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Abstract
In the Exact Matching Problem (EM), we are given a graph equipped with a fixed coloring of its
edges with two colors (red and blue), as well as a positive integer k. The task is then to decide
whether the given graph contains a perfect matching exactly k of whose edges have color red. EM
generalizes several important algorithmic problems such as perfect matching and restricted minimum
weight spanning tree problems.

When introducing the problem in 1982, Papadimitriou and Yannakakis conjectured EM to be
NP-complete. Later however, Mulmuley et al. presented a randomized polynomial time algorithm
for EM, which puts EM in RP. Given that to decide whether or not RP=P represents a big
open challenge in complexity theory, this makes it unlikely for EM to be NP-complete, and in fact
indicates the possibility of a deterministic polynomial time algorithm. EM remains one of the few
natural combinatorial problems in RP which are not known to be contained in P, making it an
interesting instance for testing the hypothesis RP=P.

Despite EM being quite well-known, attempts to devise deterministic polynomial algorithms
have remained illusive during the last 40 years and progress has been lacking even for very restrictive
classes of input graphs. In this paper we push the frontier of positive results forward by proving
that EM can be solved in deterministic polynomial time for input graphs of bounded independence
number, and for bipartite input graphs of bounded bipartite independence number. This generalizes
previous positive results for complete (bipartite) graphs which were the only known results for EM
on dense graphs.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Parameterized complexity and exact algorithms

Keywords and phrases Perfect Matching, Exact Matching, Independence Number, Parameterized
Complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2022.46

Related Version Full Version: https://arxiv.org/abs/2202.11988

Funding Raphael Steiner : supported by an ETH Zurich Postdoctoral Fellowship.

1 Introduction

The problem of deciding whether a given graph contains a perfect matching, as well as the
related problem of computing a maximum (minimum) weight perfect matching in a given
graph are amongst the foundational problems in algorithmic graph theory and beyond, and
the fact that they can be solved in polynomial time [4] is an integral part of many efficient
algorithms in theoretical computer science.

In 1982, Papadimitriou and Yannakakis [17] studied a decision problem related to perfect
matchings in edge-colored graphs as follows: Given as input a graph G whose edges come
with a given fixed two-edge coloring (say, with colors red and blue), then the task is to decide
whether for a given integer k there exists a perfect matching M of G such that exactly k of
the edges in M are red. Clearly, in the special case when all edges are colored red and k = n
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46:2 Exact Matching in Graphs of Bounded Independence Number

this problem is simply to decide whether there exists a perfect matching in a given graph.
For a heterogeneous coloring of the edges, however, the difficulty of the problem seems to
change quite dramatically (see below).

The original motivation of Papadimitriou and Yannakakis [17] to study the above problem,
which from now on will be called Exact Matching and abbreviated by EM, was their
investigation of restricted minimum weight spanning tree problems. In the usual minimum
weight spanning tree problem, we are given a graph with non-negative edge-weights and
seek to find a spanning tree minimizing the total edge-weight, and this is well-known to be
solvable in polynomial time using for instance Kruskal’s algorithm [12]. Papadimitriou and
Yannakakis considered what happens if we restrict the shape of the spanning trees allowed
in the output, and obtained several results. For instance, the problem is easily seen to be
NP-hard if the considered spanning trees are constrained to be paths, by a reduction from the
Hamiltonian Path problem, but it is polynomial-time solvable if the tree shapes are restricted
to stars or 2-stars. While for many classes of trees, Papadimitriou and Yannakakis [17]
classified the complexity of the above problem, some cases remained unsettled. In particular,
they proved that the restricted minimum weight spanning tree problem for so-called double
2-stars is equivalent to EM, and left it as an open problem to decide its computational
complexity. In fact, they stated the conjecture that EM is NP-complete. Up until today,
neither has this conjecture been confirmed, nor is it known whether EM can be solved in
polynomial time by a deterministic algorithm. Yet, there have been some interesting results
and developments regarding the problem in the past, which we summarize in the following.

Only few years after the introduction of the problem, in a breakthrough result Mulmuley,
Vazirani and Vazirani [16] developed their so-called isolation lemma, and demonstrated its
power by using it to prove that EM can be solved by a randomized polynomial time algorithm,
i.e. it is contained in RP. This makes it unlikely to be NP-hard. In fact, deciding whether
RP=P remains one of the big challenges in complexity theory. This means that problems
such as EM, for which we know containment in RP but are not aware of deterministic
polynomial time algorithms, are interesting candidates for testing the hypothesis RP=P.
Indeed, due to this, EM is cited in several papers as an open problem. This includes recent
breakthrough papers such as the seminal work on the parallel computation complexity of
the matching problem [19], works on planarizing gadgets for perfect matchings [8], works on
more general constrained matching problems [1, 14, 15, 18] and on multicriteria optimization
problems [7] among others. Even though EM has caught the attention of many researchers
from different areas, there seems to be a substantial lack of progress on the problem even
when restricted to very special subclasses of input graphs as we will see next. This highlights
the surprising difficulty of the problem given how simple it may seem at first glance.

