
Automating OBDD proofs is NP-hard
Dmitry Itsykson !

Steklov Institute of Mathematics at St. Petersburg, Russia

Artur Riazanov !

Steklov Institute of Mathematics at St. Petersburg, Russia

Abstract
We prove that the proof system OBDD(∧, weakening) is not automatable unless P = NP. The proof
is based upon the celebrated result of Atserias and Müller [5] about the hardness of automatability
for resolution. The heart of the proof is lifting with multi-output indexing gadget from resolution
block-width to dag-like multiparty number-in-hand communication protocol size with o(n) parties,
where n is the number of variables in the non-lifted formula. A similar lifting theorem for protocols
with n + 1 participants was proved by Göös et. el. [12] to establish the hardness of automatability
result for Cutting Planes.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases proof complexity, OBDD, automatability, lifting, dag-like communication

Digital Object Identifier 10.4230/LIPIcs.MFCS.2022.59

Related Version Full Version: https://eccc.weizmann.ac.il/report/2022/046/

Funding The research is supported by Russian Science Foundation (project 18-71-10042).

Acknowledgements The authors thank Anastasia Sofronova and Michal Garl´ık for fruitful discus-
sions, Anastasia Sofronova for her comments on the draft. They also thank anonymous referees for
their feedback. Artur Riazanov additionally thanks Dmitry Sokolov for his patient explanations of
the lifting technique in [10].

1 Introduction

Boolean satisfiability is one of the central problems in Computer Science. The input to this
problem is a CNF formula and the goal is to determine whether it is satisfiable or not. This
is a standard example of an NP-complete problem, and it has been very thoroughly studied.
While the consensus is that there is no polynomial algorithm for satisfiability, contemporary
SAT-solvers have been quite successful in solving it for many instances appearing “in practice”.

SAT-solvers are tightly connected to proof complexity. A propositional proof system
is a formal way of certifying that a CNF formula is unsatisfiable. The execution log of an
SAT-solver running on an unsatisfiable input φ can serve as a certificate of unsatisfiability of
φ. Then SAT-solvers face the following trade-off: on the one hand, their underlying proof
system must be sufficiently strong to have short proofs of all formulas of interest, on the
other hand, it must be sufficiently weak so short proofs can be found fast. This tradeoff is
witnessed by the success of CDCL-solvers, which are based on (subsystems of) Resolution
which is a pretty weak proof system. Nevertheless, so far SAT-solvers based on stronger
proof systems have not enjoyed the widespread success of resolution-based solvers.

A propositional proof system Π is called automatable (quasi-automatable) if there exists
an algorithm E that given an unsatisfiable CNF φ produces a Π-proof of φ in time polynomial
(quasi-polynomial) in size of φ plus the size of the shortest Π-proof of φ.

However, for many non-trivial proof systems, there are known pieces of evidence that
they likely are not automatable or quasi-automatable. A long line of results on resolution
automatability [15, 19, 2, 3] is concluded with the recent breakthrough result by Atserias

© Dmitry Itsykson and Artur Riazanov;
licensed under Creative Commons License CC-BY 4.0

47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022).
Editors: Stefan Szeider, Robert Ganian, and Alexandra Silva; Article No. 59; pp. 59:1–59:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dmitrits@pdmi.ras.ru
https://orcid.org/0000-0003-2680-4800
mailto:aariazanov@gmail.com
https://doi.org/10.4230/LIPIcs.MFCS.2022.59
https://eccc.weizmann.ac.il/report/2022/046/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

59:2 Automating OBDD proofs is NP-hard

and Müller [5] stating that resolution is not automatable unless P = NP and not quasi-
automatable under a stronger assumption. This result sparked a series of follow-up results
that establish the hardness of automating for many other proof systems; these results are
either based on Atserias-Müller’s result directly or follow their plan closely. If P ̸= NP,
then the following proof systems are not automatable: Nullstellensatz and Polynomial
Calculus [13]; Cutting Planes [12]; Res(2) [11]. Under stronger assumptions one can show
non-automatability of Frege systems [17, 7, 6].

We continue this line of research and study the automatability of OBDD-based systems.
OBDD (or ordered binary decision diagram) is a simple but rather expressive way to represent
Boolean functions introduced by Bryant [8]. An OBDD is a very restricted case of a branching
program, wherein for all paths from the source to a sink, variables appear in the same order.
It is known that branching programs are at least as powerful as Boolean formulas, hence
proving superpolynomial lower bounds on size of branching programs for explicit functions is
an extremely hard problem. But exponential lower bounds are known for restricted versions
of branching programs, including OBDDs. However, this restriction allows performing many
important operations with OBDDs very efficiently: testing satisfiability, computing binary
operations, applying restrictions, minimization, and so on. These properties have paved
the way for OBDD-based propositional proof systems introduced by Atserias, Kolaites, and
Vardi [4] to serve as a base for OBDD based SAT-solvers [1, 20].

An OBDD(∧,weakening) refutation of a CNF φ is a sequence of OBDDs that query
variables in the same order; the last OBDD in the sequence is identically false and each
of those diagrams either represents a clause of φ or follows semantically from two OBDDs
that appear earlier in the sequence (formally there are two rules: by the first (∧) we can
derive conjunction of two OBDDs and by the second (weakening) we can derive any semantic
implication of a single OBDD). The correctness of application of these rules can be efficiently
verified since binary operations for two OBDDs with the same order of variab can be
computed in polynomial time. This system simulates Resolution and CP∗ (Cutting Planes
with unary coefficients); it has short refutations of unsatisfiable linear systems over F2 [4]
and clique-coloring tautologies [9] (the latter are hard for Cutting Planes [22]).

Atserias-Müller’s approach for establishing hardness of automatability requires proving a
lower bound on the proof size of some specific CNF-formula. Unfortunately the tools for
proving lower bounds on OBDD(∧,weakening) are quite limited and related to monotone
circuit complexity. All known lower bound proofs consist of two steps.
1. To prove the lower bound for a fixed order of variables in OBDDs. Such a lower

bound was proved by Atserias et. al. [4]; an exponential lower bound on the size of
OBDD(∧,weakening) refutations of clique-coloring tautologies with a particular order of
variables follows from monotone interpolation.

2. To transform a formula that is hard for one order into a formula that is hard for all
orders. The first transformation of this kind was devised by Krajićek [16]: formulas are
equipped with additional variables that parameterize a permutation of main variables
such that by fixing these additional variables we can get the initial formula, where
variables are permuted by any desired permutation. Segerlind [23, 24] invented a more
concise transformation using 2-independent permutation family together with orification of
variables; Segerlind used it to prove that OBDD(∧,weakening) may require exponentially
longer proofs than Res(O(logn)).

D. Itsykson and A. Riazanov 59:3

Our contribution. Our main result is the following theorem:

▶ Theorem 1. There exist a constant α and a polynomially computable function R mapping
CNF formulas to CNF formulas with the following properties. For any 3-CNF φ with n

variables such that: if φ is satisfiable, then R(φ) has a resolution refutation of size at most
nα; if φ is unsatisfiable, then any OBDD(∧,weakening) refutation of R(φ) has size 2Ω(n).

