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Abstract
Global transformations provide a categorical framework for capturing synchronous rewriting systems,
generalizing cellular automata to dynamical systems over dynamic spaces. Originally developed
for addressing deterministic dynamical systems, the presented work raises the question of non-
determinism. While a usual approach is to develop a general non-deterministic setting where
deterministic systems can be retrieved as a specific case, we show here that by choosing the right
parametrization, global transformations can already be used to handle non-determinism. Context-free
Lindenmayer systems, already shown to be captured by global transformation in the deterministic
case, are used to illustrate the approach. From this concrete example, the formal obstructions are
exhibited, leading to a solution involving a 2-categorical monad and its associated Kleisli construction.
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1 Introduction

Global transformations (GT) has been introduced in [12] as a precise formal description of
dynamical systems defined over a space which is also dynamic while being still synchronous.
This synchronicity property makes GT apart from the main stream of the literature on graph
transformations and graph rewriting systems. They however share with this literature the
fact that they are very generically defined using category theory in order not to be tied to
a specific kind of space. For instance, GT can be used with directed or undirected graphs,
labeled or not, hypergraphs, abstract cell complexes.

In order to present the framework to a public not familiar with category theory, the well
known deterministic Lindenmayer systems have been presented in terms of GT in [4]. In
this paper, we return to Lindenmayer systems, not as a pedagogical exercise but to explore
non-determinism in GT in the simplest possible concrete setting.

A usual approach for studying non-determinism from a deterministic object consists in
generalizing the deterministic object into a non-deterministic one and then to show that the
original deterministic case is a degenerate case of the new non-deterministic setting. We
rather seek to demonstrate that non-determinism is already encompassed as a particular
case of the current definition of GT. This is in complete analogy with dynamical systems.
Indeed, the general definition of dynamical systems is in terms of sets of states and evolution
functions. Non-deterministic dynamical systems are particular dynamical systems where
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49:2 Non-Determinism in Lindenmayer Systems and Global Transformations

the sets happen to be powersets of an underlying set of real states. This quest emerged
from the necessity to talk about non-deterministic, probabilistic and quantum systems, with
the intuition that it should not be very different to what happens for dynamical systems.
It is not obvious at first that this is possible, because GT are mainly about the notion of
(dynamic) locality, but non-deterministic, probabilistic and quantum systems all exhibit
somewhat non-local features of correlation and entanglement.

At this point, it is not possible to say much without properly defining the terms that we
use. So we dig into the formal definitions of the main objects in Section 2. This will allow us
to show that a naive approach of this quest, based on powersets, does not work as explored
in Section 3. In Section 4, we circumvent the obstruction in the most natural way and go to
an intuitive solution that does not look as a dynamical system, because the transformation
does not go from a set to itself but from a set to a bigger set. Section 5 comes back on the
relation between dynamical system and non-deterministic system in terms of monad and
Kleisli category. This well-known categorical point of view on dynamical systems leads us to
consider a 2-monad and its Kleisli 2-category, linking together the previous attempts with
this setting as a coherent whole, and providing a positive answer to our quest.

2 Preliminaries

The following notations are used along the paper. Formal language operations are written as
follows. For a given alphabet Σ, Σ∗ is the set of finite words on Σ, and ε is the empty word.
The length of a word u ∈ Σ∗ is written |u| and its ith letter, for 0 ≤ i < |u|, is written ui.
The concatenation of two words u, v ∈ Σ∗ is written u · v. Concatenation of sets U, V ⊆ Σ∗

is written U · V and is defined by {u · v | u ∈ U, v ∈ V }. For a given set U , the powerset of
U is written P(U). The cartesian product of a family of sets {Ui}i∈I is written

∏
i∈I Ui, and

the projection on component i for an element x of that product is written x(i).
The reader is assumed familiar with basic notions of category theory. The colimit of a

given diagram D is written Colim(D). The notation F/x stands for the comma category F

over x where x is an object of some category and F is a functor into that category. The first
projection is then written Proj[F/x]. The restriction of a category C to the full subcategory
with objects S ⊂ C is written C ↾ S. The restriction of a functor F to a subcategory C of
its domain is written F ↾ C as well.

2.1 Global Transformations
A global transform is a synchronous rewriting rule system. This is made possible by con-
sidering inclusions between rules in order to make explicit how overlapping applications of
rules should be handle, similarly to the notion of amalgamation in classical graph transform-
ation [2, 1]. Asking the coherence of the rule inclusions means exactly to ask them to form
categories and functors, leading to the following definitions.