Previous results for EM on restricted classes of graphs. It may surprise some readers
that EM is even non-trivial if the input graphs are complete or complete bipartite graphs:
In fact, at least four different articles have appeared on resolving these two special cases
of EM [10, 20, 6, 9], which are now known to be solvable in deterministic polynomial time.
Another positive result follows from the existence of Pfaffian orientations and their analogues
on planar graphs and K3,3-minor free graphs [21], EM is solvable in polynomial time on these
classes via a derandomization of the techniques used in [16]. Considering a generalization
of Pfaffian orientations, it was further proved in [5] that EM can be solved in polynomial
time for graphs embeddable on a surface of bounded genus. Finally, from the well-known
meta-theorem of Courcelle [2], one easily obtains that EM can be efficiently solved on classes
of bounded tree-width.
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Our contribution. In this paper, we generalize the known positive results for EM on very
dense graphs such as complete and complete bipartite graphs to graphs of independence
number at most α and to bipartite graphs of bipartite independence number at most β, for
all fixed integers α, β ≥ 1. The independence number of a graph G is defined as the largest
number α such that G contains an independent set of size α. The bipartite independence
number of a bipartite graph G equipped with a bipartition of its vertices is defined as
the largest number β such that G contains a balanced independent set of size 2β, i.e., an
independent set using exactly β vertices from both color classes.

▶ Theorem 1. There is a deterministic algorithm for EM on graphs of independence number
α running in time nO(f(α)), for f(α) = 2O(α).

▶ Theorem 2. There is a deterministic algorithm for EM on bipartite graphs of bipartite
independence number β running in time nO(f(β)), for f(β) = 2O(β).

The special cases α = 1 and β = 1 of the above results correspond exactly to the
previously studied cases of complete and complete bipartite graphs. We emphasize that even
though bounding the independence number might seem like a big restriction on the input
graphs, already for α = 2, β = 2 our results cover rich and complicated classes of graphs,
for instance every complement of a triangle-free graph belongs to the class of independence
number at most 2, and every bipartite complement of a C4-free bipartite graph belongs to
the class of bipartite independence number at most 2.

Another interesting observation in support of the above is the following: So far, for all
classes of graphs on which EM was known to be solvable in polynomial time (including planar
graphs, K3,3-minor-free graphs, graphs of bounded genus, complete and complete bipartite
graphs), the number of perfect matchings was also known to be countable in polynomial
time (cf. [11, 13, 5, 21]), and one may wonder about whether tractability of EM aligns with
the tractability of corresponding counting problems for perfect matchings. However, even for
graphs of independence number 2 we are not aware that polynomial schemes for counting
perfect matchings exist, and in fact conjecture that this problem is computationally hard,
therefore putting our result into nice contrast with previous positive results on EM.

▶ Conjecture 3. The problem of counting perfect matchings in input graphs of independence
number 2 is #P-complete.

Organization of the paper. The remainder of this paper is organized as follows: In Section 2
we present the basic definitions and conventions we use throughout the paper. In Section 3
we prove Theorem 1, i.e., showing the existence of an XP algorithm parameterized by the
independence number of the graph. In Section 4 we consider the bipartite graphs case and
prove Theorem 2. In Section 5 we discuss distance-d independence number parameterizations
and in Section 6 we conclude the paper and provide some open problems.

2 Preliminaries

Due to space restrictions, proofs of statements marked ⋆ have been deferred to the appendix.
All graphs considered are simple. For a graph G = (V, E) we let n = |V (G)|, i.e. the number
of vertices in G. Given an instance of EM and a perfect matching1 (abbreviated PM) M , we

1 A perfect matching of a graph is a matching (i.e., an independent edge set) in which every vertex of the
graph is incident to exactly one edge of the matching.
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46:4 Exact Matching in Graphs of Bounded Independence Number

define edge weights as follows: blue edges get weight 0, matching red edges get weight −1
and non-matching red edges get weight +1. For G′ a subgraph2 of G, we define R(G′) (resp.
B(G′)) to be the set of red (resp. blue) edges in G′, r(G′) := |R(G′)| and wM (G′) to be the
sum of the weights of edges in G′. For ease of notation, we will use w(G′) for wM (G′) and
will make the matching explicit whenever it is not M .

Whenever we consider a set of cycles or paths, it is always assumed that they are vertex
disjoint and alternating with respect to the current matching M (unless specified otherwise).
Define an x-path to be an alternating path of weight x. Undirected cycles are considered to
have an arbitrary orientation. For a cycle C and u, v ∈ C, C[u, v] is defined as the path from
u to v along C (in the fixed but arbitrarily chosen orientation). For simplicity, a cycle is also
considered to be a path i.e. a closed path (its starting vertex is chosen arbitrarily). Ram(r, s)
refers to the Ramsey number, i.e. every graph on Ram(r, s) vertices contains either a clique
of size r or an independent set of size s. For simplicity we will use the following upper bound
Ram(s + 1, s + 1) < 4s [3]. For two sets of edges M and M ′, M∆M ′ refers to the symmetric
difference between the two sets (i.e. the edges that appear in exactly one of the two sets).
Note that if M and M ′ are two PMs, then M∆M ′ forms a set of cycles (each alternating
with respect to both matchings) and will be use as such. Also note that with the above
defined edge weights we have r(M ′) = r(M) + w(M∆M ′).

