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Abstract

For a graph G, a subset S ⊆ V (G) is called a resolving set if for any two vertices u, v ∈ V (G), there
exists a vertex w ∈ S such that d(w, u) ̸= d(w, v). The Metric Dimension problem takes as input a
graph G and a positive integer k, and asks whether there exists a resolving set of size at most k. This
problem was introduced in the 1970s and is known to be NP-hard [GT 61 in Garey and Johnson’s
book]. In the realm of parameterized complexity, Hartung and Nichterlein [CCC 2013] proved that
the problem is W[2]-hard when parameterized by the natural parameter k. They also observed
that it is FPT when parameterized by the vertex cover number and asked about its complexity
under smaller parameters, in particular the feedback vertex set number. We answer this question
by proving that Metric Dimension is W[1]-hard when parameterized by the feedback vertex set
number. This also improves the result of Bonnet and Purohit [IPEC 2019] which states that the
problem is W[1]-hard parameterized by the treewidth. Regarding the parameterization by the
vertex cover number, we prove that Metric Dimension does not admit a polynomial kernel under
this parameterization unless NP ⊆ coNP/poly. We observe that a similar result holds when the
parameter is the distance to clique. On the positive side, we show that Metric Dimension is FPT
when parameterized by either the distance to cluster or the distance to co-cluster, both of which are
smaller parameters than the vertex cover number.
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1 Introduction

Problems dealing with distinguishing the vertices of a graph have attracted a lot of attention
over the years, with the metric dimension problem being a classic one that has been vastly
studied since its introduction in the 1970s by Slater [31], and independently by Harary and
Melter [22]. Formally, given a graph G and an integer k ≥ 1, the Metric Dimension
problem asks whether there exists a subset S ⊆ V (G) of vertices of G of size at most k such
that, for any two vertices u, v ∈ V (G), there exists a vertex w ∈ S such that d(w, u) ̸= d(w, v).
If such a subset S ⊆ V (G) exists, it is called a resolving set. The size of a smallest resolving
set of a graph G is the metric dimension of G, and is denoted by MD(G).

There are many variants and problems associated to the metric dimension, with identifying
codes [27], adaptive identifying codes [4], and locating dominating sets [32] asking for the
vertices to be distinguished by their neighborhoods in the subset chosen. Other variants
of note are the k-metric dimension, where each pair of vertices must be resolved by k

vertices in S ⊆ V (G) instead of just one [15], and the truncated metric dimension, where the
distance metric is the minimum of the distance in the graph and some integer k [34]. Along
similar lines, in the centroidal dimension problem, each vertex must be distinguished by its
relative distances to the vertices in S ⊆ V (G) [17]. The metric dimension has also been
considered in digraphs, with Bensmail et al. [6] providing a summary of the related work in
this area. Interestingly, there are many game-theoretic variants of the metric dimension, such
as sequential metric dimension [5], the localization game [9, 24], and the centroidal localization
game [8]. The metric dimension and its variants have been studied for both their theoretical
interest and their numerous applications such as in network verification [2], fault-detection in
networks [36], pattern recognition and image processing [30], graph isomorphism testing [1],
chemistry [11, 26], and genomics [35]. For more on these variants and others, see [28] for the
latest survey.

Much of the related work around the metric dimension problem focuses on its compu-
tational complexity. Metric Dimension was first shown to be NP-complete in general
graphs in [19]. Later, it was also shown to be NP-complete in split graphs, bipartite graphs,
co-bipartite graphs, and line graphs of bipartite graphs in [14], in bounded-degree planar
graphs [12], and interval and permutation graphs of diameter 2 [18]. On the positive side,
there are linear-time algorithms for Metric Dimension in trees [31], cographs [14], and
cactus block graphs [25], and a polynomial-time algorithm for outerplanar graphs [12].

Since the problem is NP-hard even for very restricted cases, it is natural to ask for ways to
confront this hardness. In this direction, the parameterized complexity paradigm allows for a
more refined analysis of the problem’s complexity. In this setting, we associate each instance
I with a parameter ℓ, and are interested in an algorithm with running time f(ℓ) · |I|O(1) for
some computable function f . Parameterized problems that admit such an algorithm are
called fixed parameter tractable (FPT) with respect to the parameter under consideration.
On the other hand, under standard complexity assumptions, parameterized problems that are
hard for the complexity class W[1] or W[2] do not admit such fixed-parameter algorithms. A
parameter may originate from the formulation of the problem itself (called natural parameters)
or it can be a property of the input graph (called structural parameters).

Hartung and Nichterlein [23] proved that Metric Dimension is W[2]-hard when paramet-
erized by the natural parameter, the solution size k, even when the input graph is bipartite
and has maximum degree 3. This motivated the study of the parameterized complexity of the
problem under structural parameterizations. It was observed in [23] that the problem admits a
simple FPT algorithm when parameterized by the vertex cover number. It took a considerable
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amount of work and/or meta-results to prove that there are FPT algorithms parameterized by
the max leaf number [13], the modular width or treelength plus the maximum degree [3], and
the treedepth [20]. In [14], they gave an XP algorithm parameterized by the feedback edge set
number. Only recently, it was shown that Metric Dimension is W[1]-hard parameterized
by the treewidth [7], answering an open question mentioned in [3, 12, 13]. This result was
improved upon since, with it being shown that Metric Dimension is even NP-hard in
graphs of treewidth 24 [29]. For more on the metric dimension, see [33] for a recent survey.

Our contributions. In this paper, we continue the analysis of structural parameterizations of
Metric Dimension. See the Hasse diagram in Figure 1 for a summary of known results and
our contributions. As mentioned before, it is known that Metric Dimension is W[1]-hard
parameterized by the treewidth [7]. There are two natural directions to improve this result.
One direction was to show that Metric Dimension is para-NP-hard parameterized by the
treewidth, which was proven in [29]. Another direction is to prove that Metric Dimension
is W[1]-hard for a higher parameter than treewidth, i.e., one for which the treewidth is
upper bounded by a function of it. A parameter fitting this profile is the feedback vertex
set number since the treewidth of a graph G is upper bounded by the feedback vertex set
number of G plus one. Moreover, the complexity of Metric Dimension parameterized by
the feedback vertex set number is left as an open problem in [23], the seminal paper on the
parameterized complexity of Metric Dimension. We take this direction and answer this
open question of [23] by proving that Metric Dimension is W[1]-hard parameterized by the
feedback vertex set number (see Sec. 2). We then revisit the complexity of the problem when
parameterized by the vertex cover number. Recall that the problem is known to admit an
FPT algorithm, and hence, a kernel, under this parameterization. We prove that, however,
Metric Dimension does not admit a polynomial kernel unless NP ⊆ coNP/poly when
parameterized by the vertex cover number (see Sec. 3)1. On the positive side, we then show
that Metric Dimension is FPT for the structural parameters the distance to cluster and
the distance to co-cluster both of which are smaller parameters than the vertex cover number
(see Sec. 4). Note that the FPT algorithm for the distance to cluster parameter implies
an FPT algorithm for the distance to clique parameter. With a slight modification of the
reduction in Sec. 3, we establish the problem does not admit a polynomial kernel, under the
same assumption, when the parameter is the distance to clique.