Since OBDD(∧,weakening) simulates resolution, any automation algorithm for
OBDD(∧,weakening) can be used to solve 3-SAT: if it finds proofs in fixed polynomial
time, then the input formula is satisfiable, otherwise, it is unsatisfiable.

Our technique can be applied to other proof systems as well since the only thing that we
use about OBDDs is that the value of an OBDD of size S can be computed using O(ℓ logS)
bits of communication in the ℓ-party number-in-hand communication model if the partition
of variables agrees with the order. For example, this property holds for k-OBDDs for small
k, hence our technique can be applied for proof system k-OBDD(∧, weakening) [14].

Technique. The proof consists of two parts:
1. Prove the weaker version of Theorem 1, where the lower bound holds only for refutations

that consist of OBDDs in some particular order π.
2. Devise a polynomial-time algorithm that transforms formulas with short resolution

refutations to formulas with short resolution refutations; and transforms formulas that
are hard for OBDD(∧,weakening) with a specific order to formulas that are hard for
OBDD(∧,weakening) for all orders.

To implement the second part we use Segerlind’s transformation. It almost suits our case,
but the property for resolution works only with an additional condition: if a formula has a
short resolution proof with at most constant number negative literals in every clause (we say
that the negative width of the proof is O(1)), then the result of Segerlind’s transformation
has a short resolution proof.

The first part is much more involved. The construction is built on the following result
proved by Atserias and Müller [5]. There exists an algorithm E that given a 3-CNF formula
φ produces in polynomial time another CNF formula E(φ) such that

if φ is satisfiable, E(φ) admits a polynomial-size resolution refutation;
if φ is unsatisfiable, the shortest refutation of E(φ) has size 2|φ|Ω(1) .

We get our result by applying lifting to E(φ). Lifting is a technique to obtain lower bounds
for strong computational models from lower bounds for weaker models. Recently, Garg, et.
al. [10] proved two similar lifting theorems lifting from resolution width to refutation size in
(1) any semantic proof system operating with proof lines of small 2-party communication
complexity and (2) cutting planes (precisely it works for proof systems, where proof lines
can be computed by 1-round real communication protocol).

The first lifting theorem (applied to E(φ)) seems enticing for us since a function computable
by an OBDD can be computed with small 2-party communication. Unfortunately, we can not
apply this theorem directly since E(φ) can have large resolution width even for a satisfiable
φ so after the application of lifting the resulting CNF might have only exponential-size
OBDD(∧,weakening) refutations. Göös et. al. [12] face the same problem for Cutting Planes
and deal with it by lifting from block-width instead of the plain width. However the lifting
theorem in [10] does not work for block-width, so Göös et. al. [12] prove a weaker version of
it: they lift from resolution block-width to k-dimensional simplex-dags, where k is the number

MFCS 2022

59:4 Automating OBDD proofs is NP-hard

of variables in the lifted formula plus one. Cutting planes refutations can be converted to
k-dimensional simplex-dags of the same size. However, for OBDD(∧,weakening) refutations,
the size is raised to the power of k, hence we need a lifting theorem for a smaller value of k.

We prove another lifting theorem: we lift from resolution block-width to k-dimensional box
dag size, where k is the size of the largest block in the partition w.r.t. which the block-width
is computed, plus one. In our proof, we use the structural properties of rectangles from [10]
and extend them to show the structural properties of boxes. The same theorem seems to
hold for simplex-dags (the proof in [12] can be adapted as well), but it is not clear whether
there exist context where such change in the dimension matters.

We also show that OBDD(∧,weakening) refutations with a specific order of variables
of size S can be converted to k-dimensional box dags of size SO(k). In actuality, we prove
it for every proof system that operates with proof lines that can be computed by k party
communication protocols in the number-in-hand model with a small cost.

2 Preliminaries

Notation. We use the standard notation [n] = {1, . . . , n}. Vars(φ) denotes the set of
propositional variables of a formula φ. We refer to a uniform distribution over a set X by
U(X).

Resolution. A resolution refutation of an unsatisfiable CNF φ is a sequence of clauses
ending with the empty clause such that each clause of the sequence is either a clause of φ or
is derived from the previous clauses in the sequence with a resolution rule: A∨x B∨¬x

A∨B .

The width of a clause is the number of literals in it, and the width of a formula is the
maximum width of a clause in it. The size of a resolution refutation is the number of clauses
in it. The width of a resolution refutation is the largest width of a clause in it.

Let X be a set of propositional variables and U = U1, . . . , Uk be a partition of X. Let
us define the block-width of a clause C over variables X as the number of blocks among
U1, . . . , Uk that contain variables of C: |{i ∈ [k] | Vars(C) ∩ Ui ̸= ∅}|. The block-width of a
resolution refutation is the maximum block-width of a clause in it. For an unsatisfiable CNF
φ we denote bw(φ) as the smallest block-width of a resolution refutation of φ.

Ordered Binary Decision Diagrams. A branching program (BP) is a directed acyclic graph
with a single source and two sinks: 0-sink and 1-sink. Each of the nodes of the BP except the
sinks is labeled with a variable xi for i ∈ [n] and has two outgoing edges, one labeled with 1
and another with 0. Let us define the function computed by a BP. For a node u in a BP let
fu : {0, 1}n → {0, 1} be a function computed by it. We then define f0-sink ≡ 0, f1-sink ≡ 1,
fu(x) := fv(x) if xi = 0 and fu(x) := fw(x) if xi = 1 where u is labeled with the variable xi,
v is 0-successor of u and w is the 1-successor of u. Then we define the function computed by
the BP itself as the function computed by its source.

A π-OBDD where π ∈ Sn is a BP computing a function f : {0, 1}n → {0, 1} such that
for any path from the source to a sink each of the node labels appears at most once and the
order of the labels appearing in the path respects π. That is, the labels appearing on the
path always have form xπ(i1), xπ(i2), . . . , xπ(ik) where 1 ≤ i1 < i2 < · · · < ik ≤ n.

OBDDs have the following nice property: for every order of variables every Boolean
function has a unique minimal OBDD. For a given order π, the minimal π-OBDD of a function
f may be constructed in polynomial time from any π-OBDD for the same function [18].
There are also known polynomial-time algorithms that efficiently perform all the Boolean
binary operations, negation and projection (elimination of the existential quantifier) to
π-OBDDs [18] (we refer to [26] for an introduction to OBDDs).

D. Itsykson and A. Riazanov 59:5

OBDD refutations. A π-OBDD-refutation of a CNF formula φ is a sequence of π-OBDDs
D1, . . . , Ds such that Ds computes the identically false function and each Di either computes
a clause of φ or is obtained from the previous diagrams in the sequence by one of the rules
below.
conjunction rule (∧) Di computes the conjunction of Dj and Dk for j, k < i;
weakening rule Di computes a function implied by Dj where j < i;
projection rule (∃) Di computes a function ∃xf where f is computed by Dj with j < i,

and x ∈ Vars(φ).
The size of an π-OBDD-refutation is the sum of sizes of all diagrams in it. Using the
properties of OBDD it is easy to see that the correctness of a π-OBDD-refutation can be
verified in time polynomial in its size and the size of the refuted formula [4]. An OBDD
refutation is a π-OBDD refutation for some order π.