3 Bounded Independence Number Graphs

The algorithm relies on a 2 phase process. The first phase is an algorithm that outputs a
PM M with |k − r(M)| bounded (by a function of α), i.e. with a number of red edges that
only differs from k by a function of α. This algorithm is also of independent interest since
it provides a solution that is close to optimal (for small independence number) while its
running time is polynomial and independent of the independence number.

▶ Theorem 4. Given a “Yes” instance of EM, there exists a deterministic polynomial time
algorithm that outputs a PM M with k − 2 · 4α ≤ r(M) ≤ k.

▶ Remark. Note that a standalone proof of Theorem 4 can be made quite simple but would
require additional notions and definitions. Our main focus however, is on the proof of
Theorem 1, so the proof structure is tailored towards that end and the proof of Theorem 4
will come as result along the way.

The second phase is an algorithm that outputs a solution matching with a running time
that depends on the size of the smallest color class in a symmetric difference between a
given matching and a solution matching. It is also of independent interest as it can be more
generally useful for the study of other parameterizations of EM as well as other matching
problems with color constraints.

▶ Proposition 5. Let M and M ′ be two PMs in G s.t. |B(M∆M ′)| ≤ L or |R(M∆M ′)| ≤ L.
Then there exists a deterministic algorithm running in time nO(L) such that given M it
outputs a PM M ′′ with r(M ′′) = r(M ′).

Proof. Suppose w.l.o.g. |R(M∆M ′)| ≤ L (the other case is similar by swapping the
colors). Guess R(M∆M ′) in time nO(L) by trying all possibilities (the rest of the algorithm
should succeed for at least one such possibility). Compute R(M ′) = R(M)∆R(M∆M ′).

2 Note that the subgraph can also be a set of edges or cycles.
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Remove the edges R(M ′) and their endpoints from the graph as well as all remaining
red edges. Compute a PM M1 on the rest of the graph (such a PM must exist since
M ′\R(M ′) is one such example) and let M ′′ := M1 ∪ R(M ′). Observe that M ′′ is a PM
with r(M ′′) = |R(M ′′)| = |R(M ′)| = r(M ′). ◀

For this phase to run in polynomial time for bounded independence number, we need to
show that there exists a PM M∗ with exactly k red edges, where M∆M∗ (M being the PM
we get after the first phase) has a bounded (by a function of α) number of edges of some
color class. The main technical challenge is to show that for this to be the case it is sufficient
to have |k − r(M)| bounded (which is guaranteed by the first phase). The rest of this section
is devoted to this proof. Along the way we will also prove Theorem 4. Before going into the
technical details, we give a quick overview.

3.1 Proof Overview

In order to apply Proposition 5, we will consider the solution matching M∗ which minimizes
the number of edges in M∆M∗ (M being the PM we get after the first phase) and aim to show
that it contains a bounded number of edges of some color class. Towards this end, we want to
show that if the set of alternating cycles M∆M∗ contains a large number of edges from both
color classes, then there be must another set of alternating cycles C with the same total weight
as M∆M∗, but containing strictly less edges. This contradicts the minimality of M∆M∗

since M∆C is also a solution matching with |E(M∆(M∆C))| = |E(C)| < |E(M∆M∗)|. In
other words, we want to show that unless one color class in M∆M∗ is bounded, we can reduce
the size of one or more of the cycles in M∆M∗ while keeping the total weight unchanged.

e2e1v1

v′1
v2

v′2

Figure 1 A skip formed by two non-matching edges e1 and e2 (in orange). Matching edges are
represented by full lines and non-matching edges by dotted lines. The paths removed by the skip
are depicted in black.

Skips. The main tool we use to show the existence of smaller alternating cycles is something
we call a skip (see Figure 1). At a high level, a skip is simply a pair of edges that creates a
new alternating cycle C ′ by replacing two paths of an alternating cycle C. If those paths have
total length more than 2 then |C ′| < |C|. This means that if a solution matching M∗∗ exists,
such that M∆M∗∗ is the same as M∆M∗ but with C replaced by C ′, it would contradict
the minimality of M∆M∗. For M∗∗ to be a solution matching, we also need w(C) = w(C ′)
so that M∗∗ also has k red edges. For this reason we look for skips that do not change the
total weight (we call them 0 skips). It can happen however, that even though no 0 skip exists,
a collection of skips exists, that can be used independently, and their total weight change is
zero (we call them 0 skip sets). Also observe that these skips can come from different cycles
of M∆M∗ and still be used to reduce its total number of edges (i.e. we can modify multiple
cycles in M∆M∗ simultaneously to preserve the total weight change). So by taking M∆M∗

to be minimal (in terms of total number of edges), we are guaranteed that no such skip sets
can exist.

