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Abstract
We say that a Hamilton cycle C = (x1, . . . , xn) in a graph G is k-symmetric, if the mapping
xi 7→ xi+n/k for all i = 1, . . . , n, where indices are considered modulo n, is an automorphism of G.
In other words, if we lay out the vertices x1, . . . , xn equidistantly on a circle and draw the edges
of G as straight lines, then the drawing of G has k-fold rotational symmetry, i.e., all information
about the graph is compressed into a 360◦/k wedge of the drawing. We refer to the maximum k

for which there exists a k-symmetric Hamilton cycle in G as the Hamilton compression of G. We
investigate the Hamilton compression of four different families of vertex-transitive graphs, namely
hypercubes, Johnson graphs, permutahedra and Cayley graphs of abelian groups. In several cases we
determine their Hamilton compression exactly, and in other cases we provide close lower and upper
bounds. The cycles we construct have a much higher compression than several classical Gray codes
known from the literature. Our constructions also yield Gray codes for bitstrings, combinations and
permutations that have few tracks and/or that are balanced.
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1 Introduction

A Hamilton cycle in a graph is a cycle that visits every vertex of the graph exactly once.
This concept is named after the Irish mathematician and astronomer Sir William Rowan
Hamilton (1805–1865), who invented the Icosian game, in which the objective is to find a
Hamilton cycle along the edges of the dodecahedron. Figure 1 shows the dodecahedron with
a Hamilton cycle on the circumference. Hamilton cycles have been studied intensively from
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54:2 The Hamilton Compression of Highly Symmetric Graphs

180◦

Figure 1 The dodecahedron with a 2-symmetric Hamilton cycle.

various different angles, such as graph theory (necessary/sufficient conditions, packing and
covering etc. [11, 12, 13, 18]), optimization (shortest tours, approximation [2]), algorithms
(complexity [10], exhaustive generation [22, 25]) and algebra (Cayley graphs [5, 19, 24, 28]).
In this work we introduce a new graph parameter that quantifies how symmetric a Hamilton
cycle in a graph can be. For example, the cycle in the dodecahedron shown in Figure 1 is
2-symmetric, as the drawing has 2-fold (i.e., 360◦/2 = 180◦) rotational symmetry.

1.1 Hamilton cycles with rotational symmetry
Formally, let G = (V, E) be a graph with n vertices. We say that a Hamilton cycle
C = (x1, . . . , xn) is k-symmetric if the mapping f : V → V defined by xi 7→ xi+n/k for all
i = 1, . . . , n, where indices are considered modulo n, is an automorphism of G. I.e., we have

C = P, f(P ), f2(P ), . . . , fk−1(P ) for the path P := (x1, . . . , xn/k). (1)

The idea is that the entire cycle C can be reconstructed from the path P , which contains
only a 1/k-fraction of all vertices, by repeatedly applying the automorphism f to it. In other
words, if we lay out the vertices x1, . . . , xn equidistantly on a circle, and draw edges of G

as straight lines, then we obtain a drawing of G with k-fold rotational symmetry, i.e., f is
a rotation by 360◦/k; see Figure 2. We refer to the maximum k for which the Hamilton
cycle C of G is k-symmetric as the compression factor of C, and we denote it by κ(G, C).

1.2 Connection to LCF notation
There is yet another interesting interpretation of the compression factor in terms of the LCF
notation of a graph, named after its inventors Lederberg, Coxeter and Frucht (see [9]). The
idea is to describe a 3-regular Hamiltonian graph (such as the dodecahedron) concisely by
considering one of its Hamilton cycles C = (x1, . . . , xn). Each vertex xi has the neighbors
xi−1 and xi+1 (modulo n) in the graph, plus a third neighbor xj , which is di := j − i

(modulo n) steps away from xi along the cycle. The LCF sequence of G is the sequence
d = (d1, . . . , dn), where each di is chosen so that −n/2 < di ≤ n/2. Clearly, we also have
di /∈ {−1, 0, +1}. Note that if C is k-symmetric, then the LCF sequence d of G is k-periodic,
i.e., it has the form d = (d1, . . . , dn/k)k, where the k in the exponent denotes k-fold repetition;
see Figure 2. While LCF notation is only defined for 3-regular graphs, we can easily extend it
to arbitrary graphs with a Hamilton cycle C = (x1, . . . , xn), by considering a sequence of sets
D = (D1, . . . , Dn), where Di is the set of distances to all neighbors of xi on the cycle except
xi−1 and xi+1; see Figure 3 (a)+(d). As before, if C is k-symmetric, then the corresponding
sequence D is k-periodic, i.e., it has the form D = (D1, . . . , Dn/k)k. Frucht [9] writes:
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Figure 2 Hamilton cycles C1, . . . , C4 in the 4-permutahedron Π4 with different LCF sequences
and compression factors.

