
Parameterized Complexity of Non-Separating and
Non-Disconnecting Paths and Sets
Ankit Abhinav #

National Institute of Science, Education and Research, An OCC of Homi Bhabha National Institute,
Bhubaneswar, Odisha, India

Susobhan Bandopadhyay #

National Institute of Science, Education and Research, An OCC of Homi Bhabha National Institute,
Bhubaneswar, Odisha, India

Aritra Banik #

National Institute of Science, Education and Research, An OCC of Homi Bhabha National Institute,
Bhubaneswar, Odisha, India

Yasuaki Kobayashi #

Kyoto University, Kyoto, Japan

Shunsuke Nagano #

Kyoto University, Kyoto, Japan

Yota Otachi #Ñ

Nagoya University, Nagoya, Japan

Saket Saurabh #

The Institute of Mathematical Sciences, HBNI, Chennai, India

Abstract
For a connected graph G = (V, E) and s, t ∈ V , a non-separating s-t path is a path P between
s and t such that the set of vertices of P does not separate G, that is, G − V (P) is connected.
An s-t path P is non-disconnecting if G − E(P) is connected. The problems of finding shortest
non-separating and non-disconnecting paths are both known to be NP-hard. In this paper, we
consider the problems from the viewpoint of parameterized complexity. We show that the problem
of finding a non-separating s-t path of length at most k is W[1]-hard parameterized by k, while
the non-disconnecting counterpart is fixed-parameter tractable (FPT) parameterized by k. We also
consider the shortest non-separating path problem on several classes of graphs and show that this
problem is NP-hard even on bipartite graphs, split graphs, and planar graphs. As for positive results,
the shortest non-separating path problem is FPT parameterized by k on planar graphs and on unit
disk graphs (where no s, t is given). Further, we give a polynomial-time algorithm on chordal graphs
if k is the distance of the shortest path between s and t.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Non-separating path, Parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2022.6

Funding Yasuaki Kobayashi: JSPS KAKENHI Grant Numbers JP20H05793, JP20K19742,
JP21H03499
Yota Otachi: JSPS KAKENHI Grant Numbers JP18H04091, JP18K11168, JP18K11169, JP20H05793,
JP21K11752.

1 Introduction

Lovász’s path removal conjecture states the following claim: There is a function f : N → N
such that for every f(k)-connected graph G and every pair of vertices u and v, G has a path
P between u and v such that G − V (P) is k-connected. This claim still remains open, while

© Ankit Abhinav, Susobhan Bandopadhyay, Aritra Banik, Yasuaki Kobayashi, Shunsuke Nagano,
Yota Otachi, and Saket Saurabh;
licensed under Creative Commons License CC-BY 4.0

47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022).
Editors: Stefan Szeider, Robert Ganian, and Alexandra Silva; Article No. 6; pp. 6:1–6:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ankit.abhinav@niser.ac.in
mailto:susobhan.bandopadhyay@niser.ac.in
mailto:aritra@niser.ac.in
mailto:kobayashi@iip.ist.i.kyoto-u.ac.jp
https://orcid.org/0000-0003-3244-6915
mailto:shunsuke.mac199921@icloud.com
mailto:otachi@nagoya-u.jp
https://www.math.mi.i.nagoya-u.ac.jp/~otachi/
https://orcid.org/0000-0002-0087-853X
mailto:saket@imsc.res.in
https://doi.org/10.4230/LIPIcs.MFCS.2022.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 On Non-Separating and Non-Disconnecting Paths and Sets

some special cases have been resolved [4, 15, 17, 23]. Tutte [23] proved that f(1) = 3, that
is, every triconnected graph satisfies that for every pair of vertices, there is a path between
them whose removal results a connected graph. Kawarabayashi et al. [15] proved a weaker
version of this conjecture: There is a function f : N → N such that for every f(k)-connected
graph G and every pair of vertices u and v, G has an induced path P between u and v such
that G − E(P) is k-connected.