MFCS 2022



46:6 Exact Matching in Graphs of Bounded Independence Number

Skips from Paths. To show the existence of skips (which will lead to the desired contradic-
tion), we rely on Ramsey theory to show that if we take a large enough (with respect to α)
collection of disjoint paths on an alternating cycle, starting and ending with non-matching
edges, then they must form skips. Now if these paths have certain desired weights, then we
could make sure that we get a 0 skip set as desired.

Paths from Edge Pairs. To prove the existence of paths of desired weight, we analyze
the cycles in M∆M∗ by looking at their edge pairs, i.e. pairs of consecutive matching and
non-matching edges. These edge pairs can have 3 configurations from which we can extract
the paths. (1) Consecutive same sign pairs (sign here refers to the weight of the pair), (2)
consecutive different sign pairs and (3) consecutive 0 pairs. We show that we can extract
paths of the desired properties from all of these configurations, and the types of skips we get
is dependent on the weights of the cycles and the sizes of their color classes.

Bounding the Cycle Weights. Next, we show that if M∆M∗ is minimal, all of its cycles
have bounded weight. This is mainly achieved by showing that cycles of large weight must
have skips that reduce their weight. This changes the total weight of M∆M∗ however, and
must be compensated for either by skips on a cycle of opposite sign weight, or by removing
some of the cycles in M∆M∗.

Bounding one color class. After bounding the weights of the cycles in M∆M∗ (by a
function of α), we will also bound their number given that their total weight is bounded.
With these properties (bounded cycle weights and number of cycles), we can show that if
M∆M∗ has enough edges from both colors, then at least one of its cycles contains enough
positive skips and one of its cycles contains enough negative skips, together forming a 0 skip
set, i.e. M∆M∗ is not minimal. So choosing M∆M∗ minimal implies a bound on the size of
one of its color classes.

3.2 Detailed Proof
Skips. We start by formally defining a skip and its properties.

▶ Definition 6. Let C be an alternating cycle. A skip S is a set of two non-matching edges
e1 := (v1, v2) and e2 := (v′

1, v′
2) with e1, e2 /∈ C and v1, v′

1, v2, v′
2 ∈ C (appearing in this order

along C) s.t. C ′ = e1 ∪ e2 ∪ (C \ C[v1, v′
1] ∪ C[v2, v′

2]) is an alternating cycle, |C| − |C ′| > 0
and |w(S)| ≤ 4 where w(S) := w(C ′) − w(C) is called the weight of the skip.

Note that we require a skip to have weight at most 4. This is mainly to simplify the analysis
since it is enough to only consider such skips.

If P ⊆ C is a path and C[v1, v′
2] ⊆ P , then we say that P contains the skip S. We say

using S to mean replacing C by C ′. If C ∈ M∆M ′ for some PM M ′, then by using S we
also modify M ′ accordingly (i.e. s.t. M∆M ′ now contains C ′ instead of C). Observe that a
positive skip (where positive refers to the weight of the skip) increases the cycle weight, a
negative skip decreases it and a 0 skip does not change the cycle weight. Using a skip always
results in a cycle of smaller cardinality. Two skips {(v1, v2), (v′

1, v′
2)} and {(u1, u2), (u′

1, u′
2)}

are called disjoint if they are contained in disjoint paths along the cycle. Note that two
disjoint skips can be used independently.

▶ Definition 7. Let C be a set of alternating cycles. A 0 skip set is a set of disjoint skips on
cycles of C s.t. the total weight of the skips is 0.
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Observe that finding a skip with some desired properties can be done in polynomial time
by trying all possible combinations of 2 edges, every time checking if the edges form a skip
with the desired properties (i.e. checking if the resulting cycle C ′ is alternating, has strictly
less edges then C and the weight change is as desired, which can all be done in polynomial
time).

Skips from Paths. Next, we show that if a cycle contains a lot of disjoint paths then it
must contain a skip that replaces 2 of these paths by its 2 edges.

Clique of size α + 1

e2e1

Figure 2 A subset of P of size α + 1 whose starting vertices form a clique.

▶ Lemma 8. Let P be an alternating path containing a set P of disjoint paths, each of length
at least 3 and starting and ending at non-matching edges, of size |P| ≥ 4α. Then P contains
a skip. If all paths in P have the same weight x, then if x is one of the following values, we
get the following types of skips:

x = 2: negative skip.
x = 1: negative or 0 skip.
x = 0: positive or 0 skip.
x = −1: positive skip.

Proof. The set of starting vertices of the paths in P must contain a clique Q of size α + 1
since |P| > Ram(α + 1, α + 1) (and the independence number of the graph is α). Let P ′

be the set of paths from P starting with vertices in Q and Q′ their set of ending vertices.
Since |Q′| = α + 1, there must be an edge connecting two of its vertices, call it e2. Let P1
and P2 be the two paths in P ′ connected by e2. Let e1 be the edge connecting the starting
vertices of P1 and P2 (which must exist since Q is a clique). Note that e1 and e2 must
be non-matching edges since they are chords of the alternating cycle C so their endpoints
are matched to edges of C. Now observe that e1 and e2 form a skip S (see Figure 2) and
w(S) = w(e1) + w(e2) − w(P1) − w(P2). Finally, suppose P1 and P2 have weight x and note
that w(e1), w(e2) ∈ {0, 1} since they are non-matching edges. We get −2x ≤ w(S) ≤ 2 − 2x

thus proving the lemma. ◀

The above lemma only shows the existence of a skip of a certain sign, and does not
guarantee the existence of 0 skips, i.e. skips that do not change the cycle weight. The next
lemma shows that if there are enough disjoint positive and negative skips we can still obtain
a 0 skip set (i.e. we can still reduce the cardinality of M∆M ′ without changing its weight).