▶ Definition 1 (rule systems and global transformations). A rule system T on a category C is
a tuple ⟨ΓT , LT , RT ⟩ where ΓT is a category whose objects and morphism are called rules
and rule inclusions, LT : ΓT → C is a full embedding functor called the l.h.s. functor, and
RT : ΓT → C is a functor called the r.h.s. functor. A rule system is a global transformation
when the functor:

T (−) = Colim(RT ◦ Proj[LT /−]) (1)

abusively also denoted T , is well-defined. The subscript T is omitted when this does not lead
to any confusion.
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This definition is a simplified version of alternative definitions found in [12, 5] but is
enough for the present study. This definition makes GT T into a (pointwise) left Kan
extensions of RT along LT , i.e., a pair ⟨T, η : RT =⇒ T ◦ LT ⟩ such that any other pair
⟨K, ρ : RT =⇒ K ◦ LT ⟩ factorizes through η by a unique λ : T =⇒ K as in the following
diagram. The natural transformation η is the identity, i.e., T ◦ LT = RT .

C

Γ C

TLT

RT

K

η
ρ

λ

For more information on GT, one can consult [12, 4, 5, 7] but the specific case considered
below might be enough to exemplify the relation between synchronous rewriting systems and
left Kan extensions as explored by GT.

2.2 Non-Deterministic Lindenmayer Systems
Lindenmayer systems are a variant of formal grammars for specifying languages through a
mechanism of parallel string rewriting [13, 10]. The present study focuses on Lindenmayer
systems without context, where a word u on an alphabet Σ is synchronously rewritten by
mapping each individual letter to a word (deterministic case) or set of words (non-deterministic
case).

▶ Definition 2. A non-deterministic Lindenmayer system on an alphabet Σ is given by a
function δ : Σ → P(Σ∗) and produces the function on words ∆ : Σ∗ → P(Σ∗):

∆(u) = {v0 · . . . · v|u|−1 | (v0, . . . , v|u|−1) ∈ δ(u0) × . . . × δ(u|u|−1)} (2)

and the dynamical system ∆ : P(Σ∗) → P(Σ∗):

∆(U) =
⋃

u∈U

∆(u). (3)

▶ Example 3. Consider the alphabet Σ = {a, b} with function δ defined by δ(a) = {a, ab} and
δ(b) = {ε, b}. In this system, each a may potentially produce a new b on its right, and each b
remains or vanishes. The behavior on the word ab is given by ∆(ab) = {a·ε, ab·ε, a·b, ab·b} =
{a, ab, abb}. Notice that ab is produced in two different ways.

In [4], deterministic Lindenmayer systems (without and with context) are presented as
GT. This encoding relies on the category W of finite words that also plays a crucial role in
this study. Let us fix the symbol Σ for the alphabet.

▶ Definition 4. Let W be the category having Σ∗ as set of objects, and

W(u, v) := { p ∈ {0, . . . , |v| − |u|} | ui = vp+i ∀i ∈ {0, . . . , |u| − 1} }

as set of arrows from any u ∈ Σ∗ to any v ∈ Σ∗. We write p : u → v for p ∈ W(u, v). The
composite q ◦ p : u → w of any two arrows q : v → w and p : u → v is given by q + p, 0 being
the identity arrow of any u ∈ Σ∗.

MFCS 2022
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Category W records the many places words appear in each other which is the relevant
notion of locality for Lindenmayer systems. Indeed, the concatenations involved in Equa-
tion (2) correspond to colimits in W, as stated by the following theorem, and is the basic
ingredient of the expression of deterministic Lindenmayer systems as GT.

▶ Theorem 5 (from [4]). For any two words u, v, the word u · v is the colimit in W of the
diagram:

u v

ε|u| 0

with components

u · v

u v

ε

0 |u|
|u|

|u| 0

.

▶ Example 6. Let us illustrate the construction of [4] with a simple example. Consider the
deterministic Lindenmayer system defined on Σ = {a, b} by δ(a) = {ab} and δ(b) = {a}. The
associated GT T = ⟨Γ, L, R⟩ is completely determined by the following diagrams presenting
respectively the category of rules Γ as a full subcategory of W with inclusion functor L, and
the image of Γ by R:

εa b R7−→ εab a
0

1

0

1

0

2

0

1

The computation of T (ab) as defined by Equation (1) is pictured by the following diagrams:

ε

a b

ab

1 0
1

0 1

ε

ab a

2 0 ε

ab a

ab · a

2 0
2

0 2

On the left, the diagram illustrates the information provided by the comma category L/ab. It
corresponds to the pattern matching of the rules l.h.s. in the input word ab. On the middle,
the diagram R ◦ Proj[L/ab] is represented. On the right, the application of Theorem 5 for
computing the colimit requested by T (ab) constructs the expected result aba.