As a practical application, let us consider a network represented by an undirected graph
G, and we would like to build a private channel between a specific pair of nodes s and t. For
some security reasons, the path used in this channel should be dedicated to the pair s and t,
and hence all other connections do not use all nodes and/or edges on this path while keeping
their connections. In graph-theoretic terms, the vertices (resp. edges) of the path between s

and t does not form a separator (resp. a cut) of G. Tutte’s result [23] indicates that such
a path always exists in triconnected graphs, but may not exist in biconnected graphs. In
addition to this connectivity constraint, the path between s and t is preferred to be short
due to the cost of building a private channel. Motivated by such a natural application, the
following two problems are studied.

▶ Definition 1. Given a connected graph G, s, t ∈ V (G), and an integer k, Shortest
Non-Separating Path asks whether there is a path P between s and t in G such that the
length of P is at most k and G − V (P) is connected. When s and t are not part of the input,
and we want to find a path P of length k, such that G − V (P) is connected, then we call
the problem Terminal Independent Shortest Non-Separating Path (TI-Shortest
Non-Separating Path).

▶ Definition 2. Given a connected graph G, s, t ∈ V (G), and an integer k, Shortest
Non-Disconnecting Path asks whether there is a path P between s and t in G such that
the length of P is at most k and G − E(P) is connected.

Given, the Shortest Non-Separating Path problem, a natural question arises about
the complexity of the problem, when in the problem we replace the demand of P being a
path with P being a connected set. Given a connected graph G, and an integer k, Smallest
Non-Separating Set asks whether there is a vertex subset X of size k in G such that
G[X] is connected and G − X is connected. Similarly, an edge counterpart can be defined as
Smallest Non-Disconnecting Set. An edge set X is said to be connected if the graph
G′ = (V (X), X) is connected. We say that a path P is non-separating (in G) if G − V (P) is
connected and is non-disconnecting (in G) if G − E(P) is connected. Similarly, we define the
notion of non-separating set and non-disconnecting set.

1.1 Our Results and Methods
We investigate the parameterized complexity of above problems and obtain following results.

1. Shortest Non-Separating Path and Smallest Non-Separating Set are W[1]-
hard. These are obtained by parameterized reductions from Multicolored Clique
and Clique, respectively.

2. Shortest Non-Disconnecting Path and Smallest Non-Disconnecting Set are
FPT parameterized by k. These algorithms are based on matroid based tools used in
parameterized complexity [11]. In particular, given a graph G, there is a well-known
matroid, defined by ground set being E(G) and the family of independent sets being a
subsets of Y of E(G), such that G − Y is connected. These are called cographic matroid.

A. Abhinav et al. 6:3

A crucial observation for the FPT algorithms for Shortest Non-Disconnecting Path
and Smallest Non-Disconnecting Set is that the set of edges in a non-disconnecting
path or non-disconnecting set can be seen as an independent set of a cographic matroid.
By applying the representative family of matroids [11], we show that Shortest Non-
Disconnecting Path and Smallest Non-Disconnecting Set can be solved in
2ωk|V |O(1) time, where ω is the exponent of the matrix multiplication. We also show
that Shortest Non-Disconnecting Path is OR-compositional, that is, there is no
polynomial kernel unless coNP ⊆ NP/poly.

3. To cope with the intractability of Shortest Non-Separating Path, we consider
the problem on planar graphs and unit disk graphs and show that Shortest Non-
Separating Path is FPT parameterized by k on planar graphs and TI-Shortest
Non-Separating Path is FPT parameterized by k on unit disk graphs. The result on
planar graphs can be generalized to wider classes of graphs which have the diameter-
treewidth property [9], which are precisely apex-minor-free graphs (includes, planar and
graphs of bounded genus). For, Smallest Non-Separating Set we show that it
does not have polynomial kernel even on planar graphs. We also consider Shortest
Non-Separating Path on several classes of graphs. We can observe that the complexity
of Shortest Non-Separating Path is closely related to that of Hamiltonian Cycle
(or Hamiltonian Path with specified end vertices). This observation readily proves
the NP-completeness of Shortest Non-Separating Path on bipartite graphs, split
graphs, and planar graphs. For chordal graphs, we devise a polynomial-time algorithm
for Shortest Non-Separating Path for the case where k is the shortest path distance
between s and t.

