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Abstract
We continue the study of δ-dispersion, a continuous facility location problem on a graph where all
edges have unit length and where the facilities may also be positioned in the interior of the edges.
The goal is to position as many facilities as possible subject to the condition that every two facilities
have distance at least δ from each other.

Our main technical contribution is an efficient procedure to “round-up” distance δ. It transforms
a δ-dispersed set S into a δ⋆-dispersed set S⋆ of same size where distance δ⋆ is a potentially slightly
larger rational a

b
with a numerator a upper bounded by the longest (not-induced) path in the input

graph.
Based on this rounding procedure and connections to the distance-d independent set problem

we derive a number of algorithmic results. When parameterized by treewidth, the problem is in
XP. When parameterized by treedepth the problem is FPT and has a matching lower bound on its
time complexity under ETH. Moreover, we can also settle the parameterized complexity with the
solution size as parameter using our rounding technique: δ-Dispersion is FPT for every δ ≤ 2 and
W[1]-hard for every δ > 2.

Further, we show that δ-dispersion is NP-complete for every fixed irrational distance δ, which
was left open in a previous work.
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1 Introduction

We study the algorithmic behavior of a continuous dispersion problem. Consider an undirected
graph G, whose edges have unit length. Let P (G) be the continuum set of points on all the
edges and vertices. For two points p, q ∈ P (G), we denote by d(p, q) the length of a shortest
path containing p and q in the underlying metric space. A subset S ⊆ P (G) is δ-dispersed for
some positive real number δ, if every distinct points p, q ∈ S have distance at least d(p, q) ≥ δ.
Our goal is, for a given graph G and a positive real number δ, to compute a maximum
cardinality subset S ⊆ P (G) that is δ-dispersed. We denote by δ-disp(G) the maximum size
of a δ-dispersed set of G. The decision problem Dispersion asks for a δ-dispersed set of size
at least k, where additionally integer k ≥ 0 is part of the input. When δ is fixed and not
part of the input, we refer to the problem as δ-Dispersion.
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1.1 Known and Related Results
The area of obnoxious facility location goes back to seminal articles of Goldman & Dearing [6]
and Church & Garfinkel [3]. The area includes a wide variety of objectives and models.
For example, purely geometric variants have been studied by Abravaya & Segal [1], Ben-
Moshe, Katz & Segal [2], and Katz, Kedem & Segal [14]. Recently, van Ee studied the
approximability of a generalized covering problem in a metric space that also involves
dispersion constraints [19]. Another direction is a graph-theoretic model, where every edge
of the given graph G is rectifiable and has some individual length. Tamir discusses the
complexity and approximability of several optimization problems. For example, when G is a
tree, then a δ-dispersed set can be computed in polynomial time [18]. Another task is to
place a single obnoxious facility in a network while maximizing, for example, the smallest
distance from the facility to certain clients, as studied by Segal [16].

In a previous work, the complexity of Dispersion was studied for every rational distance δ.
When δ is a rational number with numerator 1 or 2, the problem is polynomial time solvable,
while it is NP-complete for all other rational values of δ [7, 8]. The complexity when δ is
irrational was left as an open problem.

A closely related facility location problem is δ-covering. The objective is to place as few
locations as possible on P (G) subject to the condition that any point in P (G) is in distance
at most δ to a placed location. This problem is polynomial time solvable whenever δ is a unit
fraction, while it is NP-hard for all non unit fractions δ [10]. Furthermore, the parameterized
complexity with the parameter solution size k is studied. δ-covering is fixed parameter
tractable when δ < 3

2 , while for δ ≥ 3
2 the problem is W[2]-complete [10]. Tamir [17] showed

that for δ-covering only certain distances δ are of interest. For every amount of points p

the distance max{δ⋆ : |δ⋆-cover(G)| = p} is of the form L′

2p′ where p′ ∈ {1, . . . , p} and L′ is
roughly at most twice the length of a non-induced path in G.

1.2 Our Contribution
Our main technical contribution is an efficient and constructive rounding procedure. Given a
δ-dispersed set S for some distance value δ > 0, it transforms S into a δ⋆-dispersed set S⋆ of
equal size with a slightly larger well-behaving distance value δ⋆ ≥ δ. The new distance δ⋆ is
a rational a

b with small numerator a. More precisely, the numerator is upper bounded by
the length of the longest (not-induced) path L, hence upper bounded asymptotically by the
number of vertices n of the input graph (see Section 5).

Our second technical contribution relates the optimal solution for distance δ and δ
δ+1 for

δ ≤ 3. A δ-dispersed set translates to a δ
δ+1 -dispersed set by placing one more point on every

edge, and vice versa by removing one point (see Section 3).
Further we explore a connection of Dispersion and an independent set problem (see Sec-

tion 4). The combination of that connection with our technical contributions yields several
algorithmic results for Dispersion (see Section 6 and Section 7):

Dispersion is NP-hard even for chordal graphs of diameter 4.
Dispersion is FPT for the graph parameter treedepth td(G) with a run time matching
a lower bound under ETH. We complement this result by showing that δ-Dispersion
is W[1]-hard for the slightly more general graph parameter pathwidth pw(G), even for
the combined parameter pw(G) + k. Similarly, δ-Dispersion is W[1]-hard for the graph
parameter fvs(G), the minimum size of a feedback vertex set.
Dispersion is XP for the parameter treewidth tw(G), with a running time of
(2L)tw(G)nO(1), where n is the number of vertices and L is an upper bound on the length
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of the longest path in G. We complement this result by the more general lower bound
of no(tw(G)+

√
k), assuming ETH. It implies the lower bound of Lo(tw(G)+

√
k) since L ≤ n.