In this extended abstract, we omit the standard terminology and some formal proofs
(which are marked with ⋆) due to space constraints and present them in the full version on
arXiv. Recall that any two vertices u, v ∈ V (G) are true twins if N [u] = N [v], and are false
twins if N(u) = N(v). A subset of vertices S ⊆ V (G) resolves a pair of vertices u, v ∈ V (G)
if there exists a vertex w ∈ S such that d(w, u) ̸= d(w, v). A vertex u ∈ V (G) is distinguished
by a subset of vertices S ⊆ V (G) if, for any v ∈ V (G) \ {u}, there exists a vertex w ∈ S such
that d(w, u) ̸= d(w, v). We end this section with the following simple observation.

▶ Observation 1. Let G be a graph. Then, for any (true or false) twins u, v ∈ V (G) and
any resolving set S of G, S ∩ {u, v} ≠ ∅.

1 After this paper was short-listed for the proceedings of MFCS 2022, Florent Foucaud informed us of the
paper of Gutin et al. [21], which contains a slightly stronger result.
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Figure 1 Hasse diagram of graph parameters and associated results for Metric Dimension. An
edge indicates that the lower parameter is upper bounded by a function of the higher one. Colors
correspond to the known hardness with respect to the highlighted parameter. The parameters for
which the hardness remains an open question are not colored. The crossed bold circle in the upper-
right corner means that Metric Dimension does not admit a polynomial kernel when parameterized
by the marked parameter unless NP ⊆ coNP/poly; the white one if a polynomial kernel exists. The
bold borders highlight parameters that are covered in this paper. Also see Footnote 1.

2 The Feedback Vertex Set Number

In this section, we prove that Metric Dimension is W[1]-hard parameterized by the feedback
vertex set number. To prove this, we reduce from the NAE-Integer-3-Sat problem defined
as follows. An instance of this problem consists of a set X of variables, a set C of clauses,
and an integer d. Each variable takes a value in {1, . . . , d}, and clauses are of the form
(x ≤ ax, y ≤ ay, z ≤ az), where ax, ay, az ∈ {1, . . . , d}. A clause is satisfied if not all three
inequalities are true and not all are false. The goal is to find an assignment of the variables
that satisfies all given clauses. This problem was shown to be W[1]-hard parameterized by
the number of variables [10].

▶ Theorem 2. Metric Dimension is W[1]-hard parameterized by the feedback vertex set
number.

Proof. We reduce from NAE-Integer-3-Sat: given an instance (X, C, d) of this problem,
we construct an instance (G, k) of Metric Dimension as follows. For each variable x ∈ X,
we introduce a cycle Gx of length 2d + 2 which has two distinguished anchor vertices ux

1 and
ux

2 as depicted in Figure 2a; for convenience, we may also refer to ux
1 as vx

0 or wx
0 , and to ux

2
as vx

d+1 or wx
d+1. For each clause c = (x ≤ ax, y ≤ ay, z ≤ az), we introduce the gadget Gc

depicted in Figure 2b consisting of two vertex-disjoint copies Hc and Hc of the same graph.
More precisely, for ℓ ∈ {c, c}, Hℓ consists of a K1,3 on the vertex set {ℓ, vℓ, pℓ

1, pℓ
2}, where vℓ

has degree three, and a path Pbℓ of length d connects ℓ to bℓ. The subgraph of Gc induced
by {ℓ, vℓ, pℓ

1, pℓ
2 | ℓ ∈ {c, c}} is referred to as the core of Gc.

We further connect Gc to Gx, Gy, and Gz as follows. For every t ∈ {x, y, z}, we connect
bc to ut

1 by a path P t,c
1 of length 4d − at, and vc to ut

2 by a path P t,c
2 of length 4d + at − 1.

Furthermore, letting wt,c be the neighbor of vc on P t,c
2 , we attach a copy W t,c of K1,3 to

wt,c by identifying wt,c with one of the leaves; we denote by tt,c
1 and tt,c

2 the two remaining
leaves and refer to W t,c as a pendant claw. Similarly, for every t ∈ {x, y, z}, we connect
bc to ut

2 by a path P t,c
2 of length 3d + at, and vc to ut

1 by a path P t,c
1 of length 5d − at.

Furthermore, letting wt,c be the neighbor of vc on P t,c
1 , we attach a copy W t,c of K1,3 to

wt,c by identifying wt,c with one of the leaves; we denote by tt,c
1 and tt,c

2 the two remaining
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(a) The variable gadget Gx.
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(b) The clause gadget Gc is the disjoint union of Hc

(left) and Hc (right).

Figure 2 The gadgets in the proof of Theorem 2.

leaves and refer to W t,c as a pendant claw. Finally, we introduce a path P = t1pt2 which we
connect to the clause gadgets as follows. For every clause c ∈ C and ℓ ∈ {c, c}, we connect
p to vℓ by a path Pℓ of length 2d. Furthermore, letting wℓ be the neighbor of p on Pℓ, we
attach a copy W ℓ of K1,3 to wℓ by identifying wℓ with one of the leaves; we denote by tℓ

1
and tℓ

2 the two remaining leaves and refer to W ℓ as a pendant claw. This concludes the
construction of G (see Figure 3).
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d wx
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·

··
·

c

vc

pc
1

pc
2

wx,c

· · ·

bc Px,c
1

· · ·

tx,c
1

tx,c
2 Px,c

2· · ·

vc

c

pc
2

pc
1

· · ·

bc

· · ·
Px,c

2

wx,c

Px,c
1
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2

· · ·
Pc
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Figure 3 An illustration of the reduction in the proof of Theorem 2.

