrices in SL(4,Z) (see [11]), while the Identity Problem is
undecidable for the set of 4 × 4 integer matrices M4×4(Z) (see [2]).

However, there has also been steady progress on the decidability side. The Membership
Problem is shown to be decidable for GL(2,Z) in [4]. This decidability result is then extended
to 2 × 2 integer matrices with nonzero determinant [13], and to 2 × 2 integer matrices with
determinants equal to 0 and ±1 [14]. It remains an intricate open problem whether the
Membership Problem or the Identity Problem is decidable for SL(3,Z).

Recently, there has been more progress on closing the decidability gap by restricting
consideration to the class of unitriangular matrices. It has long been known that the
Group Membership Problem is decidable for UT(n,Z), the group of unitriangular integer
matrices of dimension n. The Group Membership Problem asks to decide whether a matrix
A lies in the group generated by given matrices A1, . . . , Ak. In fact, it is decidable for all
finitely generated solvable matrix groups [8]. Later, Babai et al. [1] showed that the Group
Membership Problem for commuting matrices can be computed in polynomial time (note
that commuting matrices are simultaneously upper-triangularizable). However, there are
significant differences between the group case and the semigroup case. In fact, for large
enough n, the Knapsack Problem for UT(n,Z) is undecidable [7]. Given matrices A1, . . . , Ak
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43:2 On the Identity Problem for Unitriangular Matrices of Dimension Four

and A, the Knapsack Problem asks to decide whether there exist natural numbers e1, . . . , ek

such that Ae1
1 · · · Aek

k = A. From the undecidability of the Knapsack Problem, one can deduce
the undecidability of the semigroup Membership Problem for UT(n,Z) for large enough n [9].

Nevertheless, there have been some positive decidability results. The Identity Problem
has been shown to be decidable for the group of 3 × 3 unitriangular integer matrices UT(3,Z)
and the Heisenberg groups H2n+1 in [6]. Shortly after, the decidability result was extended to
the Membership Problem [5]. Ko et al. left open the problem whether the Identity Problem
in UT(n,Z) is decidable for n ≥ 4, as well as finding the smallest n for which the Membership
Problem for UT(n,Z) becomes undecidable.

The main result of this paper is that the Identity Problem is decidable in polynomial time
for UT(4,Z). This further narrows the gap between decidability and undecidability and can be
regarded as a first step towards the Membership Problem for UT(4,Z). The foundation of our
method is the arguments developed in [5] for the Membership Problem of UT(3,Z). However,
in order to pass from dimension three to four, we need to introduce additional methods
from convex geometry, linear programming and even use the aid of computational algebraic
geometry software. The proof for UT(3,Z) heavily relies on the fact that the subgroup
generated by commutators of matrices from a given subset of {A1, . . . , Ak} ⊂ UT(3,Z) is
isomorphic to a subgroup of Z. This is no longer the case for UT(4,Z). However, UT(4,Z)
is still metabelian [15], and its derived subgroup is isomorphic to Z3. Given a finite set
G ⊆ UT(4,Z), we construct elements in ⟨G⟩ that fall inside the derived subgroup of UT(4,Z).
These elements then generate a cone in Z3 under the isomorphism between the derived
subgroup and Z3. The possible shapes of this cone will determine the Identity Problem.

There is strong evidence that the new techniques introduced in this paper can help tackle
the Identity Problem for UT(n,Z) with n ≥ 5.

2 Preliminaries

Denote by UT(4,Z) the group of upper triangular integer matrices with ones on the diagonal:

UT(4,Z) :=




1 a d f

0 1 b e

0 0 1 c

0 0 0 1


∣∣∣∣∣∣∣∣a, b, c, d, e, f ∈ Z

 .

Denote its normal subgroups

U1 :=




1 0 d f

0 1 0 e

0 0 1 0
0 0 0 1


∣∣∣∣∣∣∣∣d, e, f ∈ Z

 , U2 :=




1 0 0 f

0 1 0 0
0 0 1 0
0 0 0 1


∣∣∣∣∣∣∣∣f ∈ Z


in the lower central series: UT(4,Z) ⊵ U1 = [UT(4,Z), UT(4,Z)] ⊵ U2 = [UT(4,Z), U1] (see
[15, Chapter 5]). In particular, U1 and U2 are respectively the derived subgroup and the
centre of UT(4,Z). For convenience, we introduce the following notations:

UT (a, b, c; d, e, f) :=


1 a d f

0 1 b e

0 0 1 c

0 0 0 1

 , U1(d, e, f) := UT (0, 0, 0; d, e, f).

There are surjective group homomorphisms φ0 : UT(4,Z) → Z3 defined by

φ0(UT (a, b, c; d, e, f)) = (a, b, c),
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with ker(φ0) = U1, and φ1 : U1 → Z2,

φ1(U1(d, e, f)) = (d, e),

with ker(φ1) = U2. Moreover, U1 is itself abelian, with a natural isomorphism τ : U1
∼−→ Z3:

τ(U1(d, e, f)) = (d, e, f).

Denote by τd the projection U1(d, e, f) 7→ d, τe the projection U1(d, e, f) 7→ e, and τf the
projection U1(d, e, f) 7→ f . Then, φ1 = (τd, τe) and τ = (τd, τe, τf ).

Finally, define the subgroup of UT(4,Z):

U10 := {U1(0, e, f) | e, f ∈ Z} ⊴ U1.