“What happens with the LCF notation if we replace one hamiltonian circuit by
another one? The answer is: nearly everything can happen! Indeed the LCF notation
for a graph can remain unaltered or it can change completely [...] In such cases we
should choose of course the shortest of the existing LCF notations.”

This observation is illustrated in Figure 2, which shows four different Hamilton cycles of the
same graph G that have different LCF sequences and compression factors.

1.3 Hamilton compression
Frucht’s suggestion is to search for a Hamilton cycle C in G whose compression factor κ(G, C)
is as large as possible. Formally, for any graph G we define

κ(G) := max
{

κ(G, C) | C is a Hamilton cycle in G
}

, (2)

and we refer to this quantity as the Hamilton compression of G. If G has no Hamilton cycle,
then we define κ(G) := 0. While the maximization in (2) is simply over all Hamilton cycles
in G, and the automorphisms arise as possible rotations of those cycles, this definition is
somewhat impractical to work with. In our arguments, we rather consider all automorphisms

MFCS 2022
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Figure 3 Symmetric Hamilton cycles in the (a) 4-cube; (b) middle levels of the 5-cube; (c) Johnson
graph J7,2; (d) abelian Cayley graph (Z2

5, {(0, 1), (1, 0)}).

of G, and then search for a Hamilton cycle that is k-symmetric under the chosen automorphism.
Specifically, proving a lower bound of κ(G) ≥ k amounts to finding an automorphism f of G

and a k-symmetric Hamilton cycle under f . To prove an upper bound of κ(G) < k, we need
to argue that there is no k-symmetric Hamilton cycle in G, for any choice of f .

By what we said in the beginning, the quantity κ(G) can be seen as a measure for the
nicest (i.e., most symmetric) way of drawing the graph G on a circle. Thus, our paper
contains many illustrations that convey the aesthetic appeal of this problem.

1.4 Easy observations and bounds
We collect a few basic observations about the quantity κ(G). Trivially, we have 0 ≤ κ(G) ≤ n,
where n is the number of vertices of G. The upper bound n can be improved to

κ(G) ≤ max
f∈Aut(G)

ord(f), (3)

where Aut(G) is the automorphism group of G, and ord(f) is the order of f . An immediate
consequence of (1) is that all orbits of the automorphism f must have the same size n/k, and
the path P = (x1, . . . , xn/k) visits every orbit exactly once. This can be used to improve (3)
further by restricting the maximization to automorphisms from Aut(G) whose orbits all have
the same size. Furthermore, as k must divide n, we obtain that κ(G) ∈ {0, 1, n} for prime n.
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Clearly, every Hamilton cycle of a graph G is 1-symmetric, by taking the identity mapping
f = id as automorphism. Consequently, we have κ(G) ≥ 1 for any Hamiltonian graph. On
the other hand, if G is Hamiltonian and highly symmetric, i.e., if it has a rich automorphism
group, then intuitively G should have a large value of κ(G), i.e., it should admit highly
symmetric Hamilton cycles. For example, for the cycle Cn on n vertices and the complete
graph Kn on n vertices we have κ(Cn) = κ(Kn) = n. More generally, note that κ(G) = n if
and only if G is a special circulant graph, namely the vertices of G can be labeled with 1, . . . , n

such that vertex i is adjacent to all vertices j = i + d (modulo n) with d ∈ L, where L is a
fixed list with 1 ∈ L. Note that general circulant graphs do not require that 1 ∈ L, but the
aforementioned characterization requires this assumption.