▶ Lemma 9 (⋆). Let S be a collection of disjoint skips. If S contains at least 4 positive skips
and at least 4 negative skips (all mutually disjoint), then S must contain a 0 skip set.

MFCS 2022
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+1 0 +1 0 +1 0 -1 +1 -1 0 -1

+1 bundle path SAP -1 bundle path

Figure 3 An example of an alternating path containing a +1 bundle, a −1 bundle and an SAP.
Matching edges are represented by full lines and non-matching edges by dotted lines. The colors of
the edges correspond to their color in the graph.

Edge Pairs. For a given alternating cycle, our goal is to find paths of some desired weight
in order to apply Lemma 8. To make finding these paths easier, we look at pairs of edges.
Each pair consists of two consecutive edges (the first a matching-edge and the second a
non-matching edge). We label the pairs according to their weight (see in Figure 3 the label
above each pair of edges).

▶ Definition 10. A +1 pair (resp. −1 pair and 0 pair) is a pair of consecutive edges (the
first a matching-edge and the second a non-matching edge) along an alternating cycle such
that their weight sums to 1 (resp. −1 and 0).

Two +1 (resp. −1) pairs are called consecutive if there is an alternating path between
them on the cycle which only contains 0 pairs.

▶ Definition 11. A +1 (resp. −1) bundle is a pair of edge-disjoint consecutive +1 (resp.
−1) pairs. The path starting at the first pair and ending at the second one (including both
pairs) is referred to as the bundle path (see Figure 3 for an example of such bundles).

Note that a +1 (resp. −1) bundle path has weight +2 (resp. −2). Two bundles are called
disjoint if their bundle paths are edge disjoint.

▶ Definition 12. A Sign Alternating Path (SAP) is an alternating path P formed by edge
pairs, such that it does not contain any bundles (see Figure 3 for an example of such path).

Note that for an SAP P , |w(P )| ≤ 1.

Paths from Edge Pairs. Our goal is to bound the number of edges from some color class
in M∆M∗, when the latter is chosen to contain a minimum number of edges. To this end,
we aim to show that a large number of edges of both color classes implies the existence of
a 0 skip set (which would contradict the minimality of M∆M∗). By Lemma 9 it suffices
to show the existence of many positive and negative skips which in turn can be a result of
many paths of certain weight (by Lemma 8).

In the next two lemmas, we first show that a large number of edges of some color class
implies the existence of either many bundles, a long SAP or many 0-paths starting with an
edge of that color class. Then we show that all of these structures result in paths of the
desired weights.

▶ Lemma 13 (⋆). Let P be an alternating path containing at least 10t3 blue (resp. red)
edges. Then one of the following properties must hold:
(a) P contains at least t disjoint bundles.
(b) P contains an SAP with at least t non-zero pairs.
(c) P contains at least t edge-disjoint 0-paths of length at least 4 starting with a blue (resp.

red) matching edge.
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▶ Lemma 14 (⋆). A path P , satisfying one of the following properties, must contain t disjoint
paths each of length at least 3, starting and ending with non-matching edges and having
specific weights that depend on the satisfied property:
(a) P contains t disjoint +1 bundles: paths of weight +2.
(b) P contains t disjoint −1 bundles: paths of weight −1.
(c) P contains t edge-disjoint 0-paths of length at least 4 starting with a red matching edge:

paths of weight +1.
(d) P contains t edge-disjoint 0-paths of length at least 4 starting with a blue matching edge:

paths of weight 0.
(e) P contains an SAP with at least 2t + 1 non-zero pairs: paths of weight +1.
(f) P contains an SAP with at least 2t + 1 non-zero pairs: paths of weight 0.

While the above lemmas would be enough to show the existence of many skips whenever
M∆M∗ contains many edges from both color classes, these skips can still be of the same
sign (e.g. all positive) which is not enough to use Lemma 9. We will later show that this
cannot happen if the cycles in M∆M∗ have bounded weight.

Bounding Cycle Weights. In this part, we will deal with cycles of unbounded weight. We
start by showing that a large cycle weight implies the existence of many skips that can be
used to reduce it.

▶ Lemma 15 (⋆). Let P be an alternating path with w(P ) ≥ 2t · 4α (resp. w(P ) ≤ −2t · 4α),
then P contains at least t disjoint negative (resp. positive) skips.

The above lemma also allows for simple proof of Theorem 4.