For a finite set of matrices G = {A1, . . . , Ak}, denote by ⟨G⟩ the semigroup generated by G.
In this paper, we are concerned with the following problems.

▶ Definition 1. Let G be a monoid of matrices, and H a subset of G.
(i) The Identity Problem in G asks, given a finite set of matrices G in G, whether I ∈ ⟨G⟩.

If this is the case, we say that the identity matrix is reachable.
(ii) The H-Reachability Problem in G asks, given a finite set of matrices G in G, whether

H ∩ ⟨G⟩ ̸= ∅. If this is the case, we say that H is reachable.
The main result of this paper is that the Identity Problem in UT(4,Z) is decidable in
polynomial time, with respect to the number of bits required to encode all the entries of the
matrices in G (each matrix UT (a, b, c, d, e, f) is encoded by the entries a, b, c, d, e, f).

It turns out that the three problems: Identity Problem, U2-Reachability and U10-
Reachability are interconnected and it is more convenient to devise algorithms that decide
them simultaneously. A trivial observation is that, because I ∈ U2 ⊂ U10, a positive instance
of the Identity Problem is also a positive instance of U2-Reachability; and a positive instance
of U2-Reachability is also a positive instance of U10-Reachability.

The following definitions will be used throughout this paper.

▶ Definition 2 (String, product and Parikh vector). Let G = {A1, . . . , Ak} be a fixed set of
matrices in UT(4,Z). A string of G is an expression B1B2 · · · Bm such that Bi ∈ G, i =
1, . . . , m. The product of a string B1B2 · · · Bm is the matrix P ∈ UT(4,Z) such that P =
B1B2 · · · Bm. The Parikh vector of a string B1B2 · · · Bm is the vector ℓ = (ℓ1, . . . , ℓk) ∈ Z≥0
where

ℓj = card({i | Bi = Aj}), j = 1, . . . , k.

When G is clear from the context, we simply use the term “string” instead of “string of G”.

For an integer n ≥ 1, the Heisenberg group of dimension 2n + 1 is the group H2n+1 of

(n + 2) × (n + 2) integer matrices of the form H =

1 a c

0 In b⊤

0 0 1

 , where a, b ∈ Zn, c ∈ Z.

The following result comes from [6] and [5].

▶ Lemma 3 ([5, Theorem 7]). The Identity Problem and the Membership Problem in H2n+1
are decidable for all n ≥ 1.

3 Identity problem, U2- and U10-Reachability in UT(4,Z)

In this section, we construct algorithms that decide the Identity Problem, U2-Reachability
and U10-Reachability in UT(4,Z).

MFCS 2022



43:4 On the Identity Problem for Unitriangular Matrices of Dimension Four

3.1 Overview of decision strategy
For any set of vectors v1, . . . , vl ∈ Rn, denote by

⟨v1, . . . , vl⟩R≥0 :=
{

l∑
i=1

rivi

∣∣∣∣∣ri ∈ R≥0, i = 1, . . . , l

}

the R≥0-cone generated by v1, . . . , vl, and by ⟨v1, . . . , vl⟩R the R-vector space spanned by
v1, . . . , vl.

Let G = {A1, . . . , Ak} be a set of matrices in UT(4,Z), for which we want to decide the
Identity Problem, U2-Reachability and U10-Reachability. Define the R≥0-cone

C := ⟨φ0(A1), . . . , φ0(Ak)⟩R≥0 , (1)

and denote by Clin its lineality space, i.e. the largest linear subspace (by inclusion) contained
in C. In particular, Clin = C ∩ −C. A basis of Clin can be effectively computed in polynomial
time [16]. For any matrix Ai ∈ G, the projection φ0(Ai) can be either in Clin or in C \ Clin.
However, in order to reach U1, which contains the identity matrix, U2 and U10, one can only
use matrices Ai with φ0(Ai) ∈ Clin. This is formally stated by the following proposition.

▶ Proposition 4. If the product of a string B1 · · · Bm is in U1, then every Bj , j = 1, . . . m,

must be in the set {Ai ∈ G | φ0(Ai) ∈ Clin}.

Proof. Suppose on the contrary that some Bj satisfies φ0(Bj) ∈ C \ Clin.
Since φ0 is a group homomorphism, we have

B1 · · · Bm ∈ U1 ⇐⇒ φ0(B1 · · · Bm) = 0 ⇐⇒
m∑

i=1
φ0(Bi) = 0.

Therefore, −φ0(Bj) =
∑

i̸=j φ0(Bi) ∈ C.
Hence, the linear subspace φ0(Bj)R = ⟨φ0(Bj), −φ0(Bj)⟩R≥0 is contained in C. This

yields φ0(Bj)R ⊆ Clin, a contradiction to φ0(Bj) ∈ C \ Clin. ◀

The overall strategy for constructing our algorithm is to use induction on card(G). If
card(G) = 0, then the answers to the Identity Problem, U2-Reachability and U10-Reachability
are all negative. Suppose now that we have an algorithm that decides all three problems
for every set of at most k − 1 matrices, we will construct an algorithm that decides them
for a set of k matrices G = {A1, . . . , Ak}. By Proposition 4, if some matrix Ai satisfies
φ0(Ai) ∈ C \Clin, then we can discard it without changing the answer to the Identity Problem
or U2, U10-Reachability. This decreases the number of elements in G, and an algorithm is
available by the induction hypothesis on card(G). Hence, we can suppose that every Ai ∈ G
satisfies φ0(Ai) ∈ Clin, so C = Clin is a linear space.