2 Our results

Vertex-transitive graphs are a prime example of highly symmetric graphs. A graph is vertex-
transitive if for any two vertices there is an automorphism that maps the first vertex to the
second one. In other words, the automorphism group of the graph acts transitively on the
vertices. In this paper we investigate the Hamilton compression κ(G) of four families of
vertex-transitive graphs G, namely hypercubes, Johnson graphs, permutahedra, and Cayley
graphs of abelian groups. In the following definitions the letter n denotes a graph parameter
and not the number of vertices of the graph as in Section 1. The n-dimensional hypercube Qn,
or n-cube for short, has as vertices all bitstrings of length n, and an edge between any two
strings that differ in a single bit; see Figure 3 (a). The Johnson graph Jn,m has as vertices all
bitstrings of length n with fixed Hamming weight m, and an edge between any two strings
that differ in a transposition of a 0 and 1; see Figure 3 (c). The n-permutahedron Πn, has as
vertices all permutations of [n] := {1, . . . , n}, and an edge between any two permutations that
differ in an adjacent transposition, i.e., a swap of two neighboring entries of the permutations
in one-line notation; see Figure 2. For a group Γ and generating set S ⊆ Γ, the Cayley
graph G(Γ, S) has Γ as its vertex set and undirected edges {x, y} for all x, y ∈ Γ and s ∈ S

with y = xs; see Figure 3 (d). Note that the hypercube is isomorphic to a Cayley graph of
the abelian group Zn

2 .
Hamilton cycles with various additional properties in the aforementioned families of graphs

have been the subject of a long line of previous research under the name of combinatorial Gray
codes [22, 25]. We will see that some classical constructions of such cycles have a non-trivial
small compression factor, and we construct cycles with much higher compression factor that
we show to be optimal or near-optimal. Along the way, many interesting number-theoretic
and algebraic phenomena arise. Due to space constraints, in this extended abstract we only
mention our main results, while all proofs can be found in the preprint [15].

2.1 Hypercubes
One of the classical constructions of a Hamilton cycle in Qn is the well-known binary
reflected Gray code (BRGC) [14]. This cycle in Qn is defined inductively by Γ0 := ε and
Γn := 0Γn−1, 1 #        „Γn−1 for all n ≥ 1, where ε is the empty sequence and #        „Γn−1 denotes the
reversal of the sequence Γn−1. In words, the cycle Γn is obtained by concatenating the
vertices of Γn−1 prefixed by 0 with the vertices of Γn−1 in reverse order prefixed by 1. The
cycle Γn is shown in Figure 3 (a) and Figure 4 (a) for n = 4 and n = 8, and these drawings
have 4-fold rotational symmetry.

▶ Proposition 1. The BRGC Γn has compression κ(Qn, Γn) = 4 for n ≥ 2.

MFCS 2022
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(a)

(b)

(c)

Figure 4 Symmetric Hamilton cycles in Q8. Cycles are on the left (0=white, 1=black), with the
first and last bit on the inner and outer track, respectively. The full graph Q8 is on the right, with
vertices arranged in cycle order and edges drawn as straight lines. (a) Binary reflected Gray code Γ8

with compression 4; (b) Hamilton cycle with compression 8 from Theorem 2; (c) 2-track Hamilton
cycle with compression 8 from Theorem 8.
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We improve upon this by constructing new Hamilton cycles in Qn that have optimal
linear Hamilton compression; see Figure 4 (b).

▶ Theorem 2. We have κ(Q2) = 4 and κ(Qn) = 2⌈log2 n⌉ for all n ≥ 3.

Note that n ≤ κ(Qn) < 2n for n ≥ 2, in particular κ(Qn) = Θ(n), i.e., the optimal
compression grows linearly with n.

2.2 Johnson graphs and relatives
Our definition of Hamilton compression is inspired by a variant of the well-known middle
levels problem raised by Knuth in Problem 56 in Section 7.2.1.3 of his book [17]. Let
M2n+1 denote the subgraph of Q2n+1 induced by all bitstrings with Hamming weight n

or n + 1. In other words, M2n+1 is the subgraph of the cover graph of the Boolean lattice
of dimension 2n + 1 induced by the middle two levels. There is a natural automorphism
of M2n+1 all of whose orbits have the same size, namely cyclic left-shift of the bitstrings
by one position. Knuth asked whether M2n+1 admits a (2n + 1)-symmetric Hamilton cycle

(a)

(b)

Figure 5 Symmetric Hamilton cycles in the middle levels graph M7: (a) A solution to Knuth’s
problem with compression 7 for f being cyclic left-shift; (b) Hamilton cycle with compression 10 for
f being left-shift of the last 5 bits and complementation of all bits.