We set k = |X| + 10|C| + 1. Observe that the feedback vertex set number of G is at most
2|X| + 1: indeed, removing {p} ∪ {ux

1 , ux
2 | x ∈ X} from G results in a graph without cycles.

We next show that the instance (X, C, d) is satisfiable if and only if (G, k) is a Yes-instance
for Metric Dimension. To this end, we first prove the following.

▷ Claim 3 (⋆). For any two distinct s, t ∈ {c, c | c ∈ C} and any two distinct variables
x, y ∈ X, the following hold.

(i) The shortest path from Hs to Ht contains Ps and Pt as subpaths and has length 4d.
(ii) d(V (Gx), V (Gy)) ≥ 6d.
(iii) If x appears in the clause corresponding to s, then d(V (Gx), V (Hs)) ≥ 3d.
(iv) If x does not appear in the clause corresponding to s, then any shortest path from Gx

to Hs contains Ps as a subpath and has length at least 8d.

▷ Claim 4 (⋆). For every clause c = (x ≤ ax, y ≤ ay, z ≤ az) and every t ∈ {x, y, z}, the
following hold.

(i) For every i ∈ {0, . . . , d + 1}, if i ≤ at, then the shortest path from vt
i to c contains P t,c

1
as a subpath and has length 5d + i − at. Otherwise, the shortest path from vt

i to c

contains P t,c
2 as a subpath and has length 5d + 1 + at − i.

(ii) For every i ∈ {0, . . . , d + 1}, if i ≤ at − 1, then the shortest path from vt
i to vc contains

P t,c
1 as a subpath and has length 5d + 1 + i − at. Otherwise, the shortest path from vt

i

to vc contains P t,c
2 as a subpath and has length 5d + at − i.

MFCS 2022
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(iii) For every i ∈ {0, . . . , d + 1}, if i ≤ at − 2, then the shortest path from vt
i to tt,c

1 contains
P t,c

1 as a subpath and has length 5d + 4 + i − at. Otherwise, the shortest path from vt
i

to tt,c
1 contains P t,c

2 [ut
2, wt,c] as a subpath and has length 5d + 1 + at − i.

▷ Claim 5 (⋆). For every clause c = (x ≤ ax, y ≤ ay, z ≤ az) and every t ∈ {x, y, z}, the
following hold.

(i) For every i ∈ {0, . . . , d + 1}, if i ≤ at, then the shortest path from vt
i to c contains P t,c

1
as a subpath and has length 5d + 1 + i − at. Otherwise, the shortest path from vt

i to c

contains P t,c
2 as a subpath and has length 5d + 1 + at − i.

(ii) For every i ∈ {0, . . . , d + 1}, if i ≤ at + 1, then the shortest path from vt
i to vc contains

P t,c
1 as a subpath and has length 5d + i − at. Otherwise, the shortest path from vt

i to
vc contains P t,c

2 as a subpath and has length 5d + 2 + at − i.
(iii) For every i ∈ {0, . . . , d + 1}, if i ≤ at + 2, then the shortest path from vt

i to tt,c
1 contains

P t,c
1 [ut

1, wt,c] as a subpath and has length 5d + 1 + i − at. Otherwise, the shortest path
from vt

i to tt,c
1 contains P t,c

2 as a subpath and has length 5d + 5 + at − i.

Assume first that (X, C, d) is satisfiable and let ϕ : X → {1, . . . , d} be an assignment of
the variables satisfying every clause in C. We construct a resolving set S of G as follows.
First, we add t1 to S. For every variable x ∈ X, we add vx

ϕ(x) to S. Finally, for every clause
c ∈ C, we add pc

1, pc
1, tc

1, tc
1 to S and further add, for every variable t appearing in c, tt,c

1 , tt,c
1

to S. Note that |S| = k and that every vertex of S is distinguished by itself. Let us show that
S is indeed a resolving set of G. To this end, consider two distinct vertices u, v ∈ V (G). We
distinguish the following cases to show that there exists w ∈ S such that d(w, u) ̸= d(w, v).

Case 1. At least one of u and v belongs to a pendant claw. W.l.o.g., assume first that
u ∈ V (W ℓ), where ℓ ∈ {c, c | c ∈ C}. If v ∈ V (G) \ V (W ℓ), then d(tℓ

1, v) > 2 ≥ d(tℓ
1, u).

Suppose therefore that v ∈ V (W ℓ) as well. If {u, v} ̸= {wℓ, tℓ
2}, then d(tℓ

1, u) ̸= d(tℓ
1, v).

If {u, v} = {wℓ, tℓ
2}, then d(t1, wℓ) = 2 < 4 = d(t1, tℓ

2). Second, assume that u ∈ V (W t,ℓ),
where ℓ ∈ {c, c} for some clause c ∈ C and t is a variable appearing in clause c. If
v ∈ V (G) \ V (W t,ℓ), then d(tt,ℓ

1 , v) > 2 ≥ d(tt,ℓ
1 , u). Suppose therefore that v ∈ V (W t,ℓ)

as well. If {u, v} ̸= {wt,ℓ, tt,ℓ
2 }, then d(tt,ℓ

1 , u) ̸= d(tt,ℓ
1 , v). If {u, v} = {wt,ℓ, tt,ℓ

2 }, then
d(pℓ

1, wt,ℓ) = 2 < 4 = d(pℓ
1, tt,ℓ

2 ).
Case 2. At least one of u and v belongs to the core of a clause gadget. Assume, w.l.o.g., that

u ∈ {ℓ, vℓ, pℓ
1, pℓ

2}, where ℓ ∈ {c, c} for some clause c = (x ≤ ax, y ≤ ay, z ≤ az). If v is
not a neighbor of vℓ, then d(pℓ

1, v) > 2 ≥ d(pℓ
1, u). If v is the neighbor of vℓ on the path

Pℓ, then d(t1, v) = d < d(t1, u). Also, v = wt,ℓ was covered by the previous case. So,
consider v ∈ {ℓ, vℓ, pℓ

1, pℓ
2}. If {u, v} ≠ {ℓ, pℓ

2}, then clearly d(pℓ
1, u) ̸= d(pℓ

1, v). Assume
therefore that {u, v} = {ℓ, pℓ

2}. Since ϕ satisfies c, there exist t, f ∈ {x, y, z} such that
ϕ(t) ≤ at and ϕ(f) > af . Then, either ϕ(t) < at, in which case, by Claim 4(i) and (ii),

d(vt
ϕ(t), c) = 5d + ϕ(t) − at < 5d + ϕ(t) − at + 2 = d(vt

ϕ(t), vc) + 1 = d(vt
ϕ(t), pc

2),

or ϕ(t) = at, in which case, by Claim 4(i) and (ii),

d(vt
ϕ(t), c) = 5d < 5d + 1 = d(vt

ϕ(t), vc) + 1 = d(vt
ϕ(t), pc

2).