Since φ0(Ai) ∈ Z3, C is a linear subspace of R3. We identify cases according to the
dimension of C, with each of the following four subsections treating the case of dimension 3,
1, 0, 2. The pseudocode of the decision procedure for the Identity Problem is given here as a
reference point for the detailed case analysis. The decision procedures for U2-reachability
and U10-reachability follow similar patterns and their pseudocode is given in the appendix
of the full version of this paper. Note that the decision procedure for the Identity Problem
invokes the decision procedure for U2-reachability as a subroutine. Similarly, the decision
procedure for U2-reachability will invoke the decision procedure for U10-reachability as a
subroutine.
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Algorithm 1 IdentityProblem(): deciding the Identity Problem for a subset of UT(4,Z).

Input: A set G = {A1, . . . , Ak} of matrices in UT(4,Z).
Output: True or False.

Step 1: Compute the cone C and its lineality space Clin. For i = 1, . . . , k, if some
φ0(Ai) is not in Clin, return IdentityProblem(G \ {Ai}).

Step 2: a. If dim(C) = 3, return True.
b. If dim(C) = 1, return True if the condition in Proposition 15(i) is satisfied,

otherwise return False.
c. If dim(C) = 0, return True if τ(Ai), i = 1, . . . , m generate a semigroup

containing 0, otherwise return False.
d. If dim(C) = 2, compute a non-zero vector (p, q, r) ∈ Q3 orthogonal to C.

i. If p = 0, but q, r are not zero, or r = 0, but q, p are not zero.
Compute L0, if supp(L0) = {1, . . . , k}, return True, otherwise return
IdentityProblem({Ai | i ∈ supp(L0)}).

ii. If p = r = 0, problem reduces to Identity Problem in H5.
iii. If p = q = 0, r ̸= 0 or r = q = 0, p ̸= 0, compute A′

i as in (9). Return
U2Reachability(A′

1, . . . , A′
k) (see full version of paper).

We now give an overview of the motivation behind classifying cases according to the
dimension of C. As a convention, we always use Ai, i = 1, . . . , k to denote elements of the fixed
generating set G, and Greek letters to denote their entries, i.e. Ai = UT (αi, βi, κi; δi, ϵi, ϕi).
We use Bi, i = 1, . . . , m to denote arbitrary elements in ⟨G⟩ (when appearing in strings, they
are elements in G), and Latin letters to denote their entries, i.e. Bi = UT (ai, bi, ci, di, ei, fi).
The variables Bi can depend on the context.

First of all, we need some results on the structure of products in UT(4,Z). For a positive
integer m, denote by Sm the permutation group of the set {1, . . . , m}. Throughout this paper,
given some matrices B1, . . . , Bm ∈ ⟨G⟩, we will often be computing the product of strings
of the form Bt

σ(1) · · · Bt
σ(m), where σ ∈ Sm and t ∈ Z≥0. The overall idea is to find various

strings Bt
σ(1) · · · Bt

σ(m) whose product is in U1
τ∼= Z3, then use them to generate an abelian

semigroup containing the identity matrix. Let us define the following important values and
abbreviations that will be used throughout this paper. These complicated formulas are
related to the logarithm of the matrices Bi, and readers can for the time being ignore their
exact form and treat them as black boxes.

▶ Notation 5. Given a series of matrices B1, . . . , Bm where Bi = UT (ai, bi, ci; di, ei, fi), i =
1, . . . , m, we introduce the following notation:

(i) For σ ∈ Sm, t ∈ Z≥0,

B(σ, t) := Bt
σ(1) · · · Bt

σ(m). (2)

(ii) For σ ∈ Sm,

Dσ :=
∑
i<j

aσ(i)bσ(j) + 1
2

m∑
i=1

aibi, Eσ :=
∑
i<j

bσ(i)cσ(j) + 1
2

m∑
i=1

bici,

Fσ :=
∑

i<j<k

aσ(i)bσ(j)cσ(k) + 1
2
∑
i<j

(aσ(i)bσ(i)cσ(j) + aσ(i)bσ(j)cσ(j)) + 1
6

m∑
i=1

aibici,

MFCS 2022



43:6 On the Identity Problem for Unitriangular Matrices of Dimension Four

Gσ :=
∑
i<j

(aσ(i)eσ(j) + dσ(i)cσ(j) − 1
2aσ(i)bσ(j)cσ(j) − 1

2aσ(i)bσ(i)cσ(j))

+ 1
2

m∑
i=1

(aiei + dici − aibici). (3)

(iii) For i = 1, . . . , m,

Di := di − 1
2aibi, Ei := ei − 1

2bici, Fi := fi − 1
2(aiei + dici) + 1

3aibici. (4)

The following proposition gives an exact expression for B(σ, t). Because of the heavily
computational nature of most of our propositions, their proofs are given in the appendix of
the full version of this paper.