3 The Challenge of Powersets

Let us recall the goal and make it more precise in light of the formal definitions. We already
know from [4] that deterministic Lindenmayer systems are GT, and now we want to establish
that non-deterministic Lindenmayer systems are also GT, without any extension of the
framework. This means that we want to provide a rule system (Definition 1) based on δ such
that ∆ (Definition 2) is obtained by the colimit formula of Equation (1). This implies in
particular that we need to design the appropriate category, say PW, with a calibrated notion
of arrows to capture what we can informally call non-deterministic locality. The first idea
that comes to mind is to take P(Σ∗) as set of objects for PW so that an object represents a
set of possibilities. It remains to define arrows of PW. However, it will cause difficulties as
we are now going to see.

To make this more concrete, let us take the simple example of Σ = {a, b}, δ(a) = {a, b}
and δ(b) = {ε}. First, notice that ∆(ε) = {ε}. Second, on the input aa, it produces
the behavior ∆(aa) = {aa, ab, ba, bb} corresponding to the four possibilities combining the
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possible evolutions of each a. Using the lessons learned in the deterministic case as illustrated
in Example 6, we make the educated guess that the involved diagram should be of the form:

{a, b} {a, b}

{ε}end beg

to produce the colimit

{aa, ab, ba, bb}

{a, b} {a, b}

{ε}

η1 η2

η3

end beg

.

The diagram contains {ε} for the matched ε between the two a in aa, and two times {a, b}
for each occurrence of a. The arrows in the diagram indicate that the empty words at the end
of the words in the left object need to correspond to the empty words at the beginning of the
words in the right object as in Theorem 5. The expected colimit results in the concatenation
{aa, ab, ba, bb}. Based on these assumptions, we know that:

the arrow “end” of PW should be based on arrows 1 : ε → a and 1 : ε → b of W,
the arrow “beg” of PW should be based on arrows 0 : ε → a and 0 : ε → b of W,
the arrow η1 should be based on 0 : a → aa, 0 : a → ab, 0 : b → ba, and 0 : b → bb,
the arrow η2 should be based on 1 : a → aa, 1 : b → ab, 1 : a → ba, and 1 : b → bb,
the arrow η3 should be based on 1 : ε → aa, 1 : ε → ab, 1 : ε → ba, and 1 : ε → bb.

A natural choice for designing the arrows of PW is then to gather of these arrows of W into
sets of arrows, leading to the following definition.

▶ Definition 7. Let PW be the category having P(Σ∗) as set of objects, and

PW(U, V ) := P({ p : u → v ∈ W | u ∈ U, v ∈ V })

as set of arrows from any U ∈ P(Σ∗) to any V ∈ P(Σ∗). As usual, we write P : U → V

for P ∈ PW(U, V ). The composite Q ◦ P : U → W of any two arrows P : U → V and
Q : V → W is given by {p + q : u → w | p : u → v ∈ P, q : v → w ∈ Q}, {0 : u → u | u ∈ U}
being the identity arrow of any U ∈ Σ∗.

Notice that for any P ∈ PW(U, V ), P does not contain integers but arrows of W with
their domain and codomain. To avoid any confusion, we always write p : u → v ∈ P for
elements of P .

▶ Example 8. With this category, the previous example works as expected if we take our
previous list of constraints to define end, beg, η1, η2, and η3 as sets of arrows: end = {1 :
ε → a, 1 : ε → b}, beg = {0 : ε → a, 0 : ε → b}, η1 = {0 : a → aa, 0 : a → ab, 0 : b → ba, 0 :
b → bb}, and so on so forth. To see this, consider another cocone to some object U ∈ PW
with components ρ1 : {a, b} → U , ρ2 : {a, b} → U , ρ3 : {ε} → U . We aim at showing that
there is a unique arrow µ : {aa, ab, ba, bb} → U such that ρi = µ ◦ ηi for i ∈ {1, 2, 3}.

First notice that ρ1, ρ2, and ρ3 are bijectively related. Indeed, by definition of the
composition in PW and by commutativity of the cocone, each f1 : l1 → u ∈ ρ1 compose
with the unique appropriate arrow 1 : ε → l1 of “end” to give a bijectively corresponding
arrow in f1 + 1 : ε → u ∈ ρ3. Surjectivity holds by the definition of the composition.
Injectivity stands on the fact that an occurrence of a and an occurrence of b in a given
word (here u) cannot be at the same position. Therefore, given f1 + 1 : ε → u ∈ ρ3, there
is a unique letter l1 such that f1 : l1 → u ∈ ρ1. Similarly, there is also such a bijection
mapping each f2 : l2 → u ∈ ρ2 to f2 : ε → u ∈ ρ3. Consequently, the mediating µ has to
contain exactly arrows with domain the concatenation of source letters li of two bijectively
related arrows f1 : l1 → u ∈ ρ1 and f2 : l2 → u ∈ ρ2, and with codomain u. Formally
µ has to be {f1 : l1 · l2 → u | f1 : l1 → u ∈ ρ1 and corresponding f1 + 1 : l2 → u ∈ ρ2}.