Proofs of results for Shortest Non-Separating Path and Smallest Non-Separating
Set are similar and the proofs of results for Shortest Non-Disconnecting Path and
Smallest Non-Disconnecting Set are similar, in this version of the paper we only focus
on Shortest Non-Separating Path and Shortest Non-Disconnecting Path.

Related work. The shortest path problem in graphs is one of the most fundamental
combinatorial optimization problems, which is studied under various settings. Indeed, our
problems Shortest Non-Separating Path and Shortest Non-Disconnecting Path
can be seen as variants of this problem. From the computational complexity viewpoint,
Shortest Non-Separating Path is known to be NP-hard and its optimization version
cannot be approximated with factor |V |1−ε in polynomial time for ε > 0 unless P = NP [24].
Shortest Non-Disconnecting Path is shown to be NP-hard on general graphs and
polynomial-time solvable on chordal graphs [19].

2 Preliminaries

We use standard terminologies and known results in matroid theory and parameterized
complexity theory, which are briefly discussed in this section. See [6, 21] for details.

Graphs. Let G be a graph. The vertex set and edge set of G are denoted by V (G)
and E(G), respectively. For v ∈ V (G), the open neighborhood of v in G is denoted by
NG(v) (i.e., NG(v) = {u ∈ V (G) : {u, v} ∈ E(G)}) and the closed neighborhood of v

in G is denoted by NG[v] (i.e., NG[v] = NG(v) ∪ {v}). We extend this notation to sets:
NG(X) =

⋃
v∈X NG(v) \ X and NG[X] = NG(X) ∪ X for X ⊆ V (G). For u, v ∈ V (G), we

denote by distG(u, v) the length of a shortest path between u and v in G, where the length

MFCS 2022

6:4 On Non-Separating and Non-Disconnecting Paths and Sets

of a path is defined as the number of edges in it. We may omit the subscript of G from these
notations when no confusion arises. For X ⊆ V (G), we write G[X] to denote the subgraph
of G induced by X. For notational convenience, we may use G − X instead of G[V (G) \ X].
For F ⊆ E, we also use G − F to represent the subgraph of G consisting all vertices of G

and all edges in E \ F . For vertices u and v, a path between u and v is called a u-v path. A
vertex is called a pendant if its degree is exactly 1.

Matroids and representative sets. Let E be a finite set. If I ⊆ 2E satisfies the following
axioms, the pair M = (E, I) is called a matroid: (1) ∅ ∈ I; (2) Y ∈ I implies X ∈ I for
X ⊆ Y ; and (3) for X, Y ∈ I with |X| < |Y |, there is e ∈ Y \ X such that X ∪ {e} ∈ I.
Each set in I is called an independent set of M. From the third axiom of matroids, it is
easy to observe that every (inclusion-wise) maximal independent set of M have the same
cardinality. The rank of M is the maximum cardinality of an independent set of M. A
matroid M = (E, I) of rank n is linear (or representable) over a field F if there is a matrix
M ∈ Fn×|E| whose columns are indexed by E such that X ∈ I if and only if the set of
columns indexed by X is linearly independent in M .

Let G = (V, E) be a graph. A cographic matroid of G is a matroid M(G) = (E, I)
such that F ⊆ E is an independent set of M(G) if and only if G − F is connected. Every
cographic matroid is linear and its representation can be computed in polynomial time [21].
Our algorithmic result for Shortest Non-Disconnected Path is based on representative
families due to [11].