▶ Proposition 6. Let Bi = UT (ai, bi, ci; di, ei, fi), i = 1, . . . , m, σ ∈ Sm, t ∈ Z≥0, then

B(σ, t) = UT

(
t

m∑
i=1

ai, t

m∑
i=1

bi, t

m∑
i=1

ci;

t2Dσ + t

m∑
i=1

Di, t2Eσ + t

m∑
i=1

Ei, t3Fσ + t2Gσ + t

m∑
i=1

Fi

)
. (5)

Notice that B(σ, t) ∈ U1 if and only if
∑m

i=1 ai =
∑m

i=1 bi =
∑m

i=1 ci = 0, a condition
that does not depend on the value of t.

Proposition 6 shows that, if B(σ, t) is in U1, then as t → ∞, the asymptotic behaviour of
τ(B(σ, t)) approaches the vector (t2Dσ, t2Eσ, t3Fσ), provided that Dσ, Eσ, Fσ do not vanish.
Therefore, the hope is that, as t, σ vary, the vectors (t2Dσ, t2Eσ, t3Fσ) can generate R3 as an
R≥0-cone, barring a few degenerate cases. If these degenerate cases do not happen, then the
different vectors τ(B(σ, t)) will also generate R3 as an R≥0-cone. In particular, the identity
element in R3 can be generated by τ(B(σ, t)) as an additive semigroup, giving a positive
answer to the Identity Problem. For the degenerate cases, they will be treated individually.
As it will turn out, there are only two types of degeneracy (which may occur simultaneously):

(i) Fσ = 0 for all σ.
(ii) For some p, r ∈ Q, possibly zero, we have pDσ = rEσ for all σ.

When (i) occurs, the asymptotic behaviour of τ(B(σ, t)) approaches the vector
(t2Dσ, t2Eσ, t2Gσ), since Gσ is the second most dominant term after Fσ. This situation
reminds us of the Identity Problem for H3, and can be solved in a similar way. When (ii)
occurs, the vectors (t2Dσ, t2Eσ, t3Fσ) are constrained to a strict linear subspace of R3. Hence,
in order to describe the R≥0-cone generated by the vectors τ(B(σ, t)), one needs to consider
the sub-dominant terms as well, i.e. the terms t

∑m
i=1 Di, t

∑m
i=1 Ei.

The rest of this paper aims to formalize this idea. We first exhibit a series of lemmas that
characterise these degenerate cases. Our first lemma shows that, supposing B(σ, t) ∈ U1,
then degenerate case (ii) happens if and only if ⟨φ0(B1), . . . , φ0(Bm)⟩R is degenerate (i.e. of
dimension at most 2).

▶ Lemma 7. Given p, r ∈ R and m ≥ 2. Suppose
∑m

i=1 ai =
∑m

i=1 bi =
∑m

i=1 ci = 0. The
two following statements are equivalent:

(i) For all σ ∈ Sm, pDσ = rEσ.
(ii) Either bi = 0 for all i = 1, . . . , m, or there exist q ∈ R, such that pai + qbi + rci = 0

for all i = 1, . . . , m.
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The next lemma shows that if B(σ, t) ∈ U1, then by “inverting” σ, we get a permutation
σ′ such that (Dσ, Eσ) and (Dσ′ , Eσ′) are opposites of one another.

▶ Lemma 8. Suppose
∑m

i=1 ai =
∑m

i=1 bi =
∑m

i=1 ci = 0, m ≥ 2. For every σ ∈ Sm, there
exists σ′ ∈ Sm, such that (Dσ′ , Eσ′) = −(Dσ, Eσ).

We then show that, if B(σ, t) ∈ U1, then the value of Fσ for different σ ∈ Sm sums up to
zero:

▶ Lemma 9. Suppose
∑m

i=1 ai =
∑m

i=1 bi =
∑m

i=1 ci = 0, where m ≥ 3. Then we have∑
σ∈Sm

Fσ = 0.

The last lemma characterizes situations where the aforementioned degenerate case (i)
happens. Its proof relies on the aid of a computational algebraic geometry software due to
the complexity of the expressions Fσ.

▶ Lemma 10. Let m = 4. Suppose
∑4

i=1 ai =
∑4

i=1 bi =
∑4

i=1 ci = 0. Then, Fσ = 0 for all
σ ∈ S4, if and only if at least one of the following four conditions holds:

(i) a1 = a2 = a3 = a4 = 0.
(ii) b1 = b2 = b3 = b4 = 0.
(iii) c1 = c2 = c3 = c4 = 0.

(iv) rank

a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

 ≤ 1.

A common idea of Lemma 7 and Lemma 10 is that the degeneracy of (Dσ, Eσ, Fσ)
is related to the degeneracy of φ0(B1), . . . , φ0(Bm). Hence, it is natural to consider the
degeneracy of the vectors φ0(Ai), i = 1, . . . , k, where Ai ∈ G are the elements of the generating
set. This degeneracy is described by the dimension of the linear space C discussed at the
beginning of the section. This justifies the classification according to dim(C). We now begin
the case analysis.

3.2 C has dimension 3

The main idea of this case is that, for a well chosen set of matrices B1, B2, B3, B4 ∈ ⟨G⟩, the
vectors (Dσ, Eσ, Fσ), σ ∈ S4, are not degenerate and the asymptotic behaviour of τ(B(σ, t))
approaches the vector (t2Dσ, t2Eσ, t3Fσ), leading to a positive answer to the Identity Problem.