MFCS 2022



49:6 Non-Determinism in Lindenmayer Systems and Global Transformations

The fact that this mediating commutes appropriately comes directly from the fact that
µ ◦ η1 = {f1 : l1 → u | 0 : l1 → l1 · l2 ∈ η1, f1 : l1 · l2 → u ∈ µ} which turns to be ρ1.
Commutations for ρ2 and ρ3 hold as well. Finally, µ is unique by construction.

While the previous example works, the proof uses explicitly the properties specific to the
example. In the general case, the construction fails as shown by the following example.

▶ Example 9. We consider a different non-deterministic Lindenmayer system where Σ = {a}
and δ(a) = {a, aa}. This produces the behavior ∆(aa) = {aa, aaa, aaaa}. Notice in particular
that the concatenations a · aa and aa · a give the same word aaa in ∆(aa). Following the
same construction as presented in Example 8, we consider the following colimit:

{aa, aaa, aaaa}

{a, aa} {a, aa}

{ε}

η1 η2

η3

end beg

where
η1 = {0 : a → aa, 0 : a → aaa, 0 : aa → aaa, 0 : aa → aaaa},
η2 = {1 : a → aa, 1 : aa → aaa, 2 : a → aaa, 2 : aa → aaaa}, and
η3 = {1 : ε → aa, 1 : ε → aaa, 2 : ε → aaa, 2 : ε → aaaa}.

To see that this cocone is not a colimit, consider the cocone to {aaa} having components
ρ1 = {0 : a → aaa}, ρ2 = {1 : aa → aaa}, and ρ3 = {1 : ε → aaa}. The only possible
mediating is µ = {0 : aaa, aaa} but it fails to respect the required commutation property.
Indeed, µ ◦ η1 = {0 : a → aaa, 0 : aa → aaa} which definitively differs from ρ1.

So the first and simplest intuitive idea does not work and we have not designed the
appropriate category. In particular, the construction fails since it is not able to distinguish
the different ways for generating a given output (case aaa in Example 9). We then deduce
that an appropriate category, if it exists, needs to keep track of this information. Moreover,
notice that in Equation (1), the arrows of the category are not only used for constructing
the result as a colimit, but also to decompose an input U into a coma category LT /U and
produce the diagram by the formula R ◦ Proj[LT /U ]. So the previous discussion has only
addressed one side of the problem.

4 From Sets to Indexed Families

There are plenty of other possible definitions for designing arrows of PW and the research
space to get the right one is pretty large. However, having considered several attempts of
definitions, we come to the following working hypothesis.

▶ Conjecture 10. There is no category with set of objects P(Σ∗) and an appropriate choice
of arrows begU , endU : {ε} → U producing concatenation as a colimit.

Irrespectively of the validity of that conjecture, we choose to circumvent directly the problem
that occurred in the previous example and to jump to other aspects of the program. As
previously evoked, the obstruction was that a · aa and aa · a merged into a single word aaa,
so that the mediating arrow could not specify whether it needed this word as a result of
the first concatenation or of the second one. To keep track of that information, we simply
allow for a word to appear many times and we take families of words instead of sets of words.
Taking this path of least resistance, we obtain the following category where an arrow from
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a source family of words to a target family of words, picks a unique word from the source
for each word in the target. This additional “unique source word” property is respected by
all the arrows considered up to now. Taking the view that an arrow p : u → v in W selects
a subword of v, this constraint says that an arrow to a family of words similarly selects a
subword for each member of that family.

▶ Definition 11. For any C ∈ Cat, OC ∈ Cat has pairs (I : Set, U ∈ CI) as objects and

OC((I, U), (J, V )) := { (P : J → I, P ′ :
∏
j∈J

C(UP (j), Vj)) }

as set of arrows from any (I, U) ∈ OC to any (J, V ) ∈ OC. As usual, we write (P, P ′) :
(I, U) → (J, V ) for (P, P ′) ∈ OC((I, U), (J, V )). The composite (Q, Q′) ◦ (P, P ′) : (I, U) →
(K, W ) of any two arrows (P, P ′) : (I, U) → (J, V ) and (Q, Q′) : (J, V ) → (K, W ) is given
by the pair (R : K → I, R′ :

∏
k∈K C(UR(k), Wk)) where :

R(k) = P (Q(k)) and R′(k) = Q′(k) ◦ P ′(Q(k)) : UP (Q(k)) → VQ(k) → Wk ∈ C.

The identity arrow of any (I, U) is (P, P ′) where P (i) = i and P ′(i) = idP (i) : P (i) → P (i).