Similarly, either ϕ(f) = af + 1, in which case, by Claim 5(i) and (ii),

d(vf
ϕ(f), c) = 5d < 5d + 2 = d(vf

ϕ(f), vc) + 1 = d(vf
ϕ(f), pc

2),

or ϕ(f) > af + 1, in which case, by Claim 5(i) and (ii),

d(vf
ϕ(f), c) = 5d + 1 + af − ϕ(f) < 5d + 3 + af − ϕ(f) = d(vf

ϕ(f), vc) + 1 = d(vf
ϕ(f), pc

2).

In all cases, we conclude that there exists w ∈ S such that d(w, ℓ) ̸= d(w, pℓ
2).
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Case 3. At least one of u and v belongs to a variable gadget. Assume, w.l.o.g., that u ∈ V (Gx)
for some variable x ∈ X. By the previous cases, we may assume that v does not belong
to the core of a clause gadget or a pendant claw. If v ∈ V (Gy) for some variable y ̸= x,
then by Claim 3(ii),

d(vx
ϕ(x), u) ≤ d + 1 < 6d ≤ d(V (Gx), V (Gy)) ≤ d(vx

ϕ(x), v).

Now, suppose that v ∈ V (Gx) as well. If {u, v} = {vx
i , wx

i } for some i ∈ [d], then

d(vx
ϕ(x), vx

i ) = |ϕ(x) − i| < d(vx
ϕ(x), wx

i ) = min{ϕ(x) + i, 2d + 2 − ϕ(x) − i}.

Suppose next that u = vx
i and v = vx

j for two distinct i, j ∈ {0, . . . , d + 1}, say i < j,
w.l.o.g. Consider a clause c = (x ≤ ax, y ≤ ay, z ≤ az) containing x. If j < ax, then by
Claim 4(ii),

d(pc
1, vx

i ) = d(vc, vx
i ) + 1 = 5d + 2 + i − ax < 5d + 2 + j − ax = d(vc, vx

j ) + 1 = d(pc
1, vx

j ).

Now, suppose that i < ax ≤ j. Then, by Claim 4(ii),

d(pc
1, vx

i ) − d(pc
1, vx

j ) = 5d + 2 + i − ax − (5d + ax − j + 1) = i + j + 1 − 2ax.

Thus, if i + j + 1 − 2ax ≠ 0, then d(pc
1, vx

i ) ̸= d(pc
1, vx

j ). Now, if i + j + 1 − 2ax = 0, then
either j = ax and i = ax − 1, in which case, by Claim 4(iii),

d(tx,c
1 , vx

i ) = 5d + 2 > 5d + 1 = d(tx,c
1 , vx

j ),

or j > ax and i < ax − 1, in which case, by Claim 4(iii),

d(tx,c
1 , vx

j ) = 5d + 1 + ax − j = 5d + 2 + i − ax < 5d + 4 + i − ax = d(tx,c
1 , vx

i ).

Finally, if ax ≤ i < j, then by Claim 4(ii),

d(pc
1, vx

j ) = 5d + 1 + ax − j < 5d + 1 + ax − i = d(pc
1, vx

i ).

Since for any t ∈ V (G) \ V (Gx) and k ∈ [d], d(t, vx
k) = d(t, wx

k), we conclude similarly if
either u = vx

i and v = wx
j , or u = wx

i and v = wx
j for two distinct i, j ∈ {0, . . . , d + 1}.

Assume, henceforth, that v /∈
⋃

x∈X V (Gx). If v does not belong to a path connecting
Gx to some clause gadget, then

d(vx
ϕ(x), v) ≥ min

c∈C
d(V (Gx), V (Gc)) ≥ 3d > d + 1 ≥ d(vx

ϕ(x), u)

by Claim 3(iii) and (iv). Suppose therefore that v ∈ V (P x,ℓ
i ), where i ∈ {1, 2} and

ℓ ∈ {c, c} for some clause c = (x ≤ ax, y ≤ ay, z ≤ az) containing x. W.l.o.g., let us
assume that u = vx

j where j ∈ {0, . . . , d + 1}.
Assume first that ℓ = c and i = 1. Let P x,c

1 = z0 . . . z4d−ax
, where z0 = bc and

z4d−ax = ux
1 . Let v = zk, where k ∈ [4d − ax − 1]. If j ≤ ax − 1, then by Claim 4(ii), the

shortest path from pc
1 to vx

j contains P x,c
1 as a subpath, which implies in particular that

d(pc
1, v) < d(pc

1, u). Suppose therefore that j ≥ ax. Then, by Claim 4(ii),

d(pc
1, u) − d(pc

1, v) = 5d + 1 + ax − j − (d + k + 2).

Thus, if 5d + 1 + ax − j − (d + k + 2) ̸= 0, then d(pc
1, u) ̸= d(pc

1, v). Now, if 5d + 1 + ax −
j − (d + k + 2) = 0, then by Claim 4(iii),

d(tx,c
1 , u) = 5d + 1 + ax − j = d + k + 2 < d + k + 4 = d(tx,c

1 , v).
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Second, assume that ℓ = c and i = 2. Let P x,c
2 = z0 . . . z4d+ax−1, where z0 = vc and

z4d+ax−1 = ux
2 . Let v = zk, where k ∈ [4d + ax − 2] (note that since v does not belong to

the core of a clause gadget or a pendant claw by assumption, in fact k ≥ 2). If j ≥ ax,
then by Claim 4(ii), the shortest path from pc

1 to u contains P x,c
2 as a subpath, which

implies in particular that d(pc
1, v) < d(pc

1, u). Otherwise, j ≤ ax − 1, in which case

d(pc
1, u) − d(pc

1, v) = 5d + 2 + j − ax − (k + 1).