Depending on the set of the allowed rules we have several different propositional proof
systems: OBDD(∧) where only the conjunction rule is allowed, OBDD(∧,∃) where the
conjunction and the projection rules are allowed, and OBDD(∧,weakening) where the
conjunction and the weakening rules are allowed. Since the projection rule is a special case
of the weakening rule, we do not include both of them simultaneously.

For an unsatisfiable CNF φ we denote by π-OBDD(φ) the size of the smallest
π-OBDD(∧,weakening) refutation of φ and by OBDD(φ) the size of the smallest
OBDD(∧,weakening) refutation of φ.

▶ Proposition 2 ([4]). OBDD(∧,∃) (and, thus, OBDD(∧,weakening)) polynomially simu-
lates resolution: if an unsatisfiable CNF has a resolution refutation of size S, then it has an
OBDD(∧,∃) refutation of size poly(S).

Searchφ. Searchφ is the following search problem: given an assignment to the variables of
the unsatisfiable CNF φ, find a clause that is falsified by this assignment. Formally it can be
defined as a relation {(x,C) | x ∈ {0, 1}Vars(φ); C ∈ φ; C(x) = 0}.

Dags solving relations.

▶ Definition 3 ([25]). Let F be a family of subsets of a finite set X and S ⊆ X × O be a
relation. Let D be a single-source (which we refer to as root) acyclic graph. We call D an
F-dag solving S if for every node u there exists a set Ru ∈ F such that:
(root condition) for the root r of the dag Rr = X ;
(leaf condition) for each leaf (sink) ℓ of the dag there exists o ∈ O such that for all x ∈ Rℓ,

(x, o) ∈ S;
(local condition) each inner node u has out-degree 2 and its two descendants v and w satisfy

the property Ru ⊆ Rv ∪Rw.
The size of an F-dag is the number of nodes in it. We denote the smallest size of F-dag
solving S by F-dag(S). We usually identify the nodes of an F-dag with the sets Ru.

Now we define several special cases of this general definition.

Decision dag. Assume that we have Boolean domain X = {0, 1}n that we view as a set of
values of n propositional variables. A partial assignment is an element of {0, 1, ∗}n, where ∗
means that the corresponding variable is not assigned. Let fix(ρ) = ρ−1({0, 1}) be the set of
assigned variables. If fix(ρ) = [n] then ρ is a full assignment.

Any partial assignment defines a subcube Cube(ρ) = {α ∈ {0, 1}n | ∀i ∈ fix(ρ) : ρ(i) =
α(i)} that is the set of all full assignments agreeing with ρ.

MFCS 2022

59:6 Automating OBDD proofs is NP-hard

Let S ⊆ {0, 1}n ×O be a relation and F be a set of all subcubes {Cube(ρ) | ρ ∈ {0, 1, ∗}n},
then we call an F-dag for S a decision dag. We denote the smallest size of a decision dag
solving S by dec-dag(S).

Observe that a decision tree is a decision dag: a node u of a decision tree can be labeled
with a set Cube(ρ), where ρ is a partial assignment corresponding to the path from the root
to u. Hence, since for any total relation there exists a decision tree solving it, any total
relation has a decision dag as well.

Let U = U1, . . . , Uk be a partition of [n]. The block-width of a decision dag is defined
as follows: for a node labeled with Cube(ρ) we compute |{i ∈ [k] | Ui ∩ fix(ρ) ̸= ∅}|, the
blockwidth of a decision dag is the maximum of this value among the nodes. For a relation
S we denote the smallest block-width of a decision dag that solves it as bw(S).

Observe that a resolution refutation of an unsatisfiable CNF φ can be converted to
a decision dag solving Searchφ of the same size: the topology of the dag is the topology
of the resolution refutation, a node corresponding to a clause C is labeled with a set
C−1(0) = {x ∈ {0, 1}n | C(x) = 0}. It is easy to see that this set is a subcube. If C is
derived from D and E via a resolution rule then C is implied by the conjunction of D and E
thus C−1(0) ⊆ (D ∧ E)−1(0) = D−1(0) ∪ E−1(0). Clearly the root and the leaf properties
of the constructed decision dag also hold: for a leaf ℓ labeled with C−1(0) for C ∈ φ every
point in C−1(0) falsifies φ by definition; the root corresponds to the empty clause so it is
labeled with {0, 1}n. The reverse also holds, one can convert a decision dag solving Searchφ

to a resolution refutation of φ of the same size.

▶ Proposition 4 ([10]). There exists a resolution refutation of φ of size S and block-width b
if and only if there exists a decision dag solving Searchφ of size S and block-width b.

Box dag. Let S ⊆ X1 × X2 × · · · × Xk × O be a relation. Let F be a set of boxes
{A1 ×A2 × · · · ×Ak | A1 ⊆ X1, A2 ⊆ X2, . . . , Ak ⊆ Xk}. Then we call an F-dag a box dag.
Let U = U1, . . . , Uk be a partition of [n]. If Xi = {0, 1}Ui for all i ∈ [k], then we denote the
class of box dags as box-dagU or box-dagU1,...,Uk

.
▶ Remark 5. We can convert a π-OBDD refutation of a formula φ of size S to an F-dag
for Searchφ, where F consists of zero-sets of π-OBDDs of size at most S. In Section 5 we
show that if a partition of variables into k parts agrees with an order π, such a dag can be
converted to a box dag of size SO(k).

Automatability. A propositional proof system Π is called automatable if there exists an
algorithm AΠ that given an unsatisfiable CNF φ produces its refutation in Π in time
polynomial in |φ| and the size of the shortest refutation of φ in Π.

3 The outline of the proof of Theorem 1

Our starting point is the following theorem that is essentially proved in [13].

▶ Theorem 6 (Lemma 2.2 from [13]). For any constant c ≥ 2 there exists a polynomial-time
algorithm E such that given a 3-CNF formula φ of size n it produces a O(logn)-CNF formula
E(φ) such that

there exists a partition B1, . . . , Bk of the variables of E(φ) such that |B1| = |B2| = · · · =
|Bk| = O(n) and k = O(nc+1) and this partition can be computed in polynomial time;
if φ ∈ SAT then E(φ) has a resolution refutation π such that |π| = nO(c) and bw(π) = O(1)
w.r.t. partition B1, . . . , Bk;
if φ ̸∈ SAT then any resolution refutation of E(φ) has block-width at least nc−1 w.r.t.
B1, . . . , Bk.

D. Itsykson and A. Riazanov 59:7

Notice that the statement of Theorem 6 is slightly different from one explicitly stated
in [13]. First, it is not stated that all blocks Bi have equal sizes and their sizes are O(n),
but this is clear from the definition in Section 3.1 of [13]. Second, the theorem is stated and
proved only for c = 2 but essentially the same proof holds for larger c, the only change is
that we should reduce from rPHPnc instead of rPHPn2 (see Section 5 of [13] for details).