Note that a mere lower bound of Lo(tw(G)+
√

k) would not exclude an no(tw(G))-algorithm.

In addition, we completely resolve the complexity of δ-dispersion, by showing NP-
hardness for irrational δ (see Section 8). We also study the parameterized complexity when
parameterized by the solution size k. The problem is W[1]-hard when δ > 2, and FPT
otherwise. Thus, there is a sharp threshold at δ = 2 where the complexity jumps from FPT
to W[1]-hard (see Section 9).

We mark statements whose proof can be found in the full version of the paper (see [9])
with “(⋆)”.

2 Preliminaries

We use the word vertex in the graph-theoretic sense, while we use the word point to denote
the elements of the geometric structure P (G). As an input for δ-dispersion, we consider
graphs G that are undirected, connected, and without loops and isolated vertices.

For an edge {u, v} ∈ E(G) and a real number λ ∈ [0, 1], let p(u, v, λ) ∈ P (G) be the
point on edge {u, v} that has distance λ from u. Note that p(u, v, 0) = u, p(u, v, 1) = v and
p(u, v, λ) = p(v, u, 1 − λ). Further, we use d(p, q) for the length of a shortest path between
points p, q ∈ P (G).

For a subset of vertices V ′ ⊆ V (G) or a subset of edges E′ ⊆ E(G), we denote by G[V ′]
and G[E′] the subgraph induced by V ′ and E′, respectively. The neighborhood of a vertex u

is N(u) := {v ∈ V (G) | {u, v} ∈ E(G)}. We use n as the number of vertices of G, when G is
clear from the context.

For a graph G and integer c ≥ 1, let the c-subdivision of G be the graph G where every
edge is replaced by a path of length c.

▶ Lemma 1 ([8]). Let G be a graph, let c ≥ 1 be an integer, and let G′ be the c-subdivision
of G. Then δ-disp(G) = (cδ)-disp(G′).

For integers a and b, we denote the rational number a
b as b-simple. A set S ⊆ P (G) is

b-simple, if for every point p(u, v, λ) in S the edge position λ is b-simple.

▶ Lemma 2 ([8]). Let δ = a
b with integers a and b, and let G be a graph. Then, there exists

an optimal δ-dispersed set S⋆ that is 2b-simple.

For an introduction into parameterized algorithms, we refer to [4]. We study of the
complexity of Dispersion with the natural parameter solution size k, as well as its dependency
on structural measures on the input graph. Besides treewidth tw(G) and pathwidth pw(G),
we also study the parameters “feedback vertex set size” fvs(G) and treedepth td(G).

A graph has a feedback vertex set W ⊆ V (G) if G after removing W contains no cycle.
The “feedback vertex set size” is the size of a smallest feedback vertex set of G.

The treedepth of a connected graph G can be defined as follows. If G is disconnected, it
is the maximum treedepth of its components; If G consists of a single vertex, then td(G) = 1;
And else it is one plus the minimum over all u ∈ V (G) of the treedepth of G without vertex u.

We provide lower bounds for the time-complexity assuming the Exponential Time Hy-
pothesis (ETH): There is no 2o(N)-time algorithm for 3-SAT with N variables and O(N)
clauses [11]. For more details on ETH, we refer to [4].

MFCS 2022
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3 Translating δ-Dispersion

There is an intriguing relation of the optimal solution for distance δ and δ
2δ+1 for the similar

problem δ-covering [10]. We may analogously expect that an optimal solution for δ-dispersion
translates to an optimal solution for δ

δ+1 -dispersion; i.e., that an optimal δ-dispersed set
corresponds to an optimal δ

δ+1 -dispersed set of the same size plus one extra point for every
edge.

This is not true for δ = 3 + ε for any ε > 0: Consider a triangle, where a (3 + ε)-dispersed
set S contains at most one point p. Since δ

δ+1 > 3
4 , a δ

δ+1 -dispersed set however contains at
most 3 < |S| + 3 points.

Causing trouble is a non-trivial closed walk containing p of length less than δ. The
translating lemma may only apply to a variation of dispersion that is sensitive to such walks,
a variant which we call auto-dispersion. A δ-dispersed set S ⊆ P (G) is δ-auto-dispersed
if additionally for every point p ∈ S there is no walk from p to p of length < δ that is
locally-injective. A walk is locally-injective if, when interpreted as a continuous mapping
f : [0, 1] → P (G) from f(0) = p to f(1) = p, has for every pre-image c ∈ (0, 1) a positive
range ε > 0 such that f restricted to the interval (c − ε, c + ε) is injective.

▶ Lemma 3. (⋆) Let G be a graph and δ > 0. Then δ-auto-disp(G) = δ
δ+1 -auto-disp(G) +

|E(G)|.

Fortunately, this translation lemma is still useful for ordinary δ-dispersion. We have
δ-auto-disp(G) = δ-disp(G) for δ ≤ 3, since there is no such locally-injective walk of length
< 3. The threshold of 3 is tight according to the above example with graph K3.