MFCS 2022
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under this automorphism, and he rated this the hardest open problem in his book, with
a difficulty rating of 49/50. Such cycles are shown in Figure 3 (b) and Figure 5 (a) for
the graphs M5 and M7, respectively. Knuth’s problem was answered affirmatively in full
generality in [21], which establishes the lower bound κ(M2n+1) ≥ 2n + 1. We show that this
is at most a factor of 2 away from optimality.

▶ Theorem 3. For all n ≥ 1 we have 2n + 1 ≤ κ(M2n+1) ≤ 2(2n + 1).

Interestingly, it seems that both bounds in Theorem 3 can be improved. For example, for
n = 3 we can take the automorphism f of M7 defined by x1 · · · x7 7→ x1x2x4x5x6x7x3, which
fixes the first two bits, cyclically left-shifts the remaining five bits by one position, and then
complements all bits. A 10-symmetric Hamilton cycle under this f is shown in Figure 5 (b),
whereas the lower and upper bounds are 7 and 14, respectively. In fact, computer experiments
show that κ(M7) = 10.

For the Johnson graphs Jn,m, we obtain the following exact results and bounds. Part (i)
and (ii) of the theorem are illustrated in Figure 6 (a) and (b), respectively.

▶ Theorem 4. The Hamilton compression of the Johnson graph Jn,m, where n > m > 0,
has the following properties:

(i) If n and m are coprime, we have κ(Jn,m) = n.
(ii) If n and m are not coprime and n ̸= 2m, we have n/2 < max{m, n−m} < κ(Jn,m) ≤ n.
(iii) If n and m are not coprime and n = 2m, we have n/2 < κ(Jn,m) ≤ 2n.
(iv) For any ε > 0 there is an n0 such that for all n > n0 with n ̸= 2m we have (1 − ε)n ≤

κ(Jn,m) ≤ n. In particular, we have κ(Jn,m) = (1 − o(1))n for n ̸= 2m.

(a) (b)

Figure 6 Symmetric Hamilton cycles in Johnson graphs: (a) Balanced 1-track Hamilton cycle
in J11,3 with compression n = 11; the automorphism left-shifts all n bits; (b) 4-track Hamilton cycle
in J10,4 with compression q = 7; the automorphism left-shifts the first q bits.

2.3 Permutahedra
Another classical Gray code is produced by the Steinhaus-Johnson-Trotter (SJT) algorithm,
which generates permutations by adjacent transpositions. This algorithm computes a
Hamilton cycle in Πn, which can be described inductively as follows: Λ1 := 1 and for all
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(a)

(b)

(c)

Figure 7 Symmetric Hamilton cycles in Π5 (1=red, 2=orange, 3=yellow, 4=green, 5=blue):
(a) Steinhaus-Johnson-Trotter cycle Λ5 with compression 3; (b) Cycle with compression 5; (c) Cycle
with optimal compression 10.

MFCS 2022
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n ≥ 2 the cycle Λn is obtained from Λn−1 by replacing each permutation of length n − 1 by
the n permutations given by inserting n in every possible position, alternatingly from right
to left or vice versa. The cycle Λn is shown in Figure 2 (a) and Figure 7 (a) for n = 4 and
n = 5, respectively, and these drawings have 6-fold or 3-fold rotational symmetry.

▶ Proposition 5. The SJT cycle Λn has compression κ(Πn, Λn) = 6 for n = 3, 4 and
κ(Πn, Λn) = 3 for n ≥ 5.

We improve upon this by constructing new Hamilton cycles in Πn that have mildly
exponential Hamilton compression; see Figure 7 (b)+(c). Specifically, the growth of the
optimum compression is determined by Landau’s function λ(n), which is defined as the
maximum order of an element in the symmetric group Sn.

▶ Theorem 6. We have κ(Πn) = Θ(λ(n)) = e(1+o(1))
√

n ln n.