To prove Theorem 1 we follow the plan below:
Lifting with multi-output indexing function. In Section 4 we define a block-wise indexing

function Indℓ×m and its composition with relations and formulas. In Section 4 we will
see that if a CNF formula φ has short resolution refutation of constant block-width
then φ ◦ Indn

ℓ×m has a short resolution refutation. In the remainder of Section 4 we
show that if a CNF formula φ with variables partitioned into n blocks of size ℓ requires
resolution refutations of block-width at least b, then Searchφ ◦ Indn

ℓ×m and consequently
Searchφ◦Indn

ℓ×m
requires large (ℓ+ 1)-dimensional box dags.

Making box dags out of π-OBDD refutations. In Section 5 we show that if Searchφ re-
quires k-dimensional box dags of size S, then it requires π-OBDD(∧,weakening) refuta-
tions of size SΩ(1/k) for some fixed π.

Making all orders hard. In Section 6 we adapt Segerlind’s transformation from [24] to show
that there exists a CNF-to-CNF mapping that maps CNF formulas with polynomial
resolution size to CNF formulas with polynomial resolution size and maps CNF formulas
that are hard for π-OBDD(∧,weakening) with a fixed π to CNF formulas that are hard
for OBDD(∧,weakening).

Putting the pieces together. In Section 7 we compose Ec with the two mappings above to
obtain Theorem 1.

4 Lifting with multi-output indexing function

In this section, we prove the lifting theorem for box dags. First, let us formally define the
gadget we are going to lift with.

▶ Definition 7 (Block-wise indexing, [12]). Indℓ×m : [m] × {0, 1}ℓ×m → {0, 1}ℓ is defined as
Indℓ×m(x, y) = (y1,x, y2,x, . . . , yℓ,x) i.e. given an index x ∈ [m] and a matrix y ∈ {0, 1}ℓ×m,
it returns the xth column of y. For a set R ⊆ [m]n × ({0, 1}ℓ×m)n we define Indn

ℓ×m(R) =
{(Indℓ×m(x1, y1), . . . , Indℓ×m(xn, yn)) ∈ {0, 1}nℓ | (x1, x2, . . . , xn, y1, y2, . . . , yn) ∈ R}.

Let φ =
∧t

i=1 Ci be an unsatisfiable CNF with nℓ variables that are partitioned into
n blocks of size ℓ. Let us define a CNF ψ = φ ◦ Indn

ℓ×m. First let us define C ◦ Indn
ℓ×m

for a clause C. The resulting CNF formula will compute the function C ◦ Indn
ℓ×m =

C(Indℓ×m(x1, y1), . . . , Indℓ×m(xn, yn)). Then we define φ◦ Indn
ℓ×m :=

∧t
i=1

(
Ci ◦ Indn

ℓ×m

)
.

Now let us construct a CNF representation of C ◦ Indn
ℓ×m. Let zi,j for i ∈ [n], t ∈ [ℓ] be

the tth variable of the ith block of φ. Let i1, . . . , ib ∈ [n] be indices of the blocks that are
touched by C and let Cj for j ∈ [b] be the part of the variables of C from the ijth block:
C = C1 ∨ · · · ∨ Cb. Let Pj := {k ∈ [ℓ] | zij ,k ∈ C} be the indices (inside a block) of positive
literals in Cj and Nj := {k ∈ [ℓ] | ¬zij ,k ∈ C} be the indices of negative literals in Cj .
Then the CNF representation of C ◦ Indn

ℓ×m(x1, y1, . . . , xn, yn) consists of clauses of form((∧b
j=1(xij

= αj)
)

→
(∨b

j=1

(∨
k∈Pj

yk,αj
∨

∨
k∈Nj

¬yk,αj

)))
for each α1, . . . , αb ∈ [m].

The size of this representation is |φ| ·mb where b is the largest block-width of a clause in
φ, so this representation is short for formulas of constant block-width.

MFCS 2022

59:8 Automating OBDD proofs is NP-hard

▶ Theorem 8 (the last inequality in Theorem 4 from [12]). Let φ be an unsatisfiable CNF
with nℓ variables that are partitioned into n blocks of size ℓ such that there exists a resolution
refutation of φ of size s and block-width b. Then there exists a resolution refutation of
φ ◦ Indn

ℓ×m of size mO(b) · s.

4.1 Lifting theorem

For a relation S ⊆ ({0, 1}ℓ)n × O its composition with block-wise indexing is defined as

S ◦ Indn
ℓ×m :=

{
(x1, . . . , xn, y1, . . . , yn, o) xi ∈ [m]; yi ∈ {0, 1}ℓ×m; o ∈ O;

(Indℓ×m(x1, y1), . . . , Indℓ×m(xn, yn), o) ∈ S

}
.

This is a direct analog of the composition of two functions: we first plug the output of
indexing to each ℓ-bit block of the input of S and then “compute” S on the resulting input.

We assume that m is a power of 2 so the relation S ◦ Indn
ℓ×m can be viewed as defined

on a binary domain {0, 1}n log2 m+ℓnm.
Let us define a partition of the input bits of relation S ◦ Indn

ℓ×m. Consider an element of
the input domain (x1, . . . , xn, y1, . . . , yn) ∈ [m]n ×

(
{0, 1}ℓ×m

)n where x1, . . . , xn ∈ [m] and
y1, . . . , yn are matrices in {0, 1}ℓ×m. Let A consist of bits corresponding to of x1, . . . , xn, (in
other words A corresponds to the first n log2 m bits of the input), Bj for j ∈ [ℓ] consists of
bits corresponding to jth rows of all the matrices y1, . . . , yn. We are going to imagine that
we have ℓ + 1 parties: Alice who receives the bits A of the input, Bob1, Bob2, . . . , Bobℓ,
where Bobj receives the bits Bj of the input.

Then let A := {0, 1}A = [m]n be the set of Alice’s inputs and let Bj := {0, 1}Bj = {0, 1}m

be the set of Bobj ’s inputs.
The following theorem is similar with Theorem 8 form [12], but for box dags instead of

simplex dags and, crucially, for a smaller number of parties, ℓ+ 1 instead of nℓ+ 1.

▶ Theorem 9. Let ∆ be a large enough integer constant. Let S ⊆ ({0, 1}ℓ)n × O be a total
relation where ℓ < n

2 and m = (nℓ)∆. Then mΩ(bw(S)) ≤ box-dagA,B1,...,Bℓ
(S ◦ Indn

ℓ×m),
where the block partition of inputs of S is the natural partition into n blocks of size ℓ.

Let us outline the proof of Theorem 9. The proof is constructive, i.e., we take a box
dag B solving S ◦ Indn

ℓ×m and extract from it a decision dag solving S of block-width
O(log |B|/ logm). The idea is to split boxes in the box dag into “structured” boxes that
naturally correspond to partial assignments from {0, 1, ∗}n (notice that there is a one-to-one
correspondence between partial assignments and subcubes). We then take the assignments
that our structured boxes correspond to and construct a decision dag for S out of them (we
will need some auxiliary partial assignments as well). A first attempt to formulate what this
“structuredness” could mean is the following: a box B is ρ-like if Indn

ℓ×m(B) = Cube(ρ). It
turns out that we actually can (with some caveats) partition any box in A × B1 × · · · × Bℓ

into boxes that are ρ-like for some assignments ρ. Unfortunately, we need some additional
properties of these boxes to be able to connect them into a valid decision dag.