▶ Corollary 4. Let G be a graph and δ ∈ (0, 3]. Then δ-disp(G) = δ
δ+1 -disp(G) + |E(G)|.

4 Dispersion and Independent Set

To solve Dispersion we can borrow from algorithmic results from a generalized independent
set problem. A classical independent set is a set of vertices where each two elements have to
be at least 2 apart from each other (when we consider that the edges have unit length). In a
2-dispersed set also each two elements need to be at least 2 apart from each other, though
the set contains a set of points of the graph.

To generalize the independent set problem, we may ask that the vertices are not 2 apart
but some integer d apart from each other. Such a generalization for independent set is called
a distance-d independent set or d-scattered set. They have been studied by Eto et al. [5] and
Katsikarelis et al. [13].

Let αd(G) be the maximum size of a distance-d independent set, for a graph G and
integer d. We relate δ-dispersion to αd. We consider the c-subdivision of a graph G, denoted
as Gc, which is the graph G where every edge is replaced by a path of length c, for some
integer c ≥ 1.

▶ Lemma 5. Consider integers a, b and a 2b-subdivision G2b of a graph G. Then a
b -disp(G) =

α2a(G2b).

Proof. Consider the b-subdivision Gb of G. Then G2b is a 2-subdivision of Gb. We know that
a
b -disp(G) = 2a-disp(G2b) from Lemma 1. Hence it remains to show 2a-disp(G2b) = α2a(G2b).

Clearly, a distance-2a independent set I ⊆ V (G) is also a 2a-dispersed set. For the
reverse direction, assume there is a 2a-dispersed set I2a of G2b. Then I2a corresponds to
an a-dispersed set I of Gb of same size, according to Lemma 1. Since a is integer, we
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may assume that S contains only half-integral points, hence points with edge position from
{0, 1

2 , 1}, according to Lemma 2. Let G2b result from Gb by replacing each edge {u, v} by a
path uwu,vv. Then let I ⊆ V (G2b) consist of vertex u ∈ V (G) with a point in S and every
wu,v for every point p(u, v, 1

2 ) ∈ S. Then I is a distance-2a independent set of G2b of size
|I| = |S|. ◀

Thus to solve Dispersion for δ = a
b we can use algorithms for distance-d independent

set. For rationals a
b with small values of a and b this possibly leads to efficient algorithms.

For example, a distance-d independent set on graphs width treewidth tw(G) (and a given
tree decomposition) can be found in time dtw(G)nO(1), see [13]. “Simply” subdivide the edges
of the input graph sufficiently often, which does not increase the treewidth of the considered
graph. To find a a

b -dispersed set in a graph G, we can search for distance 2a independent set
the 2b-subdivision of G.

▶ Corollary 6. There is an algorithm that, given a rational distance a
b > 0 and a graph

G, a tree decomposition of width tw(G), computes a maximum a
b -dispersed set S in time

(2a)tw(G)(bn)O(1).

However, in general this constitutes a possibly exponential increase of the input size.
While in the input of a

b -dispersion encodes a and b in binary, the subdivided graph essentially
encodes b in unary. Further, if δ is irrational, we do not have a suitable subdivision at all.

5 Rounding the Distance

For a given graph G and distance δ, we state a rational δ⋆ ≥ δ such that δ-disp(G) =
δ⋆-disp(G). Our proof is constructive. We give a procedure that efficiently transforms a
δ-dispersed set into a δ⋆-dispersed set. The guaranteed rational δ⋆ has a numerator bounded
by the longest path in G (or just n as an upper bound thereof). It is independent of the
precise structure of the given graph.

To give some intuition: Generally there is some leeway for δ. For example, in a star
K1,k, k ≥ 1 for every δ ∈ (1, 2] the optimal solution puts a point on every leaf yielding a
δ-dispersed set of size k. Hence for instance 3

2 -disp(K1,k) = 2-disp(K1,k). However, for δ > 2
only one point can be placed, such that 2-disp(K1,k) ̸= (2 + ε)-disp(K1,k) for every ε > 0.

So what δ⋆ can be guaranteed such that δ-disp(G) = δ⋆-disp(G)? An illustrative example
is a path of length 6. Then 15

11 -disp(G) = 5 = 3
2 -disp(G). For δ = 15

11 tightly packing 5 points
allows to have a space of size 6

11 at either end of the path, not enough to place another point.
However, placing 5 points in distance δ = 3

2 allows no leeway; δ is (already) a divisor of 6, the
length of the considered path. Distance δ⋆ relies on L, the length of the longest (not-induced)
path in G. We have to take into account that δ might divide any path of length ≤ L. Our
δ⋆ is the smallest rational a⋆

b⋆ where the numerator a⋆ ≤ 2L. In other words, the inverse of
δ⋆ is the next smaller rational number of the inverse of δ in the Farey sequence of order 2L.

▶ Theorem 7. Let δ ∈ R+. Let L be an upper bound on the length of paths in G. Let
δ⋆ = a⋆

b⋆ ≥ δ minimal with a⋆ ≤ 2L and b⋆ ∈ N. Then δ-disp(G) = δ⋆-disp(G).

Clearly, a δ⋆-dispersed set S⋆, is also δ-dispersed, since δ⋆ ≥ δ. We have to show the
reverse direction. Consider a δ-dispersed set S (of size |S| ≥ 2) of a connected graph G that
is not δ⋆-dispersed, hence δ is irrational or is equal to a

b for some co-prime a, b with a > 2L.