Let B1, B2, B3, B4 ∈ ⟨G⟩ with Bi = UT (ai, bi, ci; di, ei, fi), i = 1, . . . , 4 be such that

4∑
i=1

φ0(Bi) = 0 (6)

and

⟨φ0(B1), φ0(B2), φ0(B3), φ0(B4)⟩R≥0 = C = R3. (7)

Equation (6) shows that B(σ, t) ∈ U1 for all σ ∈ S4, t ∈ Z≥0.
The following lemma shows that the d, e-coordinates of different τ(B(σ, t)) generate R2

as an R≥0-cone.

▶ Lemma 11. Assuming (6) and (7), we have ⟨{φ1(B(σ, t)) | σ ∈ S4, t ∈ Z}⟩R≥0 = R2.

MFCS 2022



43:8 On the Identity Problem for Unitriangular Matrices of Dimension Four

Proof. First, we claim that ⟨{(Dσ, Eσ) | σ ∈ S4}⟩R = R2.

In fact, suppose to the contrary that ⟨{(Dσ, Eσ) | σ ∈ S4}⟩R has dimension at most 1.
Then there exist p, r ∈ R, not both zero, such that for all σ ∈ S4, pDσ = rEσ. By Lemma 7,
this means that either bi = 0 for all i or there exists some q ∈ R such that pai + qbi + rci = 0
for all i. In both cases, the R-linear subspace spanned by φ0(B1), φ0(B2), φ0(B3), φ0(B4)
has dimension at most 2, contradicting Equation (7). This proves the claim. Hence, there
exist σ1, σ2 ∈ S4 such that (Dσ1 , Eσ1) and (Dσ2 , Eσ2) span R2 as an R-linear space.

Next, by Lemma 8, there exist σ′
1, σ′

2 ∈ S4 such that (Dσ′
1
, Eσ′

1
) = −(Dσ1 , Eσ1) and

(Dσ′
2
, Eσ′

2
) = −(Dσ2 , Eσ2). It follows that (Dσ1 , Eσ1), (Dσ2 , Eσ2), (Dσ′

1
, Eσ′

1
), (Dσ′

2
, Eσ′

2
) gen-

erate R2 as an R≥0-cone, and all four vectors are non-zero.
Finally, consider the products B(σ, t) with σ ∈ {σ1, σ2, σ′

1, σ′
2}. By Proposition 6, when

t → +∞, we have φ1(B(σ, t)) = (Dσ, Eσ)t2 + O(t). Therefore, when t is large enough, the
angle between φ1(B(σ, t)) and (Dσ, Eσ) tends to zero, for all σ ∈ {σ1, σ2, σ′

1, σ′
2}. Hence,

for large enough t, φ1(B(σ1, t)), φ1(B(σ2, t)), φ1(B(σ′
1, t)), φ1(B(σ′

2, t)) generate R2 as an
R≥0-cone. This proves the Lemma. ◀

The next proposition shows that as σ, t vary, the vectors τ(B(σ, t)) generate R3 as an
R≥0-cone.

▶ Proposition 12. Assuming (6) and (7), we have ⟨{τ(B(σ, t)) | σ ∈ S4, t ∈ Z}⟩R≥0 = R3.

Proof. First, note that all B(σ, t) have integer coefficients. By Lemma 11, there exist
elements P1, P2, P3 ∈ ⟨{B(σ, t) | σ ∈ S4, t ∈ Z}⟩ such that φ1(Pi), i = 1, 2, 3 generate R2 as
an R≥0-cone (see Figure 1 for an illustration.).

Next, the idea is to find two additional matrices P+, P− ∈ {B(σ, t) | σ ∈ S4, t ∈ Z},
whose images under τ are relatively close to the f -axis in R3. By Lemmas 9 and 10, there
exist σ+, σ− ∈ S4 such that Fσ+ > 0, Fσ− < 0. Indeed, by condition (7), none of the four
conditions of Lemma 10 hold. Thus there exists σ ∈ S4 such that Fσ ̸= 0. Then Lemma 9
shows we can find σ+ and σ− such that Fσ+ > 0 and Fσ− < 0.

By Proposition 6, when t → +∞, we have τf (B(σ+, t)) = Fσ+t3 + O(t2) and
τf (B(σ−, t)) = Fσ−t3 + O(t2), whereas τd(B(σ±, t)) = O(t2) and τe(B(σ±, t)) = O(t2).
Therefore, when t is large enough, the angle between τ(B(σ+, t)) and (0, 0, 1) tends to zero,
as well as the angle between τ(B(σ−, t)) and (0, 0, −1).

Finally, we claim that there exists t such that τ(P1), τ(P2), τ(P3), τ(B(σ+, t)), τ(B(σ−, t))
generate R3 as an R≥0-cone. See Figure 1 for an illustration. To justify this claim, suppose
to the contrary that for every t, the R≥0-cone spanned by the five vectors τ(P1), τ(P2), τ(P3),
τ(B(σ+, t)), τ(B(σ−, t)) is a proper subset of R3. In other words, if we denote by ⟨·, ·⟩
the canonical inner product of R3, then there exists a vector vt with norm 1, such that
⟨vt, τ(Pi)⟩ ≥ 0, i = 1, 2, 3 and ⟨vt, τ(B(σ±, t))⟩ ≥ 0. For example, we can take vt to be any
normalized vector in the dual of the cone generated by these five vectors ([3, Chapter 2.6]).
By the compactness of the unit sphere, {vt}t∈N has a limit point v. We have ⟨v, τ(Pi)⟩ ≥
0, i = 1, 2, 3, so v is not orthogonal to the f -axis, otherwise τ(Pi), i = 1, 2, 3 would all be
on the same side of a hyperplane passing through the f -axis, contradicting the fact that
their d, e-coordinates generate R2 as an R≥0-cone. Hence, ⟨v, (0, 0, 1)⟩ ≠ 0. Without loss of
generality, suppose ⟨v, (0, 0, 1)⟩ < 0. When t → ∞, the angle between (0, 0, 1) and τ(B(σ+, t))
tends to zero. Therefore, for all large enough t, we have ⟨v, τ(B(σ+, t))⟩ < 0. Since v is a
limit point of {vt}t∈N, there exists a large enough t such that ⟨vt, τ(B(σ+, t))⟩ < 0. This
contradicts the fact that ⟨vt, τ(B(σ+, t))⟩ ≥ 0 for all t. ◀
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d