Our definition of structured boxes is different from the one given in [12], we formulate it
in a different way reducing the structuredness of boxes to the structuredness of rectangles
(2-dimensional boxes) that is used to prove the lifting theorem in [10]. In Subsection 4.2 we
formulate the properties of structured rectangles that we need, in Subsection 4.3 we define
and prove the analogous properties for structured boxes, and in Subsection 4.4 we construct
the decision dag solving S.

D. Itsykson and A. Riazanov 59:9

4.2 Structured Rectangles
Lifting theorems from [10] rely heavily on the notion of structuredness of rectangles. To
simplify things we will not define it explicitly, but instead, state its properties that we are
going to use.

Let Rectm,n be the set of subrectangles of [m]n ×
(
{0, 1}1×m

)n: {A×B | A ⊆ [m]n; B ⊆(
{0, 1}1×m

)n}. We are going to define several properties of predicates on Rectm,n × {0, 1, ∗}n

i.e. predicates on pairs of form (rectangle, partial assignment). Let W be a predicate on
Rectm,n × {0, 1, ∗}n.

▶ Definition 10. We say that W observes row-structure if W(X × Y, ρ) implies that for all
x ∈ X, Indn

1×m({x} × Y) ⊆ Cube(ρ), and Prx←U(X)
[
Indn

1×m({x} × Y) ̸= Cube(ρ)
]

≤ 2
n .

▶ Definition 11. We say that W is partitionable if for every X ⊆ [m]n there exist a partition
X :=

⊔
j∈J X̃j and a family {Fj}j∈J , Fj ⊆ [n], and for every R = X×Y ∈ Rectm,n, for every

parameter k ≤ n logn there exists a partition R =
⊔

i∈I Ri, where Ri = Xi × Yi ∈ Rectm,n,
a family of assignments {ρi}i∈I , and sets Xerr ⊆ X,Yerr ⊆ Y such that |Xerr| ≤ mn/2k,
|Yerr| ≤ 2mn−k and the following properties hold:
1. for each i one of the following holds: either W(Ri, ρi) and |fix(ρi)| = O(k/ logn); or Ri

is covered by Xerr ×
(
{0, 1}1×m

)n ∪ [m]n × Yerr.
2. For every i ∈ I there exists j ∈ J such that X̃j = Xi and fix(ρi) = Fj

1.

▶ Definition 12. We say that W respects largeness if for all X×Y such that |X| ≥ mn · 0.99
and |Y | ≥ 2mn · 0.99 W(X × Y, ∗n) holds.

▶ Theorem 13 (Lemma 4.4, Lemma 4.5 from [10]). There exists a constant ∆ such that for
any m ≥ n∆ there exists a predicate W on Rectm,n × {0, 1, ∗}n such that it observes row-
structure2; is partitionable; respects largeness3. We say that a rectangle R is ρ-structured
iff W(R, ρ) holds.

4.3 Structured Boxes
Now let us generalize the notion of structuredness from rectangles to boxes.

▶ Definition 14. Let R = X × Y1 × · · · × Yℓ, where X ⊆ A = [m]n, Yj ⊆ Bj = ({0, 1}1×m)n

be a box and ρ ∈ {0, 1, ∗}nℓ be a partial assignment. We view ρ as an assignment to variables
of input to S ⊆ ({0, 1}ℓ)n × O that are partitioned into n blocks of size ℓ. Let ρi ∈ {0, 1, ∗}n

for i ∈ [ℓ] be the marginal assignment of ρ assigning the ith variable of each block in the
partition of variables of S. We say that R is a ρ-structured box if for each i ∈ [ℓ] the
rectangle X × Yi is ρi-structured.

We now show that our definition of the structuredness satisfies the analogues of conditions
from Definitions 10, 11, and 12.

▶ Lemma 15. Assume that n > 2ℓ. Let R = X × Y1 × · · · × Yℓ ⊆ A × B1 × · · · × Bℓ be a
ρ-structured box where ρ ∈ {0, 1, ∗}nℓ. Then for all x ∈ X, Indn

ℓ×m({x} × Y1 × · · · × Yℓ) ⊆
Cube(ρ) and there exists x ∈ X such that Indn

ℓ×m({x} × Y1 × · · · × Yℓ) = Cube(ρ).

1 This property is not explicitly stated in [10], although it is clear from the Rectangle Scheme that
generates the partition: first X is partitioned and then each part Xi × Y is partitioned separately.

2 Although Lemma 4.4 of [10] is not stated in strong enough form to satisfy Definition 10, the needed
property is actually proved in Section 9 of [10].

3 This property is implicit in [10], see the full version of the paper for the details.

MFCS 2022

59:10 Automating OBDD proofs is NP-hard

Proof. If there exist x ∈ X, y1 ∈ Y1, . . . , yℓ ∈ Yℓ such that α := Indn
ℓ×m(x, y1, . . . , yℓ) does

not agree with ρ, then there exists i ∈ [ℓ] such that Indn
1×m(x, yi) does not agree with ρi

which violates Definition 10.
Now let us prove the second statement. By Definition 10 for

each i ∈ [ℓ] we have Prx←U(X)
[
Indn

1×m({x} × Yi) ̸= Cube(ρi)
]

≤ 2
n .

Then Prx←U(X)
[
Indn

ℓ×m({x} × Y1 × Y2 × · · · × Yℓ) ̸= Cube(ρ)
]

is bounded by∑ℓ
i=1 Prx←U(X)

[
Indn

1×m({x} × Yi) ̸= Cube(ρi)
]

≤ 2ℓ
n < 1. ◀

▶ Lemma 16. If R = X × Y1 × · · · × Yℓ ⊆ A × B1 × · · · × Bℓ is such that |X| ≥ mn · 0.99
and |Yi| ≥ 2mn · 0.99 for each i ∈ [ℓ], then R is ∗nℓ-structured.

Proof. By Definition 12 we have that each of the X ×Yi is ∗n-structured which by definition
implies ∗nℓ-structuredness of R. ◀

▶ Lemma 17. Let R = X×Y1×· · ·×Yℓ ⊆ A×B1×· · ·×Bℓ be an arbitrary box and k ≤ n logn
be a parameter. Then there exist sets Xerr ⊆ A, Y err

1 ⊆ B1, . . . , Y
err

ℓ ⊆ Bℓ, a partition
R =

⊔
i∈I Ri, and a family of partial assignments {ρi}i∈I , where Ri = Xi × Y i

1 × · · · × Y i
ℓ is

a box and ρi ⊆ {0, 1, ∗}nℓ satisfying the following conditions.
(1*) |Xerr| ≤ mn·ℓ

2k , |Y err
i | ≤ 2nm−k.

(2*) For each i ∈ I at least one of the following statements holds:
Ri is ρi-structured and ρi assigns O(k/ logn) blocks from the standard partition of
[nℓ] into n blocks of size ℓ;
Ri is covered by one of the error sets i.e. Xi ⊆ Xerr or there exists j ∈ [ℓ] such that
Y i

j ⊆ Y err
j .