In the following we develop our rounding procedure that shows the reverse direction. Our
presentation aims to be accessible by starting from the core algorithmic idea from which we
unravel all involved technical concepts piece by piece. The detailed proofs are placed in the
appendix.

MFCS 2022



55:6 Dispersing Obnoxious Facilities on Graphs by Rounding Distances

v

u

p q p0

p1

p2

p3
v

u

p0 p1
p2 p3

p4

p5

p6p7
p8

Figure 1 (left) Consider critical points {p, q} (points depicted as black dots; vertices as white
squares). If we move q away from p by ε ≥ 0, their distance increases by ε until q reaches the
half-integral point p(u, v, 1

2 ). (middle) Let {pi, pi−1} be critical for i ≥ 1. Consider moving pi, i ≥ 1
by iε away from pi−1. Once p2 becomes half-integral, points {p3, p0} become also critical, hence
we cannot continue to move points in the same way. This happens when a point in S becomes
half-integral or . . . (right) . . . a point half-way between two points in S becomes half-integral, as in
this example between p4, p5. We say p4, p5 witness the pivot p(u, v, 1

2 ).

5.1 Overview
Our rounding procedure repeatedly applies a pushing algorithm to the current point set S. We
show that each such step strictly decreases a polynomially bounded potential Φ : P (G) → N.

▶ Theorem 8. Suppose that there is an algorithm, that given a δ-dispersed set S with δ < δ⋆

computes an ε > 0 and a (δ +ε)-dispersed set Sε of size |Sε| = |S| that satisfies Φ(S) > Φ(Sε)
for some polynomially bounded potential Φ : P (G) → N. Then Theorem 7 follows.

Proof. Let S be a δ-dispersed set. Apply the assumed algorithm to obtain a ε > 0 and a
(δ + ε)-dispersed set Sε of size |Sε| = |S|. If δ = δ⋆, we reached our goal. Else we apply the
assumed algorithm again. Since the potential Φ : P (G) → N decreases for Sε compared to S

and Φ is polynomially bounded, we have to reach δ⋆ in polynomial many steps. ◀

In the remainder of this section we will develop such an algorithm. It pushes the points
of point set S away from each other such that their pairwise distance increases from “at
least δ” to “at least δ + ε”. We choose ε ≥ 0 as large as possible limited by some events.
Either we already reach δ + ε = δ⋆, hence we reached our goal, or at least one of three events
occurs. We will specify these events in the course of this section. These events mean that
one pushing step, i.e., one step for Theorem 8 terminated. All the following preparations for
such a pushing step start anew.

We make sure that our potential Φ : P (G) → N decreases when an event occurs. Each
of the three events has a corresponding partial potential Φ1(S), Φ2(S) and Φ3(S). They
define the overall potential as Φ(S) := Φ1(S) + Φ2(S) + Φ3(S). Each part never increases.
Whenever event i occurs, Φi(S) strictly decreases.

We denote a pair of points {p, q} from our given point set S as δ-critical, if they have
distance exactly δ. Hence the critical pairs of points are exactly those that we need to push
away from each other. At the same time we make sure that, once {p, q} are δ-critical, they
never turn uncritical again, i.e., they are (δ + ε)-critical in the next step. An uncritical pair
of points {p, q} might become critical, hence we have to take care of {p, q} in future steps.
This constitutes our first event. The corresponding partial potential is Φ1(S), the number of
uncritical pairs of points {p, q}.

(Event 1) A δ-uncritical pair of points {p, q} becomes (δ + ε)-critical.

Φ1(S) :=
∣∣{{p, q} ∈

(
S
2
)

| {p, q} are not δ-critical
}∣∣ ≤ |S|2
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5.2 Coordination of Movement
We need to coordinate the movement of all critical pairs of points. To this end, we will fix
some set of root points R. Our movement will be locally prescribed for sequences of points
p0, p1, . . . , ps that originate in p0 ∈ R and where each {p0, p1}, . . . , {ps−1, ps} is critical. The
overall movement will be uniquely defined by movement defined for these sequences.

For now, consider such a sequence of points p0, p1, p2, . . . . Our idea is to do not move p0,
to move p1 by distance ε away from p0, point p2 by distance 2ε away from p1 and so on. We
have to stop pushing in this way as soon as one of the points, say pi, becomes half-integral,
i.e., pi is moved onto a vertex or the midpoint of an edge. See Figure 1 for examples. This
constitutes the second event.

(Event 2) A non-half-integral p ∈ S becomes half-integral.

Φ2(S) :=
∣∣{p ∈ S | p is not half-integral

}∣∣ ≤ |S|.

The next pushing step will choose pi as one of the root point R and will move the points
away from pi instead of p0. Very similarly, we stop when a point r ∈ P (G) that is “half-way”
between two points pi, pi−1 becomes half-integral. Formally, we denote such a point r as
an (S, δ)-pivot, or simply a pivot, if it is half-integral and there is a (critical) pair of points
{p, q} ∈

(
S
2
)
, the witnesses, that have equal distances to r, which means d(p, r) = d(q, r) = δ

2 .
Let pivots(S, δ) be the set of (S, δ)-pivots, and let W (S, δ) ⊆

(
S
2
)

be the family of pairs of
points from S, that witness some (S, δ)-pivot. This leads to the third and final event.