Proof of Theorem 4. Let M1 be a PM containing a minimum number of red edges and M2
a PM with a maximum number of red edges (should be at least k). Note that M1 (resp. M2)
can be computed in polynomial time by simply using a maximum weight perfect matching
algorithm with −1 (resp. +1) weights assigned to red edges and 0 weights assigned to blue
edges.

Now as long as r(M1) ≤ k − 2 · 4α and r(M2) > k we will apply the following procedure
(otherwise we output M := M1): Let C ∈ M1∆M2 with w(C) > 0 (such a cycle must exist
since r(M1) < r(M2)). If w(C) ≤ 2 · 4α then we replace M1 by M1∆C and iterate (note that
r(M1) < r(M1∆C) ≤ k). Otherwise, by Lemma 15, C contains a negative skip. We find it in
polynomial time and use it to reduce the cycle weight, and iterate the whole procedure (note
that r(M2) decreases). If at any point r(M2) drops below k, we simply output M := M2. In
all cases w(M1∆M2) decreases after every iteration. So there can be at most n iterations
(since the PMs have at most n/2 edges each, so w(M1∆M2) ≤ n and we only iterate as long
as it is bigger than 0), each running in polynomial time. ◀

▶ Remark. Note that the proof only relies on Lemma 15 which in turn only relies on Lemma 8
and the part of Lemma 14 that deals with bundles. Most of the previously defined notions
are not needed for this standalone result.

From Lemma 15 we get that if M∆M∗ contains both a positive cycle of unbounded weight
and a negative cycle of unbounded weight, we can find a 0 skip set using Lemma 9. It could
be the case however, that we have only one of the two, say a positive cycle of unbounded
weight (with respect to α), and many negative weight cycles (which would be required if
|w(M∆M∗)| is bounded, which is guaranteed by the first phase of the algorithm). In this
case we can get many negative skips from the positive weight cycle of unbounded weight
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but we are not guaranteed to find positive skips, so we need another way to compensate
for the total weight change. Notice that this can be achieved by removing negative cycles
from M∆M∗. So we will combine the use of negative skips with the removal of some of the
negative cycles in order to get a zero total weight change. We call this a 0 skip-cycle set.

▶ Definition 16. Let C be a set of alternating cycles. A 0 skip-cycle set is a set of disjoint
skips on cycles of C and/or cycles from C, s.t. the total weight of the skips minus the total
weight of the cycles is 0.

We say that we use a skip-cycle set S to mean that we use all skips in S and remove all
cycles in S from C. Note that a 0 skip set is a 0 skip-cycle set. Also a cycle C ∈ M∆M∗ with
w(C) = 0 is a 0 skip-cycle set. The following lemma shows that if a set of alternating cycles
has bounded weight but one of its cycles has an unbounded weight then it must contain a 0
skip-cycle set.

▶ Lemma 17 (⋆). Let t ≥ 8 · 4α and t′ = 4t2. Let C be a set of alternating cycles and C ∈ C
s.t. |w(C)| ≤ t′ and |w(C)| ≥ 2t′, then C contains a 0 skip-cycle set.

Bounding one color class. So far we have shown that we can bound the weight of the
cycles in M∆M∗ (if M∆M∗ is minimal). What we want to show next is that if M∆M∗

contains many blue (resp. red) edges and all of its cycles have bounded weight, then it also
contains many positive (resp. negative) skips. This way we show that having many edges of
both color classes results in a 0 skip set.

First we deal with the case when the number of cycles in M∆M∗ is unbounded. The
following lemma shows that if the number of cycles is large enough compared to their
individual and total weights, then there must be a subset of them of 0 total weight (i.e., a 0
skip-cycle set).

▶ Lemma 18 (⋆). Let t ≥ 3. Let C be a set of alternating cycles s.t. |w(C)| ≤ t, |w(C)| ≤ 2t

for all C ∈ C and |C| ≥ 10t3, then C contains a 0 skip-cycle set.

Now we deal with the case when the number of cycles in M∆M∗ is bounded. In this
case, for the number of edges of some color class to be unbounded, it has to be unbounded
on at least one of the cycles. Lemma 21 deals with this case by first using Lemma 13 to show
the existence of many bundles, many 0-paths starting with a red edge and many 0-paths
starting with a blue edge, or a long SAP. In the latter two cases, we can prove the existence
of both positive and negative skips resulting in a 0 skip set. In the case of bundles however,
we need to have both many +1 and many −1 bundles for this to work. In Lemma 19 we
show that if the weight of an alternating cycle is bounded, then the difference between the
number of +1 and −1 bundles is also bounded. This in turn allows us to prove that the
existence of many bundles results in a 0 skip set as well (see Lemma 20).

▶ Lemma 19 (⋆). Let C be a cycle with |w(C)| ≤ l. If C contains 3t + l disjoint −1 (resp.
+1) bundles, then C also contains at least t disjoint +1 (resp. −1) bundles.

▶ Lemma 20 (⋆). Let t ≥ 8 · 4α. Let C be a cycle with |w(C)| ≤ 2t. If C contains more
than 10t disjoint bundles then it must contain a 0 skip set.