Thus, if 5d+2+j−ax−(k+1) ̸= 0, then d(pc
1, u) ̸= d(pc

1, v). Now, if 5d+2+j−ax−(k+1) =
0, then j < ax − 1 since k < 5d, and so, by Claim 4(iii),

d(tx,c
1 , u) = 5d + 4 + j − ax = k + 3 > k + 1 = d(tx,c

1 , v).

Third, assume that ℓ = c and i = 1. Let P x,c
1 = z0 . . . z5d−ax

, where z0 = vc and
z5d−ax

= ux
1 . Let v = zk, where k ∈ [5d − ax − 1] (note that since v does not belong to

the core of a clause gadget or a pendant claw by assumption, in fact k ≥ 2). If j ≤ ax + 1,
then by Claim 5(ii), the shortest path from pc

1 to vx
j contains P x,c

1 as a subpath which
implies in particular that d(pc

1, v) < d(pc
1, u). Suppose therefore that j ≥ ax + 2. Then,

by Claim 5(ii),

d(pc
1, vx

j ) − d(pc
1, zk) = 5d + 3 + ax − j − (k + 1).

Thus, if 5d + 3 + ax − j − (k + 1) ̸= 0, then d(pc
1, vx

j ) ̸= d(pc
1, zk). Now, if 5d + 3 + ax −

j − (k + 1) = 0, then j > ax + 2 since k < 5d, and so, by Claim 5(iii),

d(tx,c
1 , vx

j ) = 5d + 5 + ax − j = k + 3 > k + 1 = d(tx,c
1 , zk).

Assume finally that ℓ = c and i = 2. Let P x,c
2 = z0 . . . z3d+ax

, where z0 = bc and
z3d+ax = ux

2 . Let v = zk, where k ∈ [3d + ax − 1]. If j ≥ ax + 2, then by Claim 5(ii), the
shortest path from pc

1 to u contains P x,c
2 as a subpath, which implies in particular that

d(pc
1, v) < d(pc

1, u). Suppose therefore that j ≤ ax + 1. Then, by Claim 5(ii),

d(pc
1, vx

j ) − d(pc
1, zk) = 5d + 1 + j − ax − (d + k + 2).

Thus, if 5d + 1 + j − ax − (d + k + 2) ̸= 0, then d(pc
1, vx

j ) ̸= d(pc
1, zk). Now, if 5d + 1 + j −

ax − (d + k + 2) = 0, then j < ax + 1 since k < 4d, and so, by Claim 5(iii),

d(tx,c
1 , vx

j ) = 5d + 1 + j − ax = d + k + 2 < d + k + 4 = d(tx,c
1 , zk).

In all the subcases, we conclude that there exists w ∈ S such that d(w, u) ̸= d(w, v).
Case 4. None of the above. First, note that p is distinguished by S since it is the unique

vertex of G at distance 1 from t1. Second, t2 is distinguished by S since it is the unique
vertex of G at distance 2 from t1 and distance 4 from tc

1 and tc
1 for all c ∈ C. Thus, in

this last case, we can assume that both u and v belong either to paths connecting gadgets
or to some path Pbℓ , where ℓ ∈ {c, c | c ∈ C}. Assume first that u ∈ V (Pℓ) for some
ℓ ∈ {c, c | c ∈ C}. If v ∈ V (Pℓ) as well, then surely d(t1, u) ̸= d(t1, v). If v ∈ V (Pq) for
some q ∈ {c, c | c ∈ C} different from ℓ, then d(pℓ

1, u) < d(pℓ
1, v) since the unique shortest

path from pℓ
1 to v contains Pℓ as a subpath. Finally, if there exists q ∈ {c, c | c ∈ C}

such that v belongs to Pbq
or to some path connecting Hq to a variable gadget, then

d(t1, v) > d(t1, vq) ≥ d(t1, u).
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Second, assume that u ∈ V (P x,ℓ
i ), where i ∈ [2] and ℓ ∈ {c, c} for some clause c

containing variable x. Note that by the previous paragraph, we may assume that
v /∈

⋃
q∈C V (Pq) ∪ V (Pq). Suppose first that v ∈ V (P y,q

j ), where j ∈ [2] and q ∈ {c′, c′}
for some clause c′ containing variable y. Note that d(tℓ

1, u) = d(t1, u). So, if q ̸= ℓ, then
either d(t1, u) ̸= d(t1, v), or

d(tℓ
1, v) − d(tℓ

1, u) = d(tℓ
1, p) + d(t1, v) − 1 − d(tℓ

1, u) = d(t1, v) + 2 − d(t1, u) = 2.

Thus, assume that q = ℓ. Suppose first that x = y. If i = j, then surely d(pℓ
1, u) ̸= d(pℓ

1, v).
Otherwise, assume, w.l.o.g., that u belongs to the path containing wx,ℓ. Note that
d(tx,ℓ

1 , u) = d(pℓ
1, u). Then, either d(pℓ

1, u) ̸= d(pℓ
1, v), or

d(tx,ℓ
1 , v) − d(tx,ℓ

1 , u) = d(tx,ℓ
1 , vℓ) + d(pℓ

1, v) − 1 − d(tx,ℓ
1 , u) = d(pℓ

1, v) + 2 − d(pℓ
1, u) = 2.

Second, suppose that x ̸= y. If u belongs to the path containing wx,ℓ, then we argue
as previously. By symmetry, we may also assume that v does not belong to the path
containing wy,ℓ. This implies, in particular, that i = j and bℓ is the endpoint in Hℓ of
both P x,ℓ

i and P y,ℓ
j . Thus, d(vx

ϕ(x), u) ≤ d(vx
ϕ(x), ux

i ) + d(ux
i , bℓ) ≤ d + 4d. First, note that

if a shortest path P from vx
ϕ(x) to v contains P x,ℓ

i as a subpath, then since u ∈ V (P x,ℓ
i ),

it follows that d(vx
ϕ(x), u) < d(vx

ϕ(x), v). Hence, we may assume that P contains a vertex
in Gy or both vℓ and bℓ. By Claim 3(ii), if P contains a vertex in Gy, then

d(vx
ϕ(x), v) > d(V (Gx), V (Gy)) ≥ 6d > 5d ≥ d(vx

ϕ(x), u).

Otherwise, P contains vℓ and bℓ, and so, letting t ∈ [2] \ {i}, we get that

lgt(P ) ≥ d(vx
ϕ(x), ux

t )+d(ux
t , vℓ)+d(vℓ, bℓ)+d(bℓ, v) ≥ 1+4d+d+1 > 5d ≥ d(vx

ϕ(x), u).