(Event 3) A non-pivot point r ∈ P (G) becomes a pivot.

Φ3(S) :=
∣∣{r ∈ P (G) | r is half-integral

}
\ pivots(S, δ)

∣∣ ≤ |V (G)|2.

Hence a root point R may not only be a point p ∈ S but also come from the set of
pivots. We will later properly define R as a superset of half-integral points pi ∈ S and the
(S, δ)-pivots.

We use an auxiliary graph GS for the current δ-dispersed set S. Its vertex set is
S ∪ pivots(S, δ). Essentially we make all pairs of critical {p, q} adjacent unless they witness a
pivot; If they do witness a pivot, we make them adjacent to the pivot:

For {p, q} ∈ W (S, δ) and for every pivot r ∈ pivots(S, δ) they witness, add edges
{p, r}, {r, q}; and
for every critical pair of points {p, q} ∈

(
S
2
)

\ W (S, δ) add edge {p, q}.
Note that, for every edge {r, p} with r ∈ pivots(S, δ), there is at least one other edge {r, q}
such that p, q witness r as a pivot.

Now we define the sequence of points which serve as the structure to state the movement.
A path P = (p0, p1, . . . , ps) in the auxiliary graph GS of length s ≥ 1 is a spine if p1, . . . , ps

are not half-integral. Note that any sub-sequence (p0, . . . , pi) for 1 ≤ i ≤ s is also a spine.

5.3 Velocities
We assign velocities velP to the points p0, . . . , ps of a spine P that specify their movement
speed. The point pi for i ∈ {1, . . . , s} is moved by vel(pi)ε. Thus setting vel(p1) = 1 makes
the δ-critical {p0, p1} become (δ +ε)-critical, as desired. Setting vel(pi) = i for i ≥ 1, however,
can make consecutive points {pi−1, pi} uncritical. Figure 2 provides an example. To see this,
fix some shortest pi−1, pi-path Pi and some shortest pi, pi+1-path Pi+1. The paths Pi and
Pi+1 can have a trivial intersection of only {pi} or their intersection may contain more than
one point. We denote this bit of information as flipP (pi) ∈ {−1, 1}. We set flipP (pi) = 1

MFCS 2022
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p0 p1

p2

p3

p4

p5 p6 p7

Figure 2 A spine P = (p0, . . . , p7). The shortest path between p0, p1 and the shortest path
between p1, p2 have the trivial intersection of {p1}, hence flipP (p1) = 1. In turn, the shortest
path between p1, p2 and the shortest path between p2, p3 have a non-trivial intersection, hence
flipP (p1) = −1. Also flipP (p3) = flipP (p4) = −1 while the other values are positive. Con-
sequently (sgnP (p1), . . . , sgnP (p7)) = (1, 1, −1, 1, −1, −1, −1). Thus (velP (p1), . . . , velP (p7)) =
(1, 2, 1, 2, 1, 0, −1). In particular, sgnP (p5) is negative such that it is moved towards p4. In turn,
sgnP (p7) and velP (p7) are negative such that p7 has a net movement away from p0. Under this
movement all {p0, p1}, . . . , {p6, p7} remain critical.

if and only if the path Pi and Pi−1 have a trivial intersection. (The definition of flipP is
independent on the exact considered shortest paths and we will define it properly in the next
subsection.)

The easy case is when Pi and Pi+1 have a trivial intersection, i.e., flipP (pi) = 1. Then
we increase the velocity of the next point pi+1. The first time we encounter the other case,
that flipP (pi) = −1, we decrease the velocity of the next point pi+1. Further we move pi+1
towards and not away of pi. Hence we also specify a sgn of the velocity that records whether
a point pi+1 is pushed towards or away from its predecessor pi. All these changes are relative
to whether the movement of predecessor pi is away from pi−1, i.e., whether sgn(pi) is positive.
For example, the second time we encounter a point pj with flipP (pj) = −1, point pj+1 is
again moved away from its predecessor.

This leads to the following definition of velP and sgnP for a spine P . We define its half-
integral velocities velP : {p0, . . . , ps} → { z

2 | z ∈ Z} depending on signs sgnP : {p1, . . . , ps} →
{−1, 1}, which in turn depend on flipP . We may drop the subscript P , if it is clear from the
context. Let vel(p0) = 0. Let vel(p1) = 1

2 , if p0 ∈ pivots(S, δ), and let vel(p1) = 1, if p0 ∈ S.
For i ≥ 1, let

vel(pi+1) := vel(pi) + sgn(pi+1).

Thus sgn ∈ {−1, 1} indicates whether the velocity increases or decreases. The current sgn is
unchanged unless flip is negative. Let sgn(p1) = 1. For 2 ≤ i ≤ s, let

sgn(pi) := flip(pi−1) sgn(pi−1) =
∏

0<j<i

flip(pj).

The movement step of a point pi in a spine P = (p0, . . . , pi) is now as follows. We push the
point pi by the (possibly negative) distance sgnP (pi) velP (pi)ε away from its predecessor pi−1.
In other words, the point pi = p(u, v, λ) is replaced by the point p(u, v, λ+ sgnP (pi) velP (pi)ε)
assuming that vertex u compared to v is in some sense closer to the predecessor point pi−1.
We make this notion formal in the next subsection.