▶ Definition 3. Let M = (E, I) be a matroid and let F ⊆ I be a family of independent sets
of M. For an integer q ≥ 0, we say that F̂ ⊆ F is q-representative for F if the following
condition holds: For every Y ⊆ E of size at most q, if there is X ∈ F with X ∩ Y = ∅ such
that X ∪ Y ∈ I, then there is X̂ ∈ F̂ with X̂ ∩ Y = ∅ such that X̂ ∪ Y ∈ I.

▶ Theorem 4 ([11, 18]). Given a linear matroid M = (E, I) of rank n that is represented
as a matrix M ∈ Fn×|E| for some field F, a family F ⊆ I of independent sets of size p, and
an integer q with p + q ≤ n, there is a deterministic algorithm computing a q-representative
family F̂ ⊆ F of size np

(
p+q

p

)
with

O

(
|F| ·

((
p + q

p

)
p3n2 +

(
p + q

q

)ω−1
· (pn)ω−1

))
+ (n + |E|)O(1)

field operations, where ω < 2.373 is the exponent of the matrix multiplication.

Parameterized complexity. A parameterized problem is a language L ⊆ Σ∗ × N, where
Σ is a finite alphabet. A kernelization for L is a polynomial-time algorithm that given an
instance (I, k) ∈ Σ∗ × N, computes an “equivalent” instance (I ′, k′) ∈ Σ∗ × N such that (1)
(I, k) ∈ L if and only if (I ′, k′) ∈ L and (2) |I ′| + k′ ≤ g(k) for some computable function g.
We call (I ′, k′) a kernel. If the function g is a polynomial, then the kernelization algorithm is
called a polynomial kernelization and its output (I ′, k′) is called a polynomial kernel. An
OR-composition is an algorithm that given p instances (I1, k), . . . (Ip, k) ∈ Σ∗ × N of L,
computes an instance (I ′, k′) ∈ Σ∗ ×N in time (

∑
1≤i≤p |Ii|+k)O(1) such that (1) (I ′, k′) ∈ L

if and only if (Ii, k) ∈ L for some 1 ≤ i ≤ p and (2) k′ = kO(1). For a parameterized problem
L, its unparameterized problem is a language L′ = {x#1k : (x, k) ∈ L}, where # /∈ Σ is a
blank symbol and 1 ∈ Σ is an arbitrary symbol.

A. Abhinav et al. 6:5

▶ Theorem 5 ([3]). If a parameterized problem L admits an OR-composition and its unpa-
rameterized version is NP-complete, then L does not have a polynomial kernelization unless
coNP ⊆ NP/poly.

3 Shortest Non-Separating Path

We discuss our complexity and algorithmic results for Shortest Non-Separating Path.

3.1 Hardness on graph classes

We obverse that, in most cases, Shortest Non-Separating Path is NP-hard on classes
of graphs for which Hamiltonian Path (with distinguished end vertices) is NP-hard. Let
G = (V, E) be a graph and s, t ∈ V be distinct vertices of G. We add a pendant vertex p

adjacent to s and denote the resulting graph by G′. Then, we have the following observation.

▶ Observation 6. For every non-separating path P between s and t in G′, V (G)\V (P) = {p}.

Suppose that for a class C of graphs,
the problem of deciding whether given graph G ∈ C has a Hamiltonian path between
specified vertices s and t in G is NP-hard and
G ∈ C implies G′ ∈ C.

By Observation 6, G′ has a non-separating s-t path if and only if G has a Hamiltonian path
between s and t. This implies that the problem of finding a non-separating path between
specified vertices is NP-hard on class C.

▶ Theorem 7. The problem of deciding if an input graph has a non-separating s-t path is
NP-complete even on planar graphs, bipartite graphs, and split graphs.