One may have recognised in this definition the construction for non-determinism of [11]. It
happens to be the free cartesian completion of C, the dual of Fam(C) construction for free
coproduct completion [9, 3, 14], i.e. OC = Fam(Cop)op.

It is not hard to see that each object of this category has many isomorphic objects of
bijective index set, so that the particular index set used is irrelevant. The real information
contained in an equivalence class of isomorphic objects is the number of times each word
occurs. Here, we allow this cardinality to be arbitrary. The issue of cardinality is a detail
at this point, and we do not bother commenting on this issue before the conclusion. In the
meantime, one can freely add the word finite anywhere one feels it is needed.

At this time, some notations are required to handle families and some relevant elements
of OW. Given an arbitrary set U , we write U for the corresponding family containing each
elements of U exactly once and given by the pair (U, idU ). Also, for any (I, U) ∈ OW, we
consider the appropriate arrows beg(I,U), end(I,U) : {ε} → (I, U) identifying the occurrences
of the empty words respectively at the beginning and at the end of the words of the family
(I, U), and which are given by beg(I,U) = ([i 7→ ε], [i 7→ (0 : ε → Ui)]) and end(I,U) = ([i 7→
ε], [i 7→ (|Ui| : ε → Ui)]). We make use here of the notation [x 7→ f(x)] to specify succinctly
an anonymous function; domains and codomains can always be retrieved from the context.

With the category OW and these beginning and ending arrows, we obtain concatenation
as wanted and in a very similar way to concatenation in W with Theorem 5.

▶ Proposition 12. For any two families (I, U), (J, V ) ∈ OW, a colimit of the diagram

(I, U) (J, V )

{ε}end(I,U) beg(I,U)

is given by the cocone

(I × J, (i, j) 7→ Ui · Vj)

(I, U) (J, V )

{ε}

η1 η2η3

end(I,U) beg(I,U)

where
η1 = ([(i, j) 7→ i], [(i, j) 7→ (0 : Ui → Ui · Vj)]),
η2 = ([(i, j) 7→ j], [(i, j) 7→ (|Ui| : Vj → Ui · Vj)]), and
η3 = ([(i, j) 7→ ε], [(i, j) 7→ (|Ui| : ε → Ui · Vj)]).

MFCS 2022
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Proof. Indeed, consider another cocone to some (K, W ) with components, (P, P ′) : (I, U) →
(K, W ), (Q, Q′) : (J, V ) → (K, W ), and (R, R′) : {ε} → (K, W ). The mediating arrow is
given by ([k 7→ (P (k), Q(k))], [k 7→ P ′(k) : UP (k) · VQ(k) → Wk]). Notice that this mediating
follows the exact same definition as the one exhibited in Example 8. ◀

It is now time to summarize what we have just achieved. We took a diagram shape that
allowed to obtain deterministic Lindenmayer systems as GT by encoding concatenation as
colimit. Then, we changed the objects and arrows in this diagram to obtain what we can
informally call non-deterministic concatenation. But the diagram shape itself arises from
the deterministic decomposition of a single input word (see [4]). In other words, the pattern
matching is not considered in OW but in W. So for now, we only have the following.

▶ Definition 13. For any non-deterministic Lindenmayer system (Σ, δ : Σ → P(Σ∗)), we
write D : W → OW for the functor mapping words u ∈ W to D(u) = (I, V ) where

I := δ(u0) × . . . × δ(u|u|−1) and V(v0,...,v|u|−1) := v0 · . . . · v|u|−1

and arrows p : u′ → u to D(p) = (P, P ′) where

P ((v0, . . . , v|u|−1)) := (vp, . . . , vp+|u′|−1) and

P ′((v0, . . . , v|u|−1)) := |v0| + . . . + |vp−1| : vp · . . . · vp+|u′|−1 → v0 · . . . · v|u|−1.

The functor D is a categorical counterpart of ∆ : Σ∗ → P(Σ∗) of Definition 2 but
with families making sure that we keep the multiple instances of each word. Indeed, for
D(u) = (I, U), each index (v0, . . . , v|u|−1) ∈ I corresponds to a choice of a word vi among
the possibilities provided by δ(ui), for each letter ui of u. For such a choice, the associated
resulting word V(v0,...,v|u|−1) is simply given by the concatenation of the vi. The definition of
D(p) expresses the monotony of ∆. The monotony can be illustrated as follows. Consider
u = α1 · u′ · α2 with |α1| = p. Taking v′ ∈ ∆(u′), γ1 ∈ ∆(α1), and γ2 ∈ ∆(α2), we have
v = γ1 · v′ · γ2 ∈ ∆(u). So we have an arrow |γ1| : v′ → v. As a family of arrows, D(p)
gathers all of these arrows. In the formula of Definition 13, we have α1 = u0 . . . up−1,
u′ = up . . . up+|u′|−1, γ1 = v0 · . . . · vp−1, and v′ = vp · . . . · vp+|u′|−1.