5.4 Directions
We formalize the notion the direction of a point p towards another point q. The direction
dir(p → q) ∈ {u, v} for distinct points p = p(u, v, λ) ∈ P (G) and q ∈ P (G) is defined as
follows:
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For points p = p(u, v, λp) and q = p(u, v, λq) on a common edge {u, v} ∈ E(G) with
λp < λq, let dir(p → q) = v. Let dir(p → q) = u.
For points p = p(up, vp, λp) and q = p(uq, vq, λq) on distinct edges {up, vp} ̸= {uq, vq},
let dir(p → q) be the unique vertex of {up, vp} that is contained in every shortest path
between p and q, if such a vertex exists. If dir(p → q) is defined, let dir(p → q) be the
unique vertex in {up, vp} \ {dir(p → q)}.

▶ Lemma 9. (⋆) For distinct points p, q ∈ V (GS), dir(p → q) is well-defined, unless p is
half-integral.

Hence we can properly define flip(pi) of a point pi of a spine (p0, . . . , ps) with 1 ≤ i ≤ s−1,
since pi with i ≥ 1 is non-half-integral. Let

flip(pi) :=
{

1, dir(pi → pi−1) ̸= dir(pi → pi+1),
−1, else.

Further, for a non-half-integral point p = p(u, v, λ) we have {u, v} = {dir(p → q), dir(p →
q)}. By symmetry assume that dir(p → q) = u. We can equivalently specify point p as
p(dir(p → q), dir(p → q), λ). Conveniently, we may write p = p(·, dir(p → q), λ) since the
missing entry is clear from the context. Doing so, the edge position λ measures a part of the
length of any shortest p, q-path, specifically the part using the edge of p (assuming q is on
another edge).

Now we can also properly define one pushing step for a point pi of a spine P = (p0, . . . , ps)
and for ε > 0. Let λi be such that pi = p(·, dir(pi → pi−1), λi). Then the new point is

(pi)P,ε := p
(
·, dir(pi → pi−1), λi + sgnP (pi) velP (pi)ε

)
.

▶ Lemma 10. (⋆) For a spine P = (p0, . . . , ps) and i ∈ {0, . . . , s−1}, points (pi)P,ε, (pi+1)P,ε

are (δ + ε)-critical for the maximal ε ≤ δ⋆ − δ that is limited by the Events 1,2,3.

5.5 Root Points
We formally define the set of root points R. Let R0 be the set of half-integral points in GS .
There may be some components of the auxiliary graph GS without a point in R0. Let R

result from R0 by adding exactly one point from every component that has no point in R0.
We consider only spines P = (p0, . . . , pi) where p0 ∈ R. Clearly every point GS is part

of at least one spine and hence has some movement prescribed. We also claim that the
prescribed movement is uniquely defined. In other words, there are no spines P = (p0, . . . , pi)
and Q = (q0, . . . , qj) with p0, q0 ∈ R that terminate at the same point pi = qj and contradict
in their prescribed movement for pi = qj .

▶ Lemma 11. (⋆) Let δ < δ⋆. Consider spines P = (p0, . . . , pi) and Q = (q0, . . . , qj) with
p0, q0 ∈ R and pi = qj . Then (1) velP (pi) = velQ(qj); and (2) dir(pi → pi−1) = dir(qj → qj−1)
if and only if sgnP (pi) = sgnQ(qj).

Therefore we can uniquely define the moved version of a point p as pε := (p)P,ε where we
may choose P to be an arbitrary spine starting in R and containing p. This defines the set
of pushed points Sε := { pε | p ∈ S }.

For the proof of Lemma 11, we use that δ⋆ = a⋆

b⋆ ≥ δ is minimal with a⋆ ≤ 2L. Since
spines P, Q meet at the point pi = qj their roots p0, q0 must be from the same component in
the auxiliary graph GS ; in other words p0, q0 are both half-integral or are the same point.

MFCS 2022
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Our proof by contradiction considers these two options and whether P, Q reach pi and qj from
the same vertex relatively to if they agree on the sgn of pi = qj . An example is that p0 = q0
and P, Q reach pi = qj from the same vertex (formally with dir(pi → pi−1) ̸= dir(qj → qj−1))
while they agree on the sgn (formally sgnP (pi) = sgnQ(qj)). Then we can glue P and Q

together forming a walk starting in p0 = q0 and returning to p0 = q0. This walk then
has half-integral length at most 2L but is made up of hops of length δ. That implies the
contradiction that already δ = δ⋆.

5.6 Summery
With the previous observations we can assemble the algorithm for Theorem 8. Our potential
counts how many elements can still trigger Events 1,2,3. That is

Φ(S) := Φ1(S) + Φ2(S) + Φ3(S) ≤ 2|S|2 + |V (G)|2.

We define ε⋆ ≥ 0 as the maximal ε ≤ δ⋆ − δ limited by the Events 1,2,3. We claim that
ε⋆ ≥ 0 is defined. This is due to that the above events depend on continuous functions in
ε, which are the distance of pε to its closest half-integral point, and the distance between
points pε and qε for p, q ∈ S.