The classes of planar graphs and bipartite graphs are closed under the operation of adding
a pendant. Recall that a graph G is a split graph if the vertex set V (G) can be partitioned
into a clique C and an independent set I. Thus, for the class of split graphs, we need the
assumption that the pendant added is adjacent to a vertex in C.

As the problem trivially belongs to NP, it suffices to show that Hamiltonian Path
(with distinguished end vertices) is NP-hard on these classes of graphs1. For split graphs,
it is known that Hamiltonian Path is NP-hard even if the distinguished end vertices are
contained in the clique C [20]. Let G be a graph and let v ∈ V (G). We add a vertex v′

that is adjacent to every vertex in NG(v), that is, v and v′ are (false) twins. The resulting
graph is denoted by G′. It is easy to verify that G has a Hamiltonian cycle if and only if
G′ has a Hamiltonian path between v and v′. The class of bipartite graphs is closed under
this operation, that is, G′ is bipartite. For planar graphs, G′ may not be planar in general.
However, Hamiltonian Cycle is NP-complete even if the input graph is planar and has
a vertex of degree 2 [14]. We apply the above operation to this degree-2 vertex, and the
resulting graph G′ is still planar. As the problem of finding a Hamiltonian cycle is NP-hard
even on bipartite graphs [20] and planar graphs [14], Theorem 7 follows.

1 These results for bipartite graphs and planar graphs seem to be folklore but we were not able to find
particular references.

MFCS 2022

6:6 On Non-Separating and Non-Disconnecting Paths and Sets

V1 V2 V3

s t

v∗

v

u

w

G H

Figure 1 The left figure depicts an instance G of Multicolored Clique and the right figure
depicts the graph H constructed from G. Some vertices and edges in H are not drawn in this figure
for visibility. The edges of a clique C and the corresponding non-separating s-t path P are drawn as
thick lines.

3.2 W[1]-hardness
Next, we show that Shortest Non-Separating Path is W[1]-hard parameterized by k.
The proof is done by giving a reduction from Multicolored Clique, which is known
to be W[1]-complete [10]. In Multicolored Clique, we are given a graph G with a
partition {V1, V2, . . . , Vk} of V (G) and asked to determine whether G has a clique C such
that |Vi ∩ C| = 1 for each 1 ≤ i ≤ k.

From an instance (G, {V1, . . . , Vk}) of Multicolored Clique, we construct an instance
of Shortest Non-Separating Path as follows. Without loss of generality, we assume
that G contains more than k vertices. We add two vertices s and t, make s adjacent to all
v ∈ V1 and make t adjacent to all v ∈ Vk. For any pair of u ∈ Vi and v ∈ Vj with |i − j| ≥ 2,
we do the following. If {u, v} ∈ E, then we remove it. Otherwise, we add a path Pu,v of
length 2 and a pendant vertex that is adjacent to the internal vertex w of Pu,v. Finally,
we add a vertex v∗, add an edge between v∗ and each original vertex v ∈ V (G), and add a
pendant vertex p adjacent to v∗. The constructed graph is denoted by H. See Figure 1 for
an illustration of the graph H.

▶ Lemma 8. There is a clique C in G such that |C ∩ Vi| = 1 for all 1 ≤ i ≤ k if and only if
there is a non-separating s-t path of length at most k + 1 in H.

Proof. Suppose first that G has a clique C with C ∩ Vi = {vi} for all 1 ≤ i ≤ k. Then,
P = ⟨s, v1, v2, . . . , vk, t⟩ is an s-t path of length k + 1 in H. To see the connectivity of
H − V (P), it suffices to show that every vertex is reachable from v∗ in H − V (P). By the
construction of H, each vertex in V (G) \ V (P) is adjacent to v∗ in H − V (P). Each vertex
z in V (H) \ (V (G) ∪ {v∗, p}) is either the internal vertex w of Pu,v for some u, v ∈ V (G) or
the pendant vertex adjacent to w. In both cases, at least one of u and v is not contained in
P as V (P) \ {s, t} is a clique in G, implying that z is reachable to v∗.