Exactly as ∆ is generated from its sole behavior on letters given by δ as stated by
Definition 2, we will see that the functor D is generated from its restriction to the letters
and ε. We start by defining the categorical counterpart d of δ.

▶ Definition 14. For any non-deterministic Lindenmayer system (Σ, δ : Σ → PΣ∗), we write
d : W ↾ Σ ∪ {ε} → OW for the functor from the full subcategory W ↾ Σ ∪ {ε} of W to OW
defined as d = D ↾ (W ↾ Σ ∪ {ε}).

The functor d is entirely characterized in terms of arrows beg and end.

▶ Lemma 15. For any a ∈ Σ, we have d(0 : ε → a) = begd(a) and d(1 : ε → a) = endd(a).

Proof. Consider 0 : ε → a. By Defs 14 and 13, d(ε) = D(ε) = ({ε}, [ε 7→ ε]) = {ε}, and
d(a) = D(a) = (δ(a), [i 7→ i]). By the same definitions, d(0 : ε → a) = D(0 : ε → a) = (P, P ′)
with P (i) = ε and P ′(i) = |ε| : ε → i where i ranges over δ(a). Clearly, d(0 : ε → a) =
beg(δ(a),[i7→i]) = begd(a) as expected. We get d(1 : ε → a) = endd(a) similarly. ◀

We can now establish that D is obtained as an extension of d thereby providing a
categorical counterpart of Definition 2.
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▶ Proposition 16. D is a pointwise left Kan extension of d along the inclusion functor
ι : W ↾ Σ ∪ {ε} → W as in the following diagram where η is the identity.

W

W ↾ Σ ∪ {ε} O{W}

D
ι

d

η

Proof. Using the explicit definition of pointwise left Kan extensions in terms of colimit,
we are left to show that D(−) = Colim(d ◦ Proj[ι/−]). In [4], it is already proved that the
diagram Proj[ι/u] has the following zigzag shape:

u0 u1 . . . u|u|−1

ε
0

ε
1 0

ε
1 0

ε
1 0 ε1

Using Lemma 15, the diagram d ◦ Proj[ι/u] is:

(δ(u0), [i 7→ i]) (δ(u1), [i 7→ i]) . . . (δ(u|u|−1), [i 7→ i])

{ε} beg {ε}end beg {ε}end beg
{ε}

end beg {ε}end .

Iteratively using Prop. 12 on this finite sequence, the colimit of this diagram is clearly
the non-deterministic concatenation of the (δ(uk), [i 7→ i]), 0 ≤ k < |u|, which is also the
definition of D(u) as given in Def. 13. To prove that η is the identity, it is enough to consider
the particular case of the previous reasoning with |u| ≤ 1 that shows that (D ◦ ι)(u) = d(u).

Given some p : u′ → u, for proving that D(p) = Colim(d ◦Proj[ι/p]) we remark that D(p)
has to be a mediating arrow. By unicity of the mediating arrow, it remains to show that
D(p) obeys the requested commutations of mediating arrows, which is straightforward. ◀

So far, for a non-deterministic Lindenmayer system (Σ, δ), we have d as a categorical
counterpart of δ, which gives rise by left Kan extension to D, the categorical counterpart of
∆. However, we still do not have a dynamical system, since the domain and codomain of
D : W → OW are not strictly the same. In other words, we now want a left Kan extension
counterpart of ∆ : P(Σ∗) → P(Σ∗) of Definition 2, say D : OW → OW. Clearly, we already
know the expected definition of D since we want to apply independently D on each element
of a family (I, U) and to flatten the results altogether.

▶ Definition 17. Let D : OW → OW be the functor defined as

D((I, U)) =
(⋃

i∈I

({i} × Ji) , [(i, j) 7→ (Vi)j ]
)

where (Ji, Vi) = D(Ui),

and D((P, P ′) : (I ′, U ′) → (I, U)) = (Q, Q′) such that, for each (i, j) ∈
⋃

i∈I ({i} × Ji):

Q((i, j)) = (P (i), Ri(j)) and Q′((i, j)) = R′
i(j) where (Ri, R′

i) = D(P ′(i)).

Obtaining D as a Kan extension consists in embedding W into OW, then extending
along this embedding. The notation U that we have introduced earlier can be turned into a
singleton functor for defining this embedding.

MFCS 2022
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▶ Definition 18. For any category C, the singleton functor singC : C → OC is defined as

singC(x) = {x} and singC(f : x → y) = ([y → x], [y 7→ (f : x → y)]).