To show termination, we prove that no such element can trigger its according event
more than once. Lemma 10 already implies that a δ-critical pair of points {p, q} stays
(δ + ε⋆)-critical. It remains to show the following monotonicities:

▶ Lemma 12. (⋆) Let S be a δ-dispersed set for δ < δ⋆ and ε⋆ defined as above. Then:
(1) Sε⋆ is a (δ + ε⋆)-dispersed set of size |S|.
(2) If {p, q} ∈

(
S
2
)

is δ-critical, then {pε⋆ , qε⋆} is (δ + ε⋆)-critical.
(3) If r ∈ pivots(S, δ), then r ∈ pivots(Sε⋆ , δ + ε⋆).

Now we have all the tools to show Theorem 8. Determine ε⋆ and the (δ + ε⋆)-dispersed
set Sε⋆ as defined before. The resulting set Sε⋆ is a (δ + ε⋆)-dispersed set of the same size,
according to Lemma 12. If δ + ε⋆ = δ⋆ then Sε⋆ is already the desired δ⋆-dispersed set. Else
one of the Events 1,2,3 occurred. We observe that the potential strictly decreases, that is
Φ(Sε⋆) < Φ(S). Because of the monotonicities of Lemma 10 and Lemma 12 the partial
potentials Φ1, Φ2 and Φ3 do not increase. If Event 1 occurs then Φ1 strictly decreases. If
Event 2 occurs then Φ2 strictly decreases. If Event 3 occurs then Φ3 strictly decreases. All in
all at least one part strictly decreases and so does Φ. This completes the proof of Theorem 8
and hence of Theorem 7.

6 Algorithmic Implications

Based on the rounding procedure from Section 5, the translation result from Section 3 and
connections to distance-d independent set we derive a number of algorithmic results.

▶ Theorem 13. There is an algorithm that, given distance δ ≥ 0, a graph G, a tree
decomposition and an upper bound L ∈ N on the length of the longest path in G, computes a
maximum δ-dispersed set S in time (2L)tw(G)nO(1).

Proof. According to Theorem 7, we may consider the rounded up distance, that is a rational
a
b ≥ δ with a ≤ 2L, instead of δ. Notice that a

b is polynomial time computable. As long as
a
b ≤ 3

4 , we may repeatedly apply Corollary 4 such that eventually we obtain that 3
4 b < a ≤ 2L.

Let G2b be a 2b-subdivision of G. Observe that tw(G) = tw(G2b) and the number of vertices
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increases only by a factor of O(n2L). According to Lemma 5 a
b -disp(G) = α2a(G2b). Thus, to

answer the original δ-Dispersion-instance we may find a maximum distance-2a independent
set in G2b, which is possible in time (2a)tw(G)nO(1), according to [12]. ◀

This result immediately yields parameterized complexity results for the parameters
treedepth and treewidth. Regarding the treewidth, note that n is an upper bound on L.
Thus the above algorithm is an XP-algorithm for the parameter treewidth. When a treewidth
decomposition is given, Dispersion can be solved in time 2ntw(G)nO(1).

▶ Corollary 14. Dispersion can be solved in time 2ntw(G)nO(1), assuming a tree decomposi-
tion is given.

Similarly we obtain an FPT algorithm for treedepth td(G) of the input graph. The
treedepth td(G) implies a bound on L, which is L ≤ 2td(G). Since also td(G) ≥ tw(G), we
obtain an 2O(td(G)2)nO(1)-time algorithm, assuming a treedepth decomposition is given.

▶ Corollary 15. Dispersion can be solved in time 2O(td(G)2)nO(1), assuming a treedepth
decomposition is given.

7 Parameterized Hardness Results

We complement the positive results by hardness results. These results borrow ideas from
hardness-reductions for the similar problem Distance Independent Set (DIS), see Sec-
tion 4.

A natural generalization of treedepth is the maximum diameter of graph G, which is
the maximum distance between any vertices u, v ∈ V (G) (since we only consider connected
graphs G). We show NP-hardness for graphs of any diameter ≥ 3 even for chordal graphs
by a reduction from Independent Set, similarly as NP-hardness for DIS is shown by Eto
et al. [5]. Our reduction also shows W[1]-hardness with respect to the solution size k.

▶ Lemma 16. (⋆) For every δ > 3, δ-Dispersion is NP-complete and W[1]-hard with
parameter solution size, even for connected chordal graphs of diameter ≤ ⌈δ⌉.

Another direct generalization of treedepth is pathwidth of the input graph G. We show
W[1]-hardness even for the combined parameters pathwidth and solution size pw(G) + k.
With the same reduction also W[1]-hardness for the combined parameters “feedback vertex
set size” fvs(G) and solution size k follows. We can essentially use the same reduction as
used by Katsikarelis et al. to show W[1]-hardness of DIS when parameterized by fvs(G) + k

by reducing from Multi-Colored-Independent-Set [12].

▶ Theorem 17. (⋆) Dispersion is W[1]-hard parameterized by pw(G)+k. Further, there is
no no(

√
pw(G)+

√
k)-time algorithm unless ETH fails. Dispersion is W[1]-hard parameterized

by fvs(G) + k. Further, there is no no(fvs(G)+
√

k)-time algorithm unless ETH fails.

Since fvs(G) is a linear upper bound for the treewidth of G, we also obtain: Dispersion
is W[1]-hard parameterized by tw(G) + k. Further, there is no no(tw(G)+

√
k)-time algorithm

unless ETH fails. Similarly as in [12] we obtain a lower bound for treedepth.