▶ Lemma 21 (⋆). Let t ≥ 8 · 4α. Let C be a collection of cycles s.t. |C| ≤ 10t3, |w(C)| ≤ 2t

for all C ∈ C and C contains at least 1000t6 blue edges and 1000t6 red edges, then C contains
a 0 skip set.
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Proof of Theorem 1. Use the algorithm of Theorem 4 to get a matching M s.t. k − 2 · 4α ≤
r(M) ≤ k. Let M∗ be a PM with k red edges that minimizes |E(M∆M∗)|. Consider the set of
cycles M∆M∗. Observe that it cannot contain a 0 skip-cycle set (by minimality of its number
of edges) and |w(M∆M∗)| ≤ |k − r(M)| ≤ 2 · 4α. Let t = 256 · 42α (so t is large enough to
apply all the previous lemmas). If some cycle C ∈ M∆M∗ has |w(C)| ≥ 2t, by Lemma 17 we
get a 0 skip-cycle set. So we consider the case when all cycles C ∈ M∆M∗ have |w(C)| < 2t.
If M∆M∗ contains at least 10t3 cycles, by Lemma 18 we get a 0 skip set. So we consider the
case when |M∆M∗| ≤ 10t3. By Lemma 21, since M∆M∗ does not contain a 0 skip set, it
must contain at most f(α) edges of some color class (for f(α) = 1000 · (256 · 42α)6 = 2O(α)).
By Proposition 5 we can find a PM with exactly k red edges in nO(f(α)) time if one exists. ◀

4 Bipartite Graphs

In this section, we consider Bipartite graphs, which contain very large independent sets
(≥ n/2). For this reason, we instead parameterize by the bipartite independence number
β. Note that for the proof of Theorem 1 the only time we used the bounded independence
number is in the proof of Lemma 8. So we need an analogue of it that works for bounded
bipartite independence number, which will be given in Lemma 23. We will also need a new
notion of a skip that better fits the bipartite case. We call it a biskip (see Definition 22 and
Figure 4). We will also rely on an orientation of the edges of the graph defined as follows.
Given a bipartite graph G with bipartition (A, B) and a matching M , we transform G into a
directed graph GM by orienting every matching edge from A to B and every non-matching
edge from B to A.

▶ Definition 22. Let C be a directed alternating cycle. A biskip S is a set of 2 arcs
a1 := (v1, v2) and a2 := (v′

1, v′
2) with a1, a2 /∈ C and v1, v′

2, v′
1, v2 ∈ C (appearing in this order

along C) s.t. C1 := C[v2, v1] ∪ a1 and C2 := C[v′
2, v′

1] ∪ a2 are vertex disjoint alternating
cycles, |C| − |C1| − |C2| > 0 and |w(S)| ≤ 4 where w(S) := w(C1) + w(C2) − w(C) is called
the weight of the biskip.

If P ⊆ C is a path and C[v1, v2] ⊆ P , then we say that P contains the biskip S. We say
using S to mean replacing C by C1 and C2. If C ∈ M∆M ′ for some PM M ′, then by using
S we also modify M ′ accordingly (i.e. s.t. M∆M ′ now contains C1 and C2 instead of C).
Two skips {(v1, v2), (v′

1, v′
2)} and {(u1, u2), (u′

1, u′
2)} are called disjoint if they are contained

in disjoint paths.

a2

a1
v1

v′2
v′1

v2

Figure 4 A biskip formed by two non-matching arcs a1 and a2 (in orange). Matching edges are
represented by full lines and non-matching edges by dotted lines. The paths removed by the biskip
are depicted in black.

▶ Remark. Note that the biskip could have been defined with one arc instead of two (since
in this case one arc is enough to shorten an alternating cycle), which would have made the
definition simpler. Definition 22 is however, very similar to the definition of the skip (see
Definition 6) and this in turn allows us to prove Theorem 2 in an analogous way to Theorem 1
instead of requiring a completely different proof.
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▶ Lemma 23. Let P ⊆ GM be a directed alternating path containing a set P of disjoint
directed paths, each of length at least 3 and starting and ending at a non-matching edge, s.t.
|P| ≥ 42β+2. Then P contains a biskip. If all paths in P have the same weight x, then if x

is one of the following values, we get the following types of biskips:
x = 2: negative biskip.
x = 1: negative or 0 biskip.
x = 0: positive or 0 biskip.
x = −1: positive biskip.

Proof. Consider the graph GC defined as follows: V (GC) = P , there is an edge between two
vertices if their corresponding paths have an arc that goes from the start vertex of the first
path to the end vertex of the second.

▷ Claim. GC has independence number bounded by 2β + 1.