Unfortunately, the program stops here since D fails to be the extension of d along
singW ◦ ι : W ↾ Σ ∪ {ε} → W ↪→ OW. In fact, the arrows of OW are not well-suited for
decomposing a family of words in the appropriate way for the expected concatenation. For
instance, consider the family in inputs {aa, bb}. The comma category singW ◦ ι/{aa, bb}
fails to identify the occurrences of a in this family. Indeed, an arrow from {a} to {aa, bb}
requires to identify an occurrence of a in bb but there is none. So there is no arrow between
those two families and the diagram d ◦ Proj[singW ◦ ι/{a, b}] of Equation (1) contains only
ε’s and does not exhibit the expected zigzag shape.

5 The Kleisli 2-Category of the 2-Monad of Families

As explained in Section 1, we propose to solve the last issue by placing oneself in a 2-
categorical context. Since this solution can seem more elaborate than necessary, let us make
precise why this transition to 2-categories is conceptually natural with respect to our goal.

Let us develop the relation between dynamical systems and their non-deterministic
counterparts. At a general level of description, dynamical systems can be defined once we
have a collection of objects to model the states, and a way to specify endo-functions on
these objects to model the dynamics. For instance, in the category of sets and functions, the
states are modeled as a set and the dynamics as a function; the usual case of (deterministic)
dynamical systems is captured. But in the category of topological spaces and continuous
functions, states are modeled as a topological space and the dynamics by a continuous
function, allowing to handle the so-called topological dynamical systems. Similarly, in the
category of sets and relations, states are modeled as a set and the dynamics by a relation.
This last case is particularly interesting for our concern since it is the place to deal with
non-deterministic dynamical systems. Formally this latter category is equivalently described
as the Kleisli category of the so-called powerset monad. This is based on the fact that
R ⊆ X × Y is equivalently a function f : X → P(Y ), that singletons allow any set X to be
seen as included in P(X), and that unions allow any sets of sets in P(P(X)) to be simplified
in a simple set of P(X). The two lessons we learn here are that (1) dynamical systems are
parametrized by the nature of the objects and the arrows they rely on, and that (2) the
parametrization for the non-determinitic counterpart is based on the powerset monad.

We now proceed to apply the same scheme for the GT. The difference with dynamical
systems is that GT are not defined with two layers (an object for the states and an arrow
for the dynamics) but with three layers: categories, functors and natural transformations
as it can be seen in the pointwise left Kan extension diagram of Section 2.1. So they are
parametrized by a 2-category. For instance, the simple GT as defined in Definition 1 are
parametrized by Cat, the 2-category of categories. Following the second lesson on non-
deterministic dynamical systems, for the particular case of non-deterministic GT, we propose
this 2-category parameter to be set to the Kleisli 2-category induced by the 2-monad of
families.

We already have all the ingredients of a 2-monad on Cat as we now proceed to show.
Firstly, the construction OC of Definition 11 can be extended to act on functors and natural
transformations and yields a 2-functor O : Cat → Cat.

▶ Definition 19. For any functor F : C → C′, the functor OF : OC → OC′ is defined as
OF ((I, U)) = (I, F ◦ U), and OF ((P, P ′) : (I, U) → (J, V )) = (P, F ◦ P ′). For any natural
transformation α : F =⇒ G : C → C′, the natural transformation Oα : OF =⇒ OG : OC →
OC′ has components (Oα)(I,U) = ([i 7→ i], [i 7→ αUi ]) : (I, F ◦ U) → (I, G ◦ U).
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To make the 2-functor O into a 2-monad, we need to consider the obvious pairs of
operations, the first one, singC : C → OC, lifting an object of a category C to a singleton
family of OC, and the second one, µC : OOC → OC, flattening a family of families of
objects into a simple family of objects. Notice that this last construction has already been
encountered in Definition 17 of D, whose role of flattening has also been underlined above.
In particular, the function D is in fact obtained as µW ◦ OD from Definition 13. The two
operations form indeed a 2-monad.

▶ Proposition 20. Operations sing− and µ− make O : Cat → Cat into a 2-monad, i.e., all
instances of the following diagrams weakly commute.

OOOC OOC

OOC OC

OµC

µOC µC

µC

∼
OOC OC OOC

OC

singOC O(singC)

idOC
µC µC

∼ ∼

Proof. For the first square, and given an object (I, U) ∈ OOOC, the top-right path leads
to index set of the form (i, (j, k)) for the object in OC while the left-bottom path leads to
the form ((i, j), k), hence the weak commutation. For the triangles on the right, an object
(I, U) ∈ OC sees each index i ∈ I transformed into ((I, U), i) ∈ {(I, U)} × I by the left path
and into (i, Ui) ∈ {(i, Ui) | i ∈ I} by the right path. ◀

In order to ease the reading of elements of the Kleisli weak 2-category, let us introduce
some notations. We write F̃ : C ◦−→ D to represent a functor F : C → OD of the Kleisli weak
2-category. A 2-arrow η̃ : F̃ ◦=⇒ G̃ stands simply for a natural transformation η : F =⇒ G.
The composition of arrows in the Kleisli weak 2-category, written G̃ ◦ F̃ : C ◦−→ D ◦−→ E, is
the functor µE ◦ OG ◦ F : C → OD → OOE → OE.