▶ Theorem 18. (⋆) Assuming ETH, there is no 2o(td(G)2)-time algorithm for Dispersion.

MFCS 2022
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8 NP-hardness for Irrational Distance

We show NP-hardness of δ-Dispersion for every irrational distance δ > 0. Thus together
with earlier results [8] the complexity for every real δ > 0 is resolved: For rational distance
δ = a

b where a ∈ {1, 2} the problem is polynomial time solvable, while it is NP-complete for
every other distance δ > 0.

▶ Theorem 19. For every irrational δ > 0, δ-Dispersion is NP-complete.

The key step is a reduction from Independent Set which shows NP-hardness not only
for a single distance δ but for the whole interval δ ∈ (2, 3].

Construction. Given a graph G and integer k ∈ N, we construct an input for δ-Dispersion
consisting of a graph G′ and integer k′ = k as follows. For every vertex u ∈ V (G) introduce
vertices u1, u2 and edge {u1, u2}. For every edge {u, v} ∈ E(G) introduce edges {ui, vj} for
every i, j ∈ {1, 2}.

▶ Lemma 20. For every δ ∈ (2, 3], δ-Dispersion is NP-hard and W[1]-hard when paramet-
erized by solution size.

Proof. Clearly, this construction is polynomial time computable. Further, the reduction is
parameter preserving such that W[1]-hardness of Independent Set implies W[1]-hardness
of Dispersion, assuming correctness of the reduction.

Hence, it remains to show the correctness, that G has an independent set of size k if and
only if G′ has a δ-dispersed set of size k.

(⇒) Let I ⊆ V (G) be an independent set of graph G. We define S := {p(u1, u2, 1
2 ) | u ∈

I} ⊆ P (G), which has size |S| = |I|. We claim that S is δ-dispersed in G′ for δ ∈ (2, 3]. Since
any vertices u, v ∈ V (G) have distance at least 2 in G, their corresponding points p(u1, u2, 1

2 )
and p(v1, v2, 1

2 ) have distance at least 3 in P (G). Thus they are δ-dispersed for δ ∈ (2, 3].
(⇐) Let S ⊆ P (G) be a δ-dispersed set for some δ ∈ (2, 3]. We define the ball Bu

for u ∈ V (G) as the points in P (G) with distance at most 1
2 to u1 or u2, which is Bu :=

{p(ui, v, λ) | i ∈ {1, 2}, {ui, v} ∈ E(G′), λ ∈ [0, 1
2 ]}. Every ball Bu for u ∈ V (G) contains at

most one point from S since points p, q ∈ Bu can be at most 2 < δ apart. Every union Bu ∪Bv

for adjacent {u, v} ∈ E(G) contains at most one point from S since points p, q ∈ Bu ∪ Bv

can also be at most 2 < δ apart.
Now we define an independent set I ⊆ V (G). Add vertex u ∈ V (G) for every point

p ∈ S ∩ Bu except when p ∈ Bu ∩ Bv for some v ∈ P (G). If p ∈ S ∩ Bu ∩ Bv, add either
the point u or v to I. Then |I| = |S| since the union of Bu for u ∈ V (G) is the whole point
space P (G). Further, no adjacent vertices u, v are in I since Bu ∪ Bv contain at most one
point from S. Thus I ⊆ V (G) is an independent set of size |S|. ◀

Because δ ≤ 3 we may apply Lemma 3 to obtain NP-hardness for δ in the interval
( 2

2x+1 , 3
3x+1 ] for every integer x ≥ 0. Applying Lemma 1 yields NP-hardness for δ in the

interval ( 2c
2x+1 , 3c

3x+1 ] for every integer c ≥ 1.
Now, consider any irrational distance δ > 0. Consider F := {cδ−1 − ⌊cδ−1⌋ | c ≥ 1}, the

set of fractional parts of multiples of δ−1. Since δ−1 is irrational, F is a dense subset of
the interval [0, 1]. Let integer c ≥ 1 be such that 1

3 ≤ cδ−1 − ⌊cδ−1⌋ < 1
2 . Thus there is a

non-negative x such that x + 1
3 ≤ cδ−1 < x + 1

2 . This implies that 2c
2x+1 < δ ≤ 3c

3x+1 and
hence NP-hardness for δ-dispersion. This finishes the proof of Theorem 19.
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9 Parameter Solution Size

δ-Dispersion parameterized by the solution size k is W[1]-hard when δ > 2: When δ ∈ (2, 3]
Lemma 20 shows W[1]-hardness, while for δ > 3 Lemma 16 implies W[1]-hardness even
when the input graph is chordal. It remains to consider δ ≤ 2. Observe that for δ ≤ 2, every
graph G satisfies δ-disp(G) ≥ ν(G) [8], where ν(G) is the maximum matching size of G.
Thus, a win-win situation occurs. Determine ν(G) in polynomial time. If k ≤ ν(G), we may
immediately answer “yes”. Otherwise k > ν(G) ≥ vc(G)

2 , where vc(G) is the minimum size of
a vertex cover in G. The size of a vertex cover upper bounds the treedepth. A treedepth
decomposition of size td(G) is computable in FPT-time [15]. Thus we may apply the FPT
algorithm for parameter treedepth from Theorem 13.

▶ Theorem 21. δ-Dispersion parameterized by solution size k is FPT if δ ≤ 2; and
W [1]-hard if δ > 2.
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