Conversely, suppose that H has a non-separating s-t path P of length at most k + 1 in
H. By the assumption that G has more than k vertices, there is a vertex of G that does
not belong to P . Observe that P does not contain any internal vertex w of some Pu,v as
otherwise the pendant vertex adjacent to w becomes an isolated vertex by deleting V (P),
which implies H − V (P) has at least two connected components. Similarly, P does not
contain v∗. These facts imply that the internal vertices of P belong to V (G), and we have
|V (P) ∩ Vi| = 1 for all 1 ≤ i ≤ k. Let C = V (P) \ {s, t}. We claim that C is a clique in G.
Suppose otherwise. There is a pair of vertices u, v ∈ C that are not adjacent in G. This
implies that H contains the path Pu,v. However, as P contains both u and v, the internal
vertex of Pu,v together with its pendant vertex forms a component in H − V (P), yielding a
contradiction that P is a non-separating path in H. ◀

A. Abhinav et al. 6:7

Thus, we have the following theorem.

▶ Theorem 9. Shortest Non-Separating Path is W[1]-hard parameterized by k.

3.3 Graphs with the diameter-treewidth property
By Theorem 9, Shortest Non-Separating Path is unlikely to be fixed-parameter tractable
on general graphs. To overcome this intractability, we focus on sparse graph classes. We
first note that the algorithmic meta-theorems for FO Model Checking [12, 13] do not
seem to be applicable to Shortest Non-Separating Path as we need to care about the
connectivity of graphs. However, the property that vertex set X forms a non-separating s-t
path can be expressed as:

conn(V \ X) ∧ hampath(X, s, t),

where conn(Y) and hampath(Y, s, t) are formulas in MSO2 such that conn(Y) (resp.
hampath(Y, s, t)) is true if and only of the subgraph induced by Y is connected and (resp.
the subgraph induced by Y has a Hamiltonian path between s and t). We omit the details
of these formulas, which can be found in [6] for example2. By Courcelle’s theorem [5] and its
extension due to Arnborg et al. [1], we can compute a shortest non-separating s-t path in
O(f(tw(G))n) time, where n is the number of vertices and tw(G) is the treewidth3 of G. As
there is an O(tw(G)tw(G)3

n)-time algorithm for computing the treewidth of an input graph
G [2], we have the following theorem.

▶ Theorem 10. Shortest Non-Separating Path is fixed-parameter tractable parameter-
ized by the treewidth of input graphs.

A class C of graphs is minor-closed if every minor of a graph G ∈ C also belongs to C.
We say that C has the diameter-treewidth property if there is a function f : N → N such
that for every G ∈ C, the treewidth of G is upper bounded by f(diam(G)), where diam(G)
is the diameter of G. It is well known that every planar graph G has treewidth at most
3 ·diam(G)+1 [22]4, which implies that the class of planar graphs has the diameter-treewidth
property. This can be generalized to more wider classes of graphs. A graph is called an apex
graph if it has a vertex such that removing it makes the graph planar.

▶ Theorem 11 ([7, 9]). Let C be a minor-closed class of graphs. Then, C has the diameter-
treewidth property if and only if it excludes some apex graph.

For C ⊆ V (G) that induces a connected subgraph G[C], we denote by GC the graph
obtained from G by contracting G[C] into a single vertex vC and making vC adjacent to all
the vertices in N(C). Since G[C] is connected, vertex vC is well-defined.

▶ Lemma 12. Let C ⊆ V (G) be a vertex subset such that G[C] is connected. Let P be
an s-t path in G with V (P) ∩ C = ∅. Then, P is non-separating in G if and only if it is
non-separating in GC .

2 In [6], they give an MSO2 sentence hamiltonicity expressing the property of having a Hamiltonian
cycle, which can be easily transformed into a formula expressing hampath(X, s, t).