Proof. Take any subset Q of vertices of GC of size 2β + 2. Let Q1 be β + 1 consecutive
(along C) vertices of Q and Q2 the rest. Let V1 be the set of start vertices of the paths
corresponding to Q1 in GM and V2 be the set of end vertices of the paths corresponding to
Q2 in GM . Observe that V1 ∪ V2 is a balanced set of size 2β + 2, so there must be an arc
connecting two of its vertices. Observe that the arc must be going from V1 to V2 since it
corresponds to a non-matching edge. So GC contains an edge corresponding to this arc, i.e.
Q is not an independent set. ◁

GC must contain a clique Q of size 2β + 2 since |V (GC)| = |P| ≥ Ram(2β + 2, 2β + 2).
Let Q1 be β + 1 consecutive (along C) vertices of Q and Q2 the rest. Let V1 be the set of
end vertices of the paths corresponding to Q1 in GM and V2 be the set of start vertices of
the paths corresponding to Q2 in GM . Observe that V1 ∪ V2 is a balanced set of size 2β + 2,
so there must be an arc (call it a1) connecting two of its vertices. Observe that the arc must
be going from V2 to V1 since it corresponds to a non-matching edge. Let P1 and P2 be the
paths corresponding to its start and end vertices. P1 and P2 must be connected by an edge
in Q, let a2 be the corresponding arc in GM . So a2 connects the start of P1 to the end of
P2 and a1 connects the start of P2 to the end of P1. Observe that a1 and a2 form a biskip
S and w(S) = w(a1) + w(a2) − w(P1) − w(P2). Let x = w(P1) = w(P2) (x depends on the
type of paths considered) and note that w(e1), w(e2) ∈ {0, 1}. We get −2x ≤ w(S) ≤ 2 − 2x

thus proving the lemma. ◀

The rest of the proof of Theorem 2 follows the same structure as that of Theorem 1
while using biskips instead of skips. Due to lack of space we will defer all the details to the
appendix where we will restate all the definitions and lemmas that need to be adapted.

5 Distance-d Independence Number

In this section we show that the algorithms developed for small independence number graphs
cannot be generalized to distance-d independence number, for d > 2, unless they can be
used to solve EM on any graph. A distance-d independent set is a set of vertices at pairwise
distance at least d (i.e. the shortest path between any two of them contains at least d edges)
and the distance-d independence number is the size of the largest such set. Note that for
d = 2 we get the normal independence number. Let αd(G) be the distance-d independence
number of a graph G.
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▶ Theorem 24. EM can be reduced to EM on graphs with αd(G) = 1, for any d > 2, in
deterministic polynomial time.

Proof. Given a graph G = (V, E) we construct another graph G′ = (V ′, E′) by adding two
new vertices u and v s.t. V ′ = V ∪ {u, v} and E′ := E ∪ (u, v) ∪ {(u, x) : x ∈ V }. All edges
in E keep their colors while new edges get color blue. Observe that any PM on G′ must
contain (u, v) since it is the only edge connected to v, so by removing this edge from the
PM we get a PM for G. Also note that G′ has distance-d independence number of 1, for any
d > 2, since any two vertices are connected to u, i.e. have distance 2. Now if there exists a
PM M with exactly k red edges in G′, we know that M\(u, v) is a PM with exactly k red
edges in G. ◀

A similar theorem applies for bipartite graphs. Note that here we do not need to consider
balanced independent sets (a similar result holds if we do).

▶ Theorem 25. EM on bipartite graphs can be reduced to EM on bipartite graphs with
αd(G) = 2, for any d > 2, in deterministic polynomial time.

Proof. Given a bipartite graph G = (U, V, E) we construct another bipartite graph G′ =
(U ′, V ′, E′) s.t. U ′ = U ∪ {u, u′} , V ′ = V ∪ {v, v′} and E′ := E ∪ {(u, x) : x ∈ V ′} ∪ {(v, x) :
x ∈ U ′}. All edges in E keep their colors while new edges get color blue. Observe that any
PM on G′ must contain (u, v′) and (v, u′) since they are the only edges connected to u′ and
v′, so by removing these edges from the PM we get a PM for G. Also note that G′ has
distance-d independence number of 2, for any d ≥ 2, since it can contain at most one vertex
from each of U ′ and V ′ (any two vertices of U ′ are connected to v, and any two vertices of
V ′ are connected to u). Now if there exists a PM M with exactly k red edges in G′, we know
that M\((u, v′) ∪ (v, u′)) is a PM with exactly k red edges in G. ◀

6 Conclusion and Open Problems

In this paper we initiated the study of the parameterized complexity of EM by showing
that it can be solved in deterministic polynomial time on graphs of bounded independence
number and bipartite graphs of bounded bipartite independence number (i.e. we developed
XP algorithms). This is an important step towards finding the right complexity class of the
problem in general graphs as it generalizes the only previously known results on dense graph
classes which were restricted to complete (bipartite) graphs.

A natural next step would be to design corresponding FPT-algorithms in which the
exponent in the running time is independent of the independence number. Another future
direction would be to study the parameterized complexity of EM for other graph parameters.
As we showed, parameterizing by higher distance independence numbers does not provide
any additional structure, so it would be interesting to find other parameters that could yield
non-trivial structure. Finally, it would be interesting to prove our conjecture on the hardness
of counting PMs in graphs of independence number 2 or to find deterministic polynomial
time algorithms for EM that work on graph classes for which counting PMs is #P-hard.
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