Suppose finally that u ∈ V (Pbℓ) for some ℓ ∈ {c, c | c ∈ C}. By the two previous
paragraphs, we may assume that v ∈ V (Pbq ) for some q ∈ {c, c | c ∈ C}. If q = ℓ, then
surely d(pℓ

1, u) ̸= d(pℓ
1, v). Otherwise, by Claim 3(i),

d(pℓ
1, v) ≥ d(V (Hℓ), V (Hq)) = 4d > d + 1 ≥ d(pℓ

1, u), which concludes case 4.

By the above case analysis, we infer that, for any u, v ∈ V (G), there exists w ∈ S such
that d(w, u) ̸= d(w, v), that is, S is a resolving set of G. Since |S| = k, it follows that
(G, k) is a Yes-instance for Metric Dimension.
Conversely, assume that (G, k) is a Yes-instance for Metric Dimension and let S be a
resolving set of size at most k. By Observation 1, for any clause c ∈ C and any variable
x ∈ X appearing in c,

|S ∩ {pc
1, pc

2}| ≥ 1, |S ∩ {pc
1, pc

2}| ≥ 1, |S ∩ {tc
1, tc

2}| ≥ 1, and |S ∩ {tc
1, tc

2}| ≥ 1. (1)

|S ∩ {tx,c
1 , tx,c

2 }| ≥ 1 and |S ∩ {tx,c
1 , tx,c

2 }| ≥ 1. (2)
|S ∩ {t1, t2}| ≥ 1. (3)

MFCS 2022
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Consider now a variable x. Since any path from a vertex in V (G) \ V (Gx) to a vertex
in {vx

i , wx
i | i ∈ [d]} contains ux

1 or ux
2 , and, for any i ∈ [d] and u ∈ {ux

1 , ux
2}, d(u, vx

i ) =
d(u, wx

i ), no vertex in V (G) \ {vx
i , wx

i | i ∈ [d]} can resolve vx
i and wx

i for any i ∈ [d]. It
follows that

|S ∩ {vx
i , wx

i | i ∈ [d]}| ≥ 1. (4)

Now, note that S has size at most k = |X| + 10|C| + 1, and so, equality must in fact
hold in every inequality of Equations (1)–(4). W.l.o.g., let us assume that t1 ∈ S

and that, for every clause c ∈ C and variable x ∈ X appearing in c, we have that
pc

1, pc
1, tc

1, tc
1, tx,c

1 , tx,c
1 ∈ S.

For every variable x ∈ X, assume, w.l.o.g., that S ∩ {vx
i , wx

i | i ∈ [d]} = S ∩ {vx
i | i ∈ [d]},

and let ix ∈ [d] be the index of the vertex in S ∩ {vx
i | i ∈ [d]}. We contend that

the assignment which sets each variable x to ix satisfies every clause in C. Indeed,
consider a clause c = (x ≤ ax, y ≤ ay, z ≤ az). We first aim to show that, for every
w ∈ S \ {V (Gx) ∪ V (Gy) ∪ V (Gz)} and ℓ ∈ {c, c}, d(w, ℓ) = d(w, pℓ

2). Note that it suffices
to show that any shortest path from w ∈ S \ {V (Gx) ∪ V (Gy) ∪ V (Gz)} to ℓ ∈ {c, c}
contains vℓ, as then d(w, ℓ) = d(w, vℓ) + 1 = d(w, pℓ

2). Now, if w ∈ V (Gt) for some
t ∈ {c′, c′ | c′ ∈ C} different from ℓ, then this readily follows from Claim 3(i); and if
w ∈ V (Gt) for some t ∈ X \ {x, y, z}, then this readily follows from Claim 3(iv). If
w = tr,q

1 for some r ∈ X and q ∈ {c′, c′ | c′ ∈ C}, then d(tr,q
1 , ℓ) = d(tr,q

1 , vq) + d(vq, ℓ),
and so, by Claim 3(i), any path from w to ℓ contains vℓ. Finally, if w ∈ {tc′

1 , tc′

1 | c′ ∈ C},
then clearly any shortest path from w to ℓ contains vℓ.
Since S is a resolving set, it follows that, for every clause c ∈ C, there exist t, f ∈ {x, y, z}
such that d(vt

it
, c) ̸= d(vt

it
, pc

2) and d(vf
if

, c) ̸= d(vf
if

, pc
2). Now, by Claim 4(i) and (ii),

if it > at, then d(vt
it

, c) = 5d + 1 + at − it = d(vt
it

, vc) + 1 = d(vt
it

, pc
2), a contradiction

to our assumption. Therefore, it ≤ at. Similarly, if if ≤ af , then by Claim 5(i) and
(ii), d(vf

if
, c) = 5d + 1 + if − af = d(vf

if
, vc) + 1 = d(vf

if
, pc

2), a contradiction to our
assumption. Therefore, if > af , and so, the assignment constructed indeed satisfies every
clause in C. ◀

3 The Vertex Cover Number and the Distance to clique

In this section, we prove that Metric Dimension parameterized by either the vertex cover
number or the distance to clique does not admit a polynomial kernel unless NP ⊆ coNP/poly.
Both reductions are similar ones from the SAT problem, in which we are given a conjunctive
normal form (CNF) formula ϕ on n variables and m clauses, and we are asked whether
there exists an assignment of either true or false to each of the variables, such that ϕ is true
(satisfied). SAT is known to not admit a polynomial kernel unless NP ⊆ coNP/poly [16].
We first prove that Metric Dimension parameterized by the vertex cover number does
not admit a polynomial kernel unless NP ⊆ coNP/poly, with the same result for distance to
clique to follow after from a small modification to this reduction.