3 We do not give the definition of treewidth and (the optimization version of) Courcelle’s theorem. We
refer to [6] for details.

4 More precisely, the treewidth of a planar graph is upper bounded by 3r + 1, where r is the radius of the
graph.

MFCS 2022

6:8 On Non-Separating and Non-Disconnecting Paths and Sets

Proof. Suppose first that P is non-separating in G. Let u, v ∈ V (G) \ V (P) be arbitrary.
As P is non-separating, there is a u-v path P ′ in G − V (P). Let u′ be the vertex of GC such
that u′ = u if u /∈ C and u′ = vC if u ∈ C. Let v′ be the vertex defined analogously. We
show that there is a u′-v′ path in GC − V (P) as well. If P ′ does not contain any vertex in
C, then it is also a u′-v′ path in GC , and hence we are done. Suppose otherwise. Let x and
y be the vertices in V (P ′) ∩ C that are closest to u and v, respectively. Note that x and y

can be the end vertices of P ′, that is, C may contain u and v. Let Pu,x and (resp. Py,v) be
the subpath of P ′ between u and x (resp. y and v). Then, the sequence of vertices obtained
by concatenating Pu,x after Py,v − {y} and replacing exactly one occurrence of a vertex in
C with vC forms a path between u′ and v′. Since we choose u, v arbitrarily, there is a path
between any pair of vertices in GC − V (P) as well. Hence, P is non-separating in GC .

Conversely, suppose that P is non-separating in GC . For u, v ∈ V (GC) \ V (P), there is a
path P ′ in GC − V (P). Suppose that neither u = vC nor v = vC . Then, we can construct a
u-v path in G − V (P) as follows. If vC /∈ V (P ′), P ′ is also a path in G − V (P) and hence we
are done. Otherwise, vC ∈ V (P ′). Let Pu and Pv be the subpaths in P ′ − {vC} containing
u and v, respectively. From Pu and Pv, we have a u-v path in G by connecting them with
an arbitrary path in G[C] between the end vertices other than u and v. Note that such a
bridging path in G[C] always exists since G[C] is connected. Moreover, as V (P ′) ∩ C = ∅ and
V (P) ∩ C = ∅, this is also a u-v path in G − V (P). Suppose otherwise that either u = vC or
v = vC , say u = vC . In this case, we can construct a path between every vertex w in C and
v by concatenating P ′ and an arbitrary path in G[C] between w and the end vertex of the
subpath P ′ − {vC} other than v. Therefore, P is non-separating in G. ◀

Now, we are ready to state the main result of this subsection.

▶ Theorem 13. Let C be a graph class excluding a fixed apex graph H as a minor. Then,
Shortest Non-Separating Path on C is fixed-parameter tractable parameterized by k.

Proof. Let G ∈ C. We first compute B = {v ∈ V (G) : dist(s, v) ≤ k}. This can be done in
linear time. If t /∈ B, then the instance (G, s, t, k) is trivially infeasible. Suppose otherwise
that t ∈ B. Let C be a component in G − B. By definition, every non-separating s-t path P

of length at most k does not contain any vertex of C. Let G′ be the graph obtained from G

by contracting all edges in E(G − B). For each component C in G − B, we denote by vC the
vertex of G′ corresponding to C (i.e., vC is the vertex obtained by contracting all edges in
C). Then, we have diam(G′) ≤ 2k + 2 as diam(G[B]) ≤ k and every vertex in V (G′) \ B is
adjacent to a vertex in B. By Lemma 12, G has a non-separating s-t path of length at most
k if and only if so does G′. Since C is minor-closed, we have G′ ∈ C and hence the treewidth
of G′ is upper bounded by f(2k + 2) for some function f . By Theorem 10, we can check
whether G′ has a non-separating s-t path of length at most k in O(g(k)|V (G′)|) time. ◀

Theorem 10 does not give precise dependence on tw(G) in the running time of the
algorithm. In fact, given a tree decomposition of G of width tw(G) we can design an
algorithm for Shortest Non-Separating Path running in time 2O(tw(G))nO(1), using
matroid based tools [11]. Further, there exists a factor-2 approximation for tw(G) running
in time 2O(tw(G))n [16]. Combined with this we get the following result.