(3*) For each x ∈ X \Xerr there exists a set Ix ⊆ [nℓ] that is a union of O(k/ logn) blocks
(i.e. it either contains all the indices from a block or none) such that x ∈ Xi implies
fix(ρi) ⊆ Ix.

4.4 Proof of Theorem 9
Recall that the inequality we are to prove is mΩ(bw(S)) ≤ box-dagA,B1,...,Bℓ

(S ◦ Indn
ℓ×m). It

is equivalent to bw(S) = O
(
log box-dagA,B1,...,Bℓ

(S ◦ Indn
ℓ×m)/ logm

)
.

Consider the smallest box-dagA,B1,...,Bℓ
B solving S ◦ Indn

ℓ×m. We construct a decision
dag solving S of block-width O(log |B|/ logm) = O(log |B|/ logn).

Similarly to [10] we first assume that partitions yielded by Lemma 17 are always errorless,
i.e. Xerr = Y err

1 = · · · = Y err
ℓ = ∅. Then we will fix the proof so it works without this

assumption, this part of the proof repeats the argument from Section 5.3 in [10] more or
less verbatim, so we omit it in this version of the paper. We apply Lemma 17 to each of the
boxes in B with some parameter k that we fix later to achieve the needed lower bound.

Let us construct a decision dag D that solves S. Each node of a decision dag labeled with
function f naturally corresponds to a partial assignment ρf such that Cube(ρf) = f−1(0).
We will identify nodes of a decision dag with the assignments corresponding to them. That
suggests the construction of D: for each of the nodes of B we apply Lemma 17 to it and for
each ρ-structured box in the resulting partition add the node ρ to D. To turn this collection
of nodes into a correct decision dag, we need to locate the root, the leaves, and connect (via
auxiliary nodes) the nodes between each other such that the conditions on dags are met.
More precisely, it is sufficient to show that:

D. Itsykson and A. Riazanov 59:11

1. The partition of the root of B consists of a single ∗nℓ-structured box.
2. If an o-labeled leaf of B contains a ρ-structured box in its partition, then for every

x ∈ Cube(ρ), (x, o) ∈ S.
3. Suppose a node u in B has direct descendants v1 and v2. Then let ρu

1 , . . . , ρ
u
tu

be the
assignments yielded by the partition of the box u, ρvq

1 , . . . , ρ
vq

tvq
be the assignments yielded

by the partition of the box vq for q ∈ {1, 2}. Then there exists a assignment-labeled
dag with sources ρu

1 , . . . , ρ
u
tu

, leaves ρvq

1 , . . . , ρ
vq

tvq
for q ∈ {1, 2} that satisfies the local

condition of a decision dag having block-width O(k/ logn).

Proof of 1. By Lemma 16 we have that the entire root of B is ∗nℓ-structured, thus we may
assume that its partition is a single box.

Proof of 2. Let u be an o-labeled leaf of B. Suppose that B = X × Y1 × · · · × Yℓ is a ρ-
structured box in the partition of u. By Lemma 15 there exists x0 such that Indn

ℓ×m({x0} ×
Y1 × · · · × Yℓ) = Cube(ρ), i.e. for every α ∈ Cube(ρ) there exist y1, . . . , yℓ such that
(x0, y1, . . . , yℓ) ∈ B and Indn

ℓ×m(x0, y1, . . . , yℓ) = α. Then since B is a box-dag for S◦Indn
ℓ×m,

(α, o) ∈ S.

Proof of 3. It is sufficient to construct a separate dag with local property rooted in ρu
i

with leaves from L := {ρvq
p }q∈{1,2}, p∈[tvq] of block-width O(k/ logn).

Recall that we abuse notation by identifying nodes of a box dag with their underlying
boxes. Let B = X × Y1 × · · · × Yℓ be a ρu

i -structured box from the partition of u. And
let x ∈ X be such that Indn

ℓ×m({x} × Y1 × · · · × Yℓ) = Cube(ρu
i). By the property of a

box-dag, B is covered by the union of boxes v1 and v2. Thus {x} × Y1 × · · · × Yℓ is also
covered by v1 ∪v2. Let Iv1

x , Iv2
x ⊆ [nℓ] be the variable sets from Lemma 17. Let our ρu

i -rooted
decision dag consist of two parts. The first part is a decision tree querying one by one
all variables from Iv1

x ∪ Iv2
x \ fix(ρu

i). From each leaf of this decision tree we direct both
edges to one of the nodes of L. Observe that by the part (3) of Lemma 17, Iv1

x and Iv2
x

are unions of O(k/ logn) blocks and fix(ρu
i) touches O(k/ logn) blocks. Thus block-width

of the resulting dag is also O(k/ logn).Consider any leaf of the decision tree θ ∈ {0, 1, ∗}nℓ.
Since Indn

ℓ×m({x} ×Y1 × · · · ×Yℓ) = Cube(ρu
i) and θ extends ρu

i (i.e., Cube(θ) ⊆ Cube(ρu
i)),

there exist y1 ∈ Y1, . . . , yℓ ∈ Yℓ such that Indn
ℓ×m(x, y1, . . . , yℓ) ∈ Cube(θ). Then consider

an ω-structured box B0 from a partition of v1 or v2 for ω ∈ L that contains (x, y1, . . . , yℓ).
Observe that fix(ω) ⊆ Iv1

x ∪ Iv2
x ⊆ fix(θ). The first inclusion holds by the part (3) of

Lemma 17, the second holds by the construction of the decision tree. Since by Lemma 15,
Indn

ℓ×m(x, y1, . . . , yℓ) ∈ Cube(ω), Cube(ω) and Cube(θ) have a point in common, then
fix(ω) ⊆ fix(θ) implies Cube(ω) ⊇ Cube(θ). Then we can direct both edges from ω to θ.
That finishes the proof under the errorless assumption.

5 From Box-Dags to OBDD Refutations

▶ Lemma 18 (a generalization of a similar lemma in [25]). Let U1, . . . , Uk be a partition of [n].
Let F be the class of functions that are computable by k-party number-in-hand communication
protocol4 of cost c w.r.t. partition U1, . . . , Uk of [n]. Let S ⊆ {0, 1}U1 × · · · × {0, 1}Uk × Y be
a relation and let D be a F-dag that solves it. Then there exists a box-dagU1,...,Uk

D′ of size
O(|D| · 23c) that solves S.

4 For a formal definition of number-in-hand protocol see e.g. [21].

MFCS 2022

59:12 Automating OBDD proofs is NP-hard

Let X be a set of propositional variables of size n, V := (V1, . . . , Vk) be a partition of X:
X = V1 ⊔ · · · ⊔ Vk, and π : [n] → X be a bijection (order on the variables X). We say that a
partition V agrees with π if V1 comes first in the order, then goes V2 and so on until Vk.

▶ Theorem 19. Let φ be an unsatisfiable CNF over variables X. Let π : [n] → X be an
order of variables and V be a partition of X agreeing with π. Let D1, . . . , Dt be a π-OBDD(∧,
weakening) refutation of φ of size S. Then box-dagV(Searchφ) ≤ SO(k).