The lower and upper bounds in the proof of Theorem 6 differ at most by a factor of 2 for
every n ≥ 3. Moreover, we achieve the optimal compression in infinitely many cases, in particu-
lar for the following values of n ≤ 100: n = 3, 4, 5, 15, 22, 46, 49, 51, 52, 53, 55, 68, 69, 72, 73, 74,

75, 80, 82, 85, 87, 88, 89, 91, 92, 93, 96, 97, 99, 100.

2.4 Abelian Cayley graphs
A classical folklore result asserts that every Cayley graph of an abelian group has a Hamilton
cycle. The Chen-Quimpo theorem [4] asserts that in fact much stronger Hamiltonicity
properties hold. It is thus natural to ask whether Cayley graphs of abelian groups have
highly symmetric Hamilton cycles.

▶ Theorem 7. Let Γ be an abelian group.
(i) If |Γ| is a product of distinct odd primes, then for the canonical generating set S ⊆ Γ,

the Cayley graph G = G(Γ, S) has compression κ(G) = 1.
(ii) If |Γ| ≥ 3 is even or divisible by a square greater than 1, then for any generating

set S ⊆ Γ, the Cayley graph G = G(Γ, S) has compression κ(G) ≥ 2.

In particular, toroidal grids Zp × Zq for distinct odd primes p, q have only compression 1.
The canonical generating set of a finite abelian group Γ is the set of unit vectors in the
decomposition of Γ as a product of cyclic groups given by the structure theorem of finite
abelian groups.

3 Related problems

We proceed to discuss some applications of our results to closely related problems.

3.1 Lovász’ conjecture
A well-known question of Lovász’ [20] asks whether there are infinitely many vertex-transitive
graphs that do not admit a Hamilton cycle. So far only five such graphs are known, namely K2,
the Petersen graph, the Coxeter graph, and the graphs obtained from the latter two by
replacing every vertex by a triangle. Vertex-transitive graphs have a lot of automorphisms,
and we may take the quantity κ(G) as a measure of how strongly G is Hamiltonian. In
particular, Lovász’ question may be rephrased as ‘Are there infinitely many vertex-transitive
graphs G with κ(G) = 0?’ More generally, we may ask: ‘Are there infinitely many vertex-
transitive graphs G with κ(G) = k, for each fixed integer k?’ A particularly relevant subclass
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Figure 8 One of the smallest vertex-transitive non-Cayley graphs G with κ(G) = 1.

of vertex-transitive graphs are Cayley graphs, so we may ask the same question about Cayley
graphs. From our results mentioned in Section 2.4 we obtain an infinite family of Cayley
graphs G with κ(G) = 1. Computer experiments show that the smallest vertex-transitive
non-Cayley graphs G with κ(G) = 1 have 26 vertices, and one of them is shown in Figure 8.

The path P in (1) is a Hamilton path in the quotient graph G/f obtained by collapsing
each orbit of f into a single vertex. The idea of constructing a Hamilton cycle in G by
constructing a Hamilton cycle in the much smaller graph G/f that is then “lifted” to the
full graph is well known in the literature, and has been used to solve some special cases of
Lovász’ problem affirmatively; see e.g. [1, 6, 19, 21, 27]. It is particularly useful for computer
searches, as it reduces the search space dramatically.

3.2 t-track and balanced Gray codes
We say that a sequence C of strings of length n consists of t tracks if in the |C| × n matrix
corresponding to C there are t columns such that every other column is a cyclically shifted
copy of one of these columns. This property is relevant for applications, as it saves hardware
when implementing Gray-coded rotary encoders. Instead of using n tracks and n reading
heads aligned at the same angle (each reading one track), one can use only t tracks, and
place some of the n reading heads at appropriately rotated positions.

Hiltgen, Paterson, and Brandestini [16] showed that the length of any 1-track cycle in Qn

must be a multiple of 2n. In particular, such a cycle cannot be a Hamilton cycle unless n

is a power of 2. For the case n = 2r, r ≥ 3, Etzion and Paterson [7] showed that there is
1-track cycle of length 2n − 2n, and Schwartz and Etzion [26] subsequently showed that the
length 2n − 2n is best possible. Taken together, these results show that there is no 1-track
Hamilton cycle in Qn for any n ≥ 3. We complement this negative result by constructing a
2-track Hamilton cycle in Qn, for every n that is a sum of two powers of 2; see Figure 4 (c).