e

f

Figure 1 Illustration of the five vectors
constructed in Proposition 12.

d

e

f

pd - re = 0

Figure 2 Illustration of the four vectors
constructed in Proposition 19.

▶ Corollary 13. When C has dimension 3, the identity matrix is reachable (and hence also
U2 and U10).

Proof. By Proposition 12, one can find Q1, Q2, Q3, Q4 ∈ ⟨G⟩∩U1 such that τ(Qi), i = 1, . . . , 4
generate R3 as an R≥0-cone. In particular, −τ(Q1) ∈ ⟨τ(Q1), τ(Q2), τ(Q3), τ(Q4)⟩R≥0 .
So there exist xi ∈ R≥0, i = 1, . . . , 4, not all zero, such that

∑4
i=1 xiτ(Qi) = 0. Since

τ(Qi), i = 1, . . . , 4 have integer entries, one can suppose xi ∈ Z≥0. Hence, τ(
∏4

i=1 Qxi
i ) =∑4

i=1 xiτ(Qi) = 0, which yields I =
∏4

i=1 Qxi
i ∈ ⟨G⟩. ◀

3.3 C has dimension 1
Next, we consider the case where dim C = 1. The main idea of this case is that if the product
of a string B1 · · · Bm is in U1, then all Dσ, Eσ, Fσ vanish, so τ(B(σ, t)) is determined by some
linear terms as well as by Gσ. Recall that we write Ai = UT (αi, βi, κi; δi, ϵi, ϕi), i = 1, . . . , k.
Similar to notation (4), we define the following quantities for convenience:

∆i := δi − 1
2αiβi, Ei := ϵi − 1

2βiκi, Φi := αiβiκi − 1
2(αiϵi + δiκi) + 1

3ϕi. (8)

Since C has dimension 1, there exist α, β, κ ∈ Z such that φ0(Ai) = (α, β, κ) · ρi for
ρi ∈ Z, i = 1, . . . , k.

▶ Proposition 14. Suppose φ0(Ai) = (α, β, κ) ·ρi for ρi ∈ Z, i = 1, . . . , k. Let ℓ = (ℓ1, . . . , ℓk)
be the Parikh vector of a string B1 · · · Bm, with the product P = B1 · · · Bm. Then

(i) P ∈ U10 if and only if
∑k

i=1 ℓiρi = 0 and
∑k

i=1 ℓi∆i = 0.
(ii) P ∈ U2 if and only if

∑k
i=1 ℓiρi = 0,

∑k
i=1 ℓi∆i = 0 and

∑k
i=1 ℓiEi = 0.

The immediate consequence of Proposition 14 is that U2-Reachability and U10-Reachability
are decidable using linear programming (LP). For example, U10-Reachability has a positive
answer if and only if the LP instance

∑k
i=1 ℓiρi = 0,

∑k
i=1 ℓi∆i = 0, ℓi ≥ 0, i = 1, . . . , k, has

a non-zero integer solution (ℓ1, . . . , ℓk). However, because all the equations and inequalities
in the LP instance are homogeneous, the LP instance has a non-zero integer solution if and
only if it has a non-zero rational solution. Furthermore, the total bit length of ρi, ∆i, Ei is
linear with respect to the encoding size of G. Therefore, the existence of a non-zero rational
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solution is decidable in polynomial time. In particular, for i = 1, . . . , k, one can decide
whether this LP instance has a rational solution (ℓ1, . . . , ℓk) with ℓi = 1. Then, the LP
instance has a non-zero rational solution if and only if it has a rational solution with ℓi = 1
for some i. The decision procedure for U2-Reachability is similar.

Next, we consider the Identity Problem. Define the set

Λ :=
{

(ℓ1, . . . , ℓk) ∈ Zk
≥0

∣∣∣∣∣
k∑

i=1
ℓiρi =

k∑
i=1

ℓi∆i =
k∑

i=1
ℓiEi = 0

}
.

By Proposition 14, the product of a string is in U2 if and only if its Parikh vector is in Λ. It
is easy to see that Λ is additively closed, meaning Λ + Λ ⊆ Λ. Define the support of a Parikh
vector ℓ = (ℓ1, . . . , ℓk) to be supp(ℓ) = {i | ℓi ̸= 0}, and the support of the set Λ to be

supp(Λ) :=
⋃
ℓ∈Λ

supp(ℓ) = {i | ∃(ℓ1, . . . , ℓk) ∈ Λ, ℓi ̸= 0}.