▶ Lemma 20. Let D be a π-OBDD over variables X computing a function f and V =
(V1, . . . , Vk) be a partition of X that agrees with π. Then there exists a k-party number-in-hand
communication protocol computing f with cost k⌈log2 |D|⌉.

Proof of Theorem 19. By Lemma 20, a π-OBDD refutation of φ of size S =
∑t

i=1 |Di|
can be viewed as an F-dag solving Searchφ (for the diagrams derived via the weakening
rule we direct both of the outgoing edges to the same node), where F is the class of
functions that can be computed with cost at most k⌈log2 S⌉ by a k-party number-in-hand
communication protocol with input partition V . Then by Lemma 18, there exists a box-dagV
of size S · 23k log S = SO(k) solving Searchφ. ◀

6 Making all orders hard

Let negative width of a resolution refutation be the maximal number of negative literals in a
clause of the refutation.

▶ Theorem 21 ([24]). There exists a polynomial-time algorithm T0 that given a CNF φ over
n variables returns a CNF-formula T0(φ) such that

for any variable ordering π, π-OBDD(φ) ≤ OBDD(T0(φ)) (Lemma 14 from [24]);
If φ has a resolution refutation of size s and negative width w, then T0(φ) has resolution
size at most s · nO(w), (Corollary 9 and Lemma 12 from [24]).

▶ Lemma 22. If a CNF-formula φ has a resolution refutation of size s and the size of the
smallest π-OBDD refutation of φ is t, then there exists polynomial-time algorithm that given
φ outputs a formula φ′ and a variable order π′ such that φ′ has a resolution refutation of
size O(s) and negative width O(1), and the size of the smallest π′-OBDD refutation of φ′ is
at least t.

▶ Corollary 23. There exists a polynomial-time algorithm T that given a CNF φ over n
variables returns a CNF-formula T (φ) such that for any variable ordering π, π-OBDD(φ) ≤
OBDD(T (φ)); and if φ has a resolution refutation of size s, then the resolution size of T (φ)
is at most s · nO(1).

Proof. The new algorithm T first applies the transformation from Lemma 22 to a CNF
formula and only then applies the algorithm T0 from Theorem 21 to it. ◀

7 Putting the pieces together

▶ Theorem 1. There exist a constant α and a polynomially computable function R mapping
CNF formulas to CNF formulas with the following properties. For any 3-CNF φ with n

variables such that: if φ is satisfiable, then R(φ) has a resolution refutation of size at most
nα; if φ is unsatisfiable, then any OBDD(∧,weakening) refutation of R(φ) has size 2Ω(n).

D. Itsykson and A. Riazanov 59:13

Proof. Let E be the algorithm from Theorem 6 with the parameter c = 3, and T be the
algorithm from Corollary 23. Let n be the number of variables of φ and let nφ be the
number of variables in E(φ). Let ℓφ be the size of the blocks in the block partition in
Theorem 6, ℓφ = O(n). Then let mφ = (nφℓφ)∆ where ∆ is from Theorem 9 and let
R(φ) := T (E(φ) ◦ Indnφ

ℓφ×mφ
).

Let us first consider the case of φ ∈ SAT. Then by Theorem 6, E(φ) has a resolution
refutation π such that |π| = |φ|O(1) and bw(π) = O(1). Then applying Theorem 8 we get that
there exists a resolution refutation of E(φ) ◦ Indnφ

ℓφ×mφ
of size |φ|O(1). Then by Corollary 23

T (E(φ) ◦ Indnφ

ℓφ×mφ
) has a resolution refutation of size |φ|O(1).

Let us proceed with the case φ ̸∈ SAT. Suppose R(φ) has a OBDD(∧,weakening)
refutation of size S. Then by Corollary 23 the formula E(φ) ◦ Indnφ

ℓφ×mφ
has a

π-OBDD(∧,weakening) refutation of size S for any variable order π. Then consider the order
of variables π0 where the variables of E(φ) ◦ Indnφ

ℓφ×mφ
are ordered as follows:

All the variables corresponding to the indices in an arbitrary order (denote this set by A);
All the variables from the first rows of the matrices (denote this set by B1);
. . .

All the variables from the ℓφth rows of the matrices (denote this set by Bℓφ
).

The size of π0-OBDD(∧,weakening) refutation of E(φ) ◦ Indnφ

ℓφ×mφ
is at most S which by

Theorem 19 implies that box-dagA,B1,...,Bℓ

(
SearchE(φ)◦Indnφ

ℓφ×mφ

)
≤ SO(ℓφ+1).

Then the fact that SearchE(φ)◦Indnφ
ℓφ×mφ

is at least as hard as SearchE(φ) ◦ Indnφ

ℓφ×mφ

and the inequality box-dagA,B1,...,Bℓ

(
SearchE(φ) ◦ Indnφ

ℓφ×mφ

)
≥ m

Ω(bw(E(φ)))
φ implied by

Theorem 9 together imply that S ≥ m
Ω(bw(E(φ))/(ℓφ+1))
φ . By Theorem 6 using Proposition 4

to switch from decision dag to resolution refutation we have bw(E(φ)) = Ω(nc−1) = Ω(n2)
which implies that S ≥ m

Ω(n)
φ since ℓφ = O(n). This completes the proof of the theorem

since mφ ≥ 2. ◀

▶ Corollary 24. If OBDD(∧,weakening) is automatable then P = NP.

References
1 Alfonso San Miguel Aguirre and Moshe Y. Vardi. Random 3-sat and bdds: The plot thickens

further. In Principles and Practice of Constraint Programming – CP 2001, 7th International
Conference, CP 2001, Paphos, Cyprus, November 26 – December 1, 2001, Proceedings, pages
121–136, 2001. doi:10.1007/3-540-45578-7_9.

2 Michael Alekhnovich, Samuel R. Buss, Shlomo Moran, and Toniann Pitassi. Minimum
propositional proof length is np-hard to linearly approximate. J. Symb. Log., 66(1):171–191,
2001. doi:10.2307/2694916.

3 Michael Alekhnovich and Alexander A. Razborov. Resolution is not automatizable unless
W[P] is tractable. SIAM J. Comput., 38(4):1347–1363, 2008. doi:10.1137/06066850X.

4 Albert Atserias, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint propagation as a proof
system. In Mark Wallace, editor, Principles and Practice of Constraint Programming – CP
2004, 10th International Conference, CP 2004, Toronto, Canada, September 27 – October 1,
2004, Proceedings, volume 3258 of Lecture Notes in Computer Science, pages 77–91. Springer,
2004. doi:10.1007/978-3-540-30201-8_9.

5 Albert Atserias and Moritz Müller. Automating resolution is np-hard. In David Zuckerman,
editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019,
Baltimore, Maryland, USA, November 9-12, 2019, pages 498–509. IEEE Computer Society,
2019. doi:10.1109/FOCS.2019.00038.