We finally reach our initial goal as we are now able to show that the diagram of Prop. 16
is in fact a summary of a GT in the Kleisli weak 2-category induced by the 2-monad O.
More accurately, considering the GT diagram of the rule system ⟨W ↾ Σ ∪ {ε}, ˜singW ◦ ι, d̃⟩
is completely equivalent to considering the diagram of Prop. 16, achieving the fact that the
initial non-determinitic Lindenmayer system is indeed a GT. Moreover, this works for any
non-deterministic rule system ⟨Γ, ˜singC ◦ L, R̃⟩ on any category C. Notice the particular form
of the l.h.s. functor defined using L : Γ → C which is still required to be a full embedding.

▶ Theorem 21. Let T̃ = ⟨ΓT , ˜singC ◦ LT , R̃T ⟩ be a rule system in the Kleisli weak 2-category
induced by the 2-monad O. T̃ is a GT iff T is the left Kan extension of RT along LT in the
2-category Cat.

Proof. The rule system being a GT, we have a pair ⟨T̃ , η̃ : R̃T =⇒ T̃ ◦ ˜singC ◦ LT ⟩ which is
a left Kan extension in the Kleisli 2-category and takes the following diagrammatic form for
any other pair ⟨K̃, ρ̃ : R̃T =⇒ K̃ ◦ ˜singC ◦ LT ⟩:

C

Γ C

T̃˜singC ◦ LT

R̃T

K̃

η̃
ρ̃

λ̃
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This diagram corresponds by definition to the diagram in Cat on the left below. By naturality
of sing and Prop. 20, it (weakly) simplifies into the expected diagram, on the right below.

OC

OOCC

Γ OC

OK

OT
singC

LT

RT

µC

η
ρ

Oλ C

Γ OC

T
LT

RT

K

η
ρ

λ

◀

6 Final Discussion

This journey started with the general goal of going toward non-deterministic, probabilistic
and quantum GT. Starting with the first concrete step of capturing non-deterministic
Lindenmayer systems as GT, we guessed some constructions based on the deterministic
case. The result of these guesses did not have the precise form of a GT in the 2-category
of categories, functors and natural transformations. But we showed they correspond in
fact to a GT in another (weak) 2-category. The latter is induced by Kleisli’s construction
on a particular (weak) 2-monad that we made explicit. This is to be expected since the
same architecture happens for non-deterministic dynamical systems. Indeed, they are also
dynamical systems in another category, with the latter being induced by a monad. All in all,
we ended with a general solution for mixing non-determinism with locality as described in
the global transformation framework.

Along the way, we mentioned a few technicalities on which we now come back. The
first one is the Conjecture 10 on which we want to add a comment. If it is wrong, then
families can be simplified into sets. But in this case, there should be a relation between the
family-based solution just presented and this new set-based solution. But thinking of this
relation as a functor from families to sets reinforce us in the belief that the conjecture is true.

The second technicality is about the size of the families considered, which is related to
the size issues for the “2-category of categories”. For most practical purpose, it is possible to
restrict oneself to finite families. In this case, a small category C leads to a small category
OC. In this case, the 2-functor O is indeed an endomorphism of the 2-category of small
categories. Dropping the finiteness constraint though, one then considers a 2-functor OC
from small categories to large categories. This is however perfectly fine, since this describes
a so-called relative pseudomonad with an associate Kleisli’s construction, as defined in [8].

In [6], one can find a direct account of the 2-category described here in terms of 2-monad.
In particular, the open functors and open natural transformations are introduced using
presheaves and proved to form a weak 2-category. More precisely, an open functor F from
a category C to a category D is the data of a presheaf on C together with a functor from
the category of elements of that presheaf to D. An interesting feature of this presheaf
presentation is that it allows to speak directly about special properties arising from the
association of locality and non-determinism. For instance, correlations and intrications
correspond to obstructions of the presheaf to be a sheaf. The formal definition in [6] can be
made easier to manipulate by the use of discrete fibrations instead of categories of elements
through the so-called Grothendieck construction, and doing so presents this bicategory as a
particular bicategory of spans. Moreover, this bicategory is a sub-bicategory of the bicategory
of profunctors (a.k.a. distributors). Notice that the many presentations of this bicategory are
strongly related to the many possible presentations one can have of the notion of “relation”:
powerset monad (as in this paper), spans, and characteristic functions of the relation.
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