For i = 1, . . . , k, we have i ∈ supp(Λ) if and only if the LP instance
∑k

i=1 ℓiρi =
∑k

i=1 ℓi∆i =∑k
i=1 ℓiEi = 0, ℓi > 0 and ℓj ≥ 0, j ̸= i has an integer solution. Again, by homogeneity, this is

decidable in polynomial time by deciding the existence of a rational solution. Hence, supp(Λ)
is computable in polynomial time by deciding whether i ∈ supp(Λ) for all i = 1, . . . , k.

If supp(Λ) ̸= {1, . . . , k}, we can discard the elements Ai ∈ G with i /∈ supp(Λ), then
card(G) decreases and we are done by the induction hypothesis. Hence, we only need to
consider the case where supp(Λ) = {1, . . . , k}. The following proposition answers the Identity
Problem in this case. Again, the homogeneity yields a polynomial time deciding procedure.

▶ Proposition 15. Suppose φ0(Ai) = (α, β, κ) · ρi for ρi ∈ Z, i = 1, . . . , k, and supp(Λ) =
{1, . . . , k}. Define the values Γi = αϵi − κδi, i = 1, . . . , k. Then

(i) When ρiΓj = ρjΓi for all i, j ∈ {1, . . . , k}, the identity matrix is reachable if and only
if the set {(ℓ1, . . . , ℓk) ∈ Λ |

∑k
i=1 ℓiΦi = 0} is not equal to {0}.

(ii) When ρiΓj ̸= ρjΓi for some i, j ∈ {1, . . . , k}, the identity matrix is reachable.

3.4 C has dimension 0
In this case, φ0(Ai) = 0 for all i, so G ⊂ U1. Since U1

τ∼= Z3, the Identity Problem and U2,
U10-Reachability are decidable using linear programming. For example, deciding the Identity
Problem amounts to deciding whether the LP instance

∑k
i=1 ℓi ·τ(Ai) = 0, ℓi ≥ 0, i = 1, . . . , k

has a non-zero integer solution. As before, by the homogeneity of the LP instance, this is
decidable in polynomial time by considering solutions in Q.

3.5 C has dimension 2
Suppose now that there exist p, q, r ∈ Z, not all zero, such that pαi+qβi+rκi = 0, i = 1, . . . , k.
Consider the following cases on the values of p, q, r.

3.5.1 Case 1: there is at most one zero among p, q, r

The main difficulty of this case is as follows. By Lemma 7, (Dσ, Eσ) is constrained to the
one dimensional subspace {(d, e) | pd − re = 0} ⊂ R2. Therefore, in order to decide whether
the vectors τ(B(σ, t)) can generate the neutral element, one needs to take into account their
linear terms, i.e. (

∑m
i=1 Di,

∑m
i=1 Ei) as well. Define the additively closed set:

L :=
{

(ℓ1, . . . , ℓk) ∈ Zk
≥0

∣∣∣∣∣
k∑

i=1
ℓiφ0(Ai) = 0

}
.
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The product P of a string B1 · · · Bm is in U1 if and only if its Parikh vector is in L.

▶ Lemma 16. When C = Clin, we have supp(L) = {1, . . . , k}.
We continue to adopt the notations from (8) for ∆i, Ei. Consider the subset of L:

L0 :=
{

(ℓ1, . . . , ℓk) ∈ L

∣∣∣∣∣p
k∑

i=1
ℓi∆i − r

k∑
i=1

ℓiEi = 0
}

.

L0 can be described as the set of Parikh vectors whose corresponding strings have linear
terms falling on the line pd−re = 0. Again, L0 is additively closed. The main idea is that the
quadratic term of φ1(B(σ, t)) falls on the line pd−re = 0, therefore, if P ∈ U2, φ1(B(σ, t)) = 0,
then its linear term must also fall on the line pd − re = 0. This leads to the following lemma.

▶ Lemma 17. Suppose dim C = 2. If the product P of a string B1 · · · Bm is in U2, then its
Parikh vector ℓ is in L0.

The following proposition gives a solution to the U10-Reachability problem.

▶ Proposition 18. Suppose dim C = 2 and at most one of p, q, r is zero.
(i) When r ̸= 0, U10 is reachable.
(ii) When r = 0, p ̸= 0, U10 is reachable if and only if L0 is not equal to {0}.

In particular, whether L0 equals {0} is decidable by linear programming, (again, by
homogeneity, one can solve the linear programming instance in Q). Hence, U10-Reachability
is decidable. We then treat the Identity Problem and U2-Reachability. Consider the support
of L0. As before, supp(L0) = {i | ∃(ℓ1, . . . , ℓk) ∈ L0, ℓi ̸= 0} is computable using linear
programming. By Lemma 17, in order to reach U2 (or the identity matrix), we can only use
matrices with index in supp(L0). By discarding matrices and using the induction hypothesis
on card(G), we only need to consider the case where supp(L0) = {1, . . . , k}. The following
proposition gives a positive answer to the Identity Problem and U2-Reachability in this case.

▶ Proposition 19. Suppose dim C = 2 and at most one of p, q, r is zero. If supp(L0) =
{1, . . . , k}, then the identity matrix is reachable. (In particular, U2 is reachable.)