MFCS 2022

https://doi.org/10.1007/3-540-45578-7_9
https://doi.org/10.2307/2694916
https://doi.org/10.1137/06066850X
https://doi.org/10.1007/978-3-540-30201-8_9
https://doi.org/10.1109/FOCS.2019.00038

59:14 Automating OBDD proofs is NP-hard

6 Maria Luisa Bonet, Carlos Domingo, Ricard Gavaldà, Alexis Maciel, and Toniann Pitassi.
Non-automatizability of bounded-depth frege proofs. Comput. Complex., 13(1-2):47–68, 2004.
doi:10.1007/s00037-004-0183-5.

7 Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. No feasible interpolation for tc0-frege
proofs. In 38th Annual Symposium on Foundations of Computer Science, FOCS ’97, Miami
Beach, Florida, USA, October 19-22, 1997, pages 254–263. IEEE Computer Society, 1997.
doi:10.1109/SFCS.1997.646114.

8 Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagram.
ACM Computing Surveys, 24(3):293–318, 1992.

9 Sam Buss, Dmitry Itsykson, Alexander Knop, and Dmitry Sokolov. Reordering rule makes
OBDD proof systems stronger. In 33rd Computational Complexity Conference, CCC 2018, June
22-24, 2018, San Diego, CA, USA, pages 16:1–16:24, 2018. doi:10.4230/LIPIcs.CCC.2018.16.

10 Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower bounds
from resolution. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, page 902–911, New York, NY, USA, 2018. Association for Computing
Machinery. doi:10.1145/3188745.3188838.

11 Michal Garlík. Failure of feasible disjunction property for k-dnf resolution and np-hardness
of automating it. Electron. Colloquium Comput. Complex., page 37, 2020. URL: https:
//eccc.weizmann.ac.il/report/2020/037.

12 Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. Automating cutting planes is np-
hard. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020, pages 68–77, New York, NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3357713.3384248.

13 Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere, Dmitry Sokolov, and Susanna F.
de Rezende. Automating algebraic proof systems is np-hard. Electron. Colloquium Comput.
Complex., 27:64, 2020. URL: https://eccc.weizmann.ac.il/report/2020/064.

14 Dmitry Itsykson, Alexander Knop, Andrei E. Romashchenko, and Dmitry Sokolov. On obdd-
based algorithms and proof systems that dynamically change the order of variables. J. Symb.
Log., 85(2):632–670, 2020. doi:10.1017/jsl.2019.53.

15 Kazuo Iwama. Complexity of finding short resolution proofs. In Igor Prívara and Peter
Ruzicka, editors, Mathematical Foundations of Computer Science 1997, 22nd International
Symposium, MFCS’97, Bratislava, Slovakia, August 25-29, 1997, Proceedings, volume 1295 of
Lecture Notes in Computer Science, pages 309–318. Springer, 1997. doi:10.1007/BFb0029974.

16 Jan Krajiček. An exponential lower bound for a constraint propagation proof system based
on ordered binary decision diagrams. Journal of Symbolic Logic, 73(1):227–237, 2008. doi:
10.2178/jsl/1208358751.

17 Jan Krajícek and Pavel Pudlák. Some consequences of cryptographical conjectures for s1
2 and

EF. Inf. Comput., 140(1):82–94, 1998. doi:10.1006/inco.1997.2674.
18 Christoph Meinel and Anna Slobodova. On the complexity of Constructing Optimal Ordered

Binary Decision Diagrams. In Proceedings of Mathematical Foundations of Computer Science,
volume 841, pages 515–524, 1994.

19 Ian Mertz, Toniann Pitassi, and Yuanhao Wei. Short proofs are hard to find. In Christel Baier,
Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International
Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras,
Greece, volume 132 of LIPIcs, pages 84:1–84:16. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.84.

20 Guoqiang Pan and Moshe Y. Vardi. Symbolic techniques in satisfiability solving. Journal of
Automated Reasoning, 35(1-3):25–50, 2005. doi:10.1007/s10817-005-9009-7.

21 Jeff M. Phillips, Elad Verbin, and Qin Zhang. Lower bounds for number-in-hand multiparty
communication complexity, made easy. In Proceedings of the Twenty-Third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’12, pages 486–501, USA, 2012. Society for
Industrial and Applied Mathematics.

https://doi.org/10.1007/s00037-004-0183-5
https://doi.org/10.1109/SFCS.1997.646114
https://doi.org/10.4230/LIPIcs.CCC.2018.16
https://doi.org/10.1145/3188745.3188838
https://eccc.weizmann.ac.il/report/2020/037
https://eccc.weizmann.ac.il/report/2020/037
https://doi.org/10.1145/3357713.3384248
https://eccc.weizmann.ac.il/report/2020/064
https://doi.org/10.1017/jsl.2019.53
https://doi.org/10.1007/BFb0029974
https://doi.org/10.2178/jsl/1208358751
https://doi.org/10.2178/jsl/1208358751
https://doi.org/10.1006/inco.1997.2674
https://doi.org/10.4230/LIPIcs.ICALP.2019.84
https://doi.org/10.1007/s10817-005-9009-7

D. Itsykson and A. Riazanov 59:15

22 Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computa-
tions. J. Symb. Log., 62(3):981–998, 1997. doi:10.2307/2275583.

23 Nathan Segerlind. Nearly-exponential size lower bounds for symbolic quantifier elimination
algorithms and OBDD-based proofs of unsatisfiability. Electronic Colloquium on Computational
Complexity (ECCC), 14(009), 2007. URL: http://eccc.hpi-web.de/eccc-reports/2007/
TR07-009/index.html.

24 Nathan Segerlind. On the relative efficiency of resolution-like proofs and ordered binary
decision diagram proofs. In Proceedings of the 23rd Annual IEEE Conference on Computational
Complexity, CCC 2008, 23-26 June 2008, College Park, Maryland, USA, pages 100–111. IEEE
Computer Society, 2008. doi:10.1109/CCC.2008.34.

25 Dmitry Sokolov. Dag-like communication and its applications. In Computer Science –
Theory and Applications – 12th International Computer Science Symposium in Russia,
CSR 2017, Kazan, Russia, June 8-12, 2017, Proceedings, pages 294–307, 2017. doi:
10.1007/978-3-319-58747-9_26.

26 I. Wegener. Branching Programs and Binary Decision Diagrams: Theory and Applications.
Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, 2000.
URL: https://books.google.ru/books?id=xqqJj42ZoXcC.

MFCS 2022

https://doi.org/10.2307/2275583
http://eccc.hpi-web.de/eccc-reports/2007/TR07-009/index.html
http://eccc.hpi-web.de/eccc-reports/2007/TR07-009/index.html
https://doi.org/10.1109/CCC.2008.34
https://doi.org/10.1007/978-3-319-58747-9_26
https://doi.org/10.1007/978-3-319-58747-9_26
https://books.google.ru/books?id=xqqJj42ZoXcC

	1 Introduction
	2 Preliminaries
	3 The outline of the proof of Theorem 1
	4 Lifting with multi-output indexing function
	4.1 Lifting theorem
	4.2 Structured Rectangles
	4.3 Structured Boxes
	4.4 Proof of Theorem 9

	5 From Box-Dags to OBDD Refutations
	6 Making all orders hard
	7 Putting the pieces together