▶ Theorem 6. Metric Dimension parameterized by the vertex cover number does not
admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. (⋆) By a reduction from SAT, we prove that Metric Dimension parameterized
by the vertex cover number does not admit a polynomial kernel unless NP ⊆ coNP/poly.
Let ϕ be an instance of SAT, i.e., a SAT formula on n variables x1, . . . , xn and m clauses
C1, . . . , Cm. Since any SAT formula on n variables trivially has at most 3n −1 unique clauses,
we may assume that m ≤ 3n − 1.
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From ϕ, we construct an instance (G, k) of Metric Dimension as follows. For each
i ∈ [n], construct a cycle (tia

1
i b1

i fib
2
i a2

i ti) on 6 vertices, and let Ii := {a1
i , a2

i , b1
i , b2

i }. Construct
a path g1gg2 on 3 vertices and, for each i ∈ [n], make both fi and ti adjacent to g. For each
j ∈ [m], add a pair of vertices c1

j and c2
j , and let Cj := {c1

j , c2
j}. For each j ∈ [m], make c2

j

adjacent to both fi and ti for each i ∈ [n]. For each j ∈ [m] and each i ∈ [n], if xi = True
does not satisfy the clause Cj in ϕ, then make c1

j adjacent to ti, and if xi = False does not
satisfy Cj , then make c1

j adjacent to fi. Let α = ⌈n · log2 3⌉, and, for each ℓ ∈ [α], construct
a path z1

ℓ zℓz
2
ℓ on 3 vertices. For each j ∈ [m], consider the binary representation bin(j) of j,

and connect both c1
j and c2

j with zℓ if bin(j)[ℓ] = 1, where [ℓ] is the ℓth bit of j in its binary
representation from right to left. Finally, construct a clique on the vertices z1, . . . , zα, g. This
completes the construction of G (see Figure 4).

g

g1 g2

t1

a1
1 b1

1

a2
1 b2

1

f1 t2

a1
2 b1

2

a2
2 b2

2

f2 · · · ti

a1
i b1

i

a2
i b2

i

fi · · · tn

a1
n b1

n

a2
n b2

n

fn

· · · c1
j c2

j · · ·

z1

z1
1 z2

1

z2

z1
2 z2

2

· · · zi

z1
i z2

i

· · · zα

z1
α z2

α

according to bin(j)

Figure 4 Illustration of the graph G constructed in the proof of Theorem 6. The vertices
z1, . . . , zα, g are in a clique that is not drawn. In this particular case, ϕ has a clause (x1 ∨ x2 ∨ xn).

To simplify notation for the proof, let I := I1 ∪ · · · ∪ In. Set k = n + α + 1. Note that the
vertex cover number of G is at most 4n + α + 1 since {g} ∪ {a1

i , a2
i , ti, fi, zℓ | i ∈ [n], ℓ ∈ [α]}

is a vertex cover of G. We now show that the instance ϕ is satisfiable if and only if (G, k) is
a Yes-instance for Metric Dimension. We just sketch the proof from here. To prove that
if ϕ is satisfiable, then (G, k) is a Yes-instance for Metric Dimension, we build a resolving
set R of G of size k as follows. First, put the vertices of {g1, z1

1 , . . . , z1
α} in R. Then, for all

i ∈ [n], if, according to the satisfying truth value assignment of ϕ, xi = True (xi = False,
resp.), then add a1

i (b1
i , resp.) to R. Clearly, |R| = k, and it is not difficult to check that R

is a resolving set of G.
Now, we prove that if (G, k) is a Yes-instance for Metric Dimension, then ϕ is

satisfiable. For any resolving set R of G, one can show that since |R| ≤ n + α + 1, then
|R ∩ {g1, g2}| = 1, |R ∩ {z1

ℓ , z2
ℓ }| = 1 for all ℓ ∈ [α], and |R ∩ Ii| = 1 for all i ∈ [n]. W.l.o.g.,

assume that {g1, z1
1 , . . . , z1

α} ⊂ R. Consider j ∈ [m]. It can be shown that no vertex in
{g1, z1

1 , . . . , z1
α} can resolve the two vertices of Cj , and thus, there must exist w ∈ R ∩ I

such that d(w, c1
j) ̸= d(w, c2

j). Since for every i ∈ [n] such that xi does not appear in the
clause Cj , d(u, c1

j) = d(u, c2
j) for every u ∈ Ii, there must exist i ∈ [n] such that xi appears

in the clause Cj and w ∈ R ∩ Ii. In particular, c1
j must be non-adjacent to one of ti and fi.

Now, if c1
j is non-adjacent to ti, then c1

j is adjacent to fi, and so, w ∈ {a1
i , a2

i }, as otherwise
d(w, c1

j ) = d(w, c2
j ). Symmetrically, if c1

j is non-adjacent to fi, then c1
j is adjacent to ti, and

so, w ∈ {b1
i , b2

i }, as otherwise d(w, c1
j) = d(w, c2

j). So, the truth assignment obtained by
setting a variable xi to True if R ∩ Ii ⊆ {a1

i , a2
i }, and to False otherwise, satisfies ϕ. ◀

MFCS 2022



51:12 Metric Dimension Parameterized by FVS and Other Structural Parameters

By making the vertices of {Cj | j ∈ [m]} into a clique in the construction of G in the
proof of Theorem 6, observe that the distance to clique of the resulting graph is at most
6n + 3α + 3, and that none of the distances described in the proof change. Then, from the
proof of Theorem 6 for this modified G, we obtain the following:

▶ Theorem 7. Metric Dimension parameterized by the distance to clique does not admit
a polynomial kernel unless NP ⊆ coNP/poly.

4 The Distance to Cluster and the Distance to co-cluster

In this section, we prove that Metric Dimension is FPT parameterized by either the
distance to cluster or the distance to co-cluster. In fact, we show that the problem admits an
exponential kernel parameterized by the distance to cluster (or co-cluster). Since the main
ideas for these two parameters are the same, we focus on the distance to cluster parameter.
Applying Reduction Rule 2 for false twins (instead of true twins) and defining equivalence
classes over the independent sets (instead of cliques) for Reduction Rule 3, we get the similar
result for the distance to co-cluster. Recall that, for a graph G, the distance to cluster of G

is the minimum number of vertices of G that need to be deleted so that the resulting graph
is a cluster graph, i.e., a disjoint union of cliques.

▶ Theorem 8. Metric Dimension is FPT parameterized by the distance to cluster.

Proof. Let (G, k) be an instance of Metric Dimension and let X ⊆ V (G) be such that
G − X is a disjoint union of cliques. To obtain a kernel for the problem, we present a set of
reduction rules. The safeness of the following reduction rule is trivial.

▶ Reduction Rule 1. If V (G) ̸= ∅ and k ≤ 0, then return a trivial No-instance.

▶ Reduction Rule 2. If there exist u, v, w ∈ V (G) such that u, v, w are true (or false) twins,
then remove u from G and decrease k by one.

▷ Claim 9 (⋆). Reduction Rule 2 is safe.