▶ Theorem 8. For every n = 2r and m = 2s, where r ≥ 2 and r ≥ s ≥ 0, there is a
2n-symmetric Hamilton cycle in Qn+m that has 2 tracks.

More generally, we obtain t-track Hamilton cycles in Qn for every n that is a sum of
t ≥ 2 powers of 2. In particular, every dimension n admits a Hamilton cycle with at most
logarithmically many tracks.

▶ Theorem 9. For every n = 2r and (m1, . . . , mt−1) = (2s1 , . . . , 2st−1), where r, t ≥ 2 and
r ≥ s1 ≥ · · · ≥ st−1 ≥ 0, there is a 2n-symmetric Hamilton cycle in Qn+m1+···+mt−1 that
has t tracks.
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Figure 9 Balanced 1-track Hamilton cycle in Π+
5 with compression 5 from Theorem 11 (cyclically

adjacent transpositions).

From our construction in the Johnson graph Jn,m when n and m are coprime, we obtain
1-track Hamilton cycles that are also balanced, i.e., each bit is flipped equally often (cf. [3, 8]);
see Figure 6 (a).

▶ Theorem 10. Let n > m > 0 be such that n and m are coprime. Then Jn,m has an
n-symmetric Hamilton cycle that has 1 track and is balanced, i.e., each bit is flipped equally
often (

(
n
m

)
/n many times).

We write Π+
n for the graph obtained from the permutahedron Πn by adding edges that

correspond to transpositions of the first and last entry of a permutation, i.e., we allow
cyclically adjacent transpositions. The next theorem is illustrated in Figure 9.

▶ Theorem 11. For every odd n ≥ 3 there is an n-symmetric Hamilton cycle in Π+
n that

has 1 track and is balanced, i.e., each of the n transpositions is used equally often ((n − 1)!
many times).

4 Open questions

The Hamilton compression κ(G) is a newly introduced graph parameter, so many natural
follow-up questions arise. We conclude this paper by listing several of these problems.

Can the Gray codes constructed in this paper be computed efficiently? While our proofs
translate straightforwardly into algorithms whose running time is polynomial in the size
of the graph, a more ambitious goal are algorithms whose running time per generated
vertex is polynomial in the length of the vertex labels (bitstrings, permutations, etc.).
What is the Hamilton compression of the middle levels graph (recall Theorem 3)?
For any integer n ≥ 1, the odd graph On has as vertices all bitstrings of length 2n + 1
with Hamming weight n, and an edge between any two strings that have no 1s in common.
Odd graphs On, n ≥ 3, were shown to have a Hamilton cycle in [23], so κ(On) ≥ 1. We
can use cyclic shifts as the automorphism, and it is easy to see that κ(On) ≤ 2n + 1. We
conjecture that κ(On) = 2n + 1 for all n ≥ 4, which we confirmed for n = 4.
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In view of Section 2.4, the main open question here is whether the Cayley graph G =
G(Γ, S), where Γ is an abelian group such that |Γ| is a product of distinct odd primes
and S is a non-canonical set of generators, has κ(G) equal to 1 or exceeding 1.
What is the Hamilton compression of the associahedron, which has as automorphism
group the dihedral group of a regular n-gon? For n = 5, 6, 7, 8 we determined the values
5, 2, 7, 2 by computer, and we suspect that the primality of n plays a role.
Instead of asking about the largest number k = κ(G) such that Aut(G, C) (automorphisms
of G that preserve C) contains the cyclic subgroup of order k for some Hamilton cycle C

in G, we may ask for the dihedral subgroup of the largest order, which would allow not
only for rotations of the drawings but also reflections.
Is there a 1-track Hamilton cycle in Πn (recall Theorem 11)? Equivalently, can all n!
permutations be listed by adjacent transpositions so that every column is a cyclic shift
of every other column?
Is there a balanced Hamilton cycle in Πn? Equivalently, can all n! permutations be
listed using each of the n − 1 adjacent transpositions equally often? Alternatively, what
about using each of the

(
n
2
)

transpositions equally often (see [8])? For n = 5, we found
orderings satisfying the constraints of both questions.
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