Sketch of proof. Similarly to Proposition 12, we construct four elements in U1 ∩ ⟨G⟩ whose
images under τ generate the two-dimensional linear subspace {(d, e, f) ∈ R3 | pd − re = 0}
as an R≥0-cone (see Figure 2 for an illustration). Consequently, the Z≥0-cone that they
generate is two-dimensional lattice in {(d, e, f) ∈ Z3 | pd − re = 0}, which contains the
neutral element. ◀

3.5.2 Case 2: p = r = 0

In this case, G ⊂ H5, so the Identity Problem is decidable by Lemma 3. U2 and U10-
Reachability reduce to the Identity Problem in Z4 and Z3, respectively, which are decidable
in polynomial time using linear programming. Here, we claim an additional complexity
result that strengthens Lemma 3, which is crucial for a polynomial complexity algorithm for
UT(4,Z).

▶ Proposition 20. For a fixed n, the Identity Problem in H2n+1 is decidable in polynomial
time.

MFCS 2022



43:12 On the Identity Problem for Unitriangular Matrices of Dimension Four

3.5.3 Case 3: p = q = 0, r ̸= 0 or r = q = 0, p ̸= 0
The main technique in this case is a reduction from the Identity Problem to U2-Reachability,
from U2-Reachability to U10-Reachability, and from U10-Reachability to linear programming
or to the Identity Problem in H3. If p = q = 0, r ̸= 0, then κi = 0, i = 1, . . . , k. If r = q = 0,
p ̸= 0, then αi = 0, i = 1, . . . , k. Define the following matrices in H3:

Hi :=

1 αi δi

0 1 βi

0 0 1

 , i = 1, . . . , k.

The following proposition along with Proposition 20 provides a solution to U10-Reachability.

▶ Proposition 21.
(i) When κi = 0, i = 1, . . . , k, U10-Reachability for A1, . . . , Ak is equivalent to the Identity

Problem for H1, . . . , Hk.
(ii) When αi = 0, i = 1, . . . , k, U10 is reachable for A1, . . . , Ak if and only if

∑k
i=1 ℓiδi =∑k

i=1 ℓiβi =
∑k

i=1 ℓiκi = 0 has a non-zero integer solution (ℓ1, . . . , ℓk) ∈ Zk
≥0.

Next, consider the Identity Problem and U2-Reachability. By symmetry, we can suppose
p = q = 0, r ̸= 0, so κi = 0, i = 1, . . . , k. Define

A′
i := UT (βi, αi, ϵi; δi, ϕi, 0), i = 1, . . . , k, (9)

the following proposition reduces the Identity Problem and U2-Reachability for A1, . . . , Ak

to reachability problems for A′
1, . . . , A′

k:

▶ Proposition 22. Suppose κi = 0, i = 1, . . . , k.
(i) The Identity Problem for A1, . . . , Ak is equivalent to U2-Reachability for A′

1, . . . , A′
k.

(ii) U2-Reachability for A1, . . . , Ak is equivalent to U10-Reachability for A′
1, . . . , A′

k.

Together with the previous Subsections 3.2 - 3.5.2, we have completely reduced the Identity
Problem for G to either the problem for a set of smaller cardinality, or to U2-reachability
of another set. We have also reduced U2-reachability for G to either a problem for a set of
smaller cardinality, or to U10-reachability of another set. By Proposition 21 and the previous
subsections, U10-reachability is decidable. Hence, we have now exhausted all the possible
cases for the dimension of C, and we conclude that the Identity Problem, U2-Reachability
and U10-Reachability in UT(4,Z) are decidable.

4 Complexity analysis and concluding remarks

In this paper, we have shown that the Identity Problem for UT(4,Z) is decidable. A brief
analysis of our algorithm shows that it terminates in polynomial time. In fact, we can first
show that the algorithm for U10-Reachability terminates in polynomial time. Starting with
k = card(G) matrices, we need to solve at most O(k) linear equations, O(k) homogeneous
linear programming instances and one Identity Problem in H3 before either card(G) decreases
or a conclusion on U10-Reachability is reached. All these problems have O(k) inputs which
are of polynomial size with respect to the coefficients of the matrices in G, and are known
to have polynomial complexity. Furthermore, the number card(G) decreases at most k

times. Hence, the total complexity of our algorithm for U10-reachability is polynomial with
respect to the input G. Then, using the same method, we can show that the algorithm for
U2-Reachability terminates in polynomial time: since after polynomial time, either card(G)
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decreases, or the problem is reduced to U10-Reachability, or a conclusion on U2-Reachability
is reached. At last, we can show that the algorithm for the Identity Problem terminates in
polynomial time: after polynomial time, either card(G) decreases, or the problem is reduced
to U2-Reachability or the Identity Problem in H5, or a conclusion on the Identity Problem is
reached. (In particular, the polynomial complexity of the Identity Problem in H5 is a new
result of our paper, see Proposition 20.)

It is likely that our method can be adapted to study the Identity Problem for other
metabelian matrix groups, for instance the direct product Hn

3 . There is also evidence that
the arguments in this paper can be strengthened to tackle the Identity Problem for UT(n,Z)
with n ≥ 5, even though UT(5,Z) ceases to be metabelian. In fact, one can push the
convex geometry arguments down the derived series of UT(n,Z), even when the series has
length greater than two. Another natural follow-up question is the Membership Problem for
UT(4,Z). An interesting idea would be to adapt the Register Automata method introduced
in [5] for passing from the Identity Problem to the Membership Problem.
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