We assume, henceforth, that Reduction Rule 2 has been exhaustively applied to (G, k).
This implies, in particular, that for every clique C of G − X, there are at most two vertices
in C with the same neighborhood in X. Since the number of distinct neighborhoods in X

is at most 2|X|, each clique in G − X has order at most 2|X|+1. We now aim to bound the
number of cliques in G − X. To this end, we define a notion of equivalence classes over the
set of cliques of G − X. It will easily be seen that the number of equivalence classes is at
most 22|X|+1 . The number of cliques in each equivalence class will then be bounded by using
Reduction Rule 3.

For every clique C of G − X, the signature sign(C) of C is the multiset containing the
neighborhoods in X of each vertex of C, that is, sign(C) = {N(u) ∩ X : u ∈ C}. For
any two cliques C1, C2 of G − X, we say that C1 and C2 are identical, which we denote by
C1 ∼ C2, if and only if sign(C1) = sign(C2). It is not difficult to see that ∼ is in fact an
equivalence relation with at most 22|X|+1 equivalence classes: indeed, since the number of
distinct neighborhoods in X is at most 2|X|, and at most two vertices of each clique have
the same neighborhood in X, the number of distinct signatures is at most 22|X|+1 . Consider
now an equivalence class C of ∼. Note that since the signature of a clique is a multiset, the
number of vertices in each C ∈ C is equal to |sign(C)|. For any C1, C2 ∈ C, we say that two
vertices u ∈ C1 and v ∈ C2 are clones if N(u) ∩ X = N(v) ∩ X (in particular, if C1 = C2 and
u ̸= v, then u, v are true twins). For any C1, C2 ∈ C and any u ∈ C1, we denote by c(u, C2)
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the set of clones of u in C2 (note that |c(u, C2)| ≤ 2). Now observe that, for any two cliques
C1, C2 ∈ C, the number of pairs of true twins in C1 and C2 is the same: we let t(C) be the
number of pairs of true twins in each clique of C. We highlight that there are exactly 2t(C)
vertices in each clique of C that have true twins. The following claim for clones is the analog
of Observation 1 for twins.

▷ Claim 10 (⋆). Let C1 and C2 be two cliques of an equivalence class C of ∼. Let u ∈ C1
and v ∈ C2 be clones. Then, for any w ∈ V (G) \ (V (C1) ∪ V (C2)), d(u, w) = d(v, w), and so,
for any resolving set S of G, S ∩ (V (C1) ∪ V (C2)) ̸= ∅.

It follows from the above claim that, for any equivalence class C of ∼ and any resolving
set S, S contains at least |C| − 1 vertices in V (C) :=

⋃
C∈C V (C). We now present an upper

bound on the size of S ∩ V (C) when |C| ≥ |X| + 2.

▷ Claim 11 (⋆). For every equivalence class C of ∼, if |C| ≥ |X| + 2, then, for any minimum
resolving set S of G, |S ∩ V (C)| ≤ |X| + |C| · max{1, t(C)}.

Let C be an equivalence class of ∼, and let S be a resolving set of G. For every i ≥ 0, we
denote by CS

=i (CS
≥i, resp.) the set of cliques C ∈ C such that |S ∩ V (C)| = i (|S ∩ V (C)| ≥ i).

▷ Claim 12 (⋆). Let C be an equivalence class of ∼ such that |C| ≥ |X| + 2. Then, for any
minimum resolving set S of G, the following hold:

(i) if t(C) = 0, then |CS
=0| ≤ 1 and |CS

≥2| ≤ |X| + 1;
(ii) if t(C) ̸= 0, then |CS

≥t(C)+1| ≤ |X| + 1.

The above claim states that if some equivalence class C of ∼ contains at least |X| + 3
cliques, then, for any minimum resolving set S of G, if t(C) = 0, then CS

=1 ̸= ∅, and otherwise,
CS

=t(C) ̸= ∅. The following reduction rule is based on this claim.

▶ Reduction Rule 3. If there exists an equivalence class C of ∼ such that |C| ≥ 2|X|+2+|X|+2,
then remove a clique C ∈ C from G and reduce k by max{1, t(C)}.

▷ Claim 13 (⋆). Reduction Rule 3 is safe.

Now observe that once Reduction Rule 3 has been exhaustively applied to (G, k), each
equivalence class of ∼ contains at most 2|X|+2 + |X| + 1 cliques. Since there are at most
22|X|+1 equivalence classes and each clique of G − X has size at most 2|X|+1, we conclude
that G contains at most 22|X|+1 · (2|X|+2 + |X| + 1) · 2|X|+1 + |X| vertices. ◀

5 Conclusion

As the Metric Dimension problem is W[2]-hard when parameterized by the solution
size [23], the next natural step is to understand its parameterized complexity under structural
parameterizations. We continued this line of research, following in the steps of [3, 13, 20],
and more recently [7, 29]. Our most technical result is a proof that the Metric Dimension
problem is W[1]-hard when parameterized by the feedback vertex set number of the graph. We
thereby improved the result by Bonnet and Purohit [7] that states the problem is W[1]-hard
when parameterized by the treewidth, and answered an open question in [23]. It is easy to
see that the problem admits an FPT algorithm when parameterized by the larger parameter,
the vertex cover number of the graph. On the positive side, we proved that the problem
admits FPT algorithms when parameterized by the distance to cluster and the distance to
co-cluster, which are smaller parameters than the vertex cover number.
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Although this work advances the understanding of structural parameterizations of Metric
Dimension, it falls short of completing the picture (see Figure 1). We find it hard to extend
the positive results to the parameters like the minimum clique cover, the distance to disjoint
paths, feedback edge set, and the bandwidth. It would be interesting to find FPT algorithms
or prove that such algorithms are highly unlikely to exist for these parameters. The FPT
algorithm parameterized by the treedepth in [20] relies on the meta-result. Is it possible to
get an FPT algorithm whose running time is a single or double exponent in the treedepth?
It would also be interesting to investigate the problem parameterized by the distance to
cograph. Recall that the problem is polynomial-time solvable in cographs [14].

Bonnet and Purohit [7] conjectured that the problem is W[1]-hard even when para-
meterized by the treewidth plus the solution size. Towards resolving this conjecture, an
interesting question would be to investigate whether the problem admits an FPT algorithm
when parameterized by the feedback vertex set number plus the solution size. Note that
even an XP algorithm parameterized by the feedback vertex set number is not apparent.
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