▶ Theorem 14. There exists an algorithm for Shortest Non-Separating Path running
in time 2O(tw(G))nO(1).

The proof of this result is based on the standard dynamic programming over graphs of
bounded treewidth together with representative sets and will appear in the final version of
the paper. Applying the result of Theorem 14 in Theorem 13, we get the following results.

A. Abhinav et al. 6:9

▶ Theorem 15. Let C be a graph class excluding a fixed apex graph H as a minor. Then,
Shortest Non-Separating Path on C admits an algorithm with running time 2O(k)nO(1).

3.4 TI-Shortest Non-Separating Path on Unit Disk Graphs
Given n unit disks in the plane, a unit disk graph G consists of n vertices, corresponding
to each disk, and there is an edge between two vertices if and only if the corresponding
unit disks intersect. For our problem, we are given a unit disk graph G = (V, E) and its
representation (D, C). Let V = {v1, v2, · · · , vn} and for each vi, Di be the corresponding
disk centered at ci. Here D = {Di| 1 ≤ i ≤ n} and C = {ci| 1 ≤ i ≤ n}.

▶ Reduction Rule 1. If G has more than two connected components then return NO.

▶ Lemma 16. Reduction Rule 1 is safe and can be implemented in polynomial time.

Let us assume that the graph has exactly two connected components. Observe that the
given instance is a YES instance if and only if at least one of the two components contains
exactly k vertices. Otherwise, the instance is a NO instance. The number of components in
the given graph and the number of vertices in each component can be checked in polynomial
time. Thus now onward we assume that G is connected. Let us consider a (1

2 × 1
2) square

grid on the plane. Let VS be the set of centers of the disks that are contained inside a grid
cell S; more formally, VS = {vi| ci ∈ S}. We also define N(V ′, S) as the set of vertices in
the cell S that are neighbors of vertices in V ′. For any cell S in the grid, next, we prove that
if S contains at least k + 24 centers then the given instance is a YES instance.

▶ Reduction Rule 2. If there exists a cell S with at least k + 24 centers, return YES.

▶ Lemma 17. Reduction Rule 2 is safe and can be implemented in polynomial time.

From now onwards we assume that each cell has at most k + 23 centers.

▶ Theorem 18. TI-Shortest Non-Separating Path can be solved in time 2O(k log k)nO(1)

on unit disk graphs.

Proof. We guess the first vertex of the path, say vi. Let Y be the set of vertices in the circle
drawn centering ci with radius k. Observe that the vertices of the solution path P must be a
subset of Y . There are at most O(k2) cells inside the circle drawn centering ci with radius k.
By Reduction Rule 2, no cell contains more than k + 23 vertices. Thus Y contains at most
O(k3) vertices. Now all we need to do is to guess a subset X of size k as potential vertices of
the path P and test that indeed it forms a path and G − X is connected. All this can be
done in

(
O(k3)

k

)
× k! × nO(1) = 2O(k log k)nO(1) time, concluding the proof. ◀

3.5 Chordal graphs with k = dist(s, t)
In Section 3.1, we have seen that Shortest Non-Separating Path is NP-complete even on
split graphs (and thus on more general chordal graphs as well). To overcome this intractability,
we restrict ourselves to finding a non-separating s-t path of length dist(s, t) on chordal graphs.

A graph G is chordal if it has no cycles of length at least 4 as an induced subgraph. In
the following, we fix a connected chordal graph G.

▶ Lemma 19. Let S ⊆ V (G) be a vertex set such that G[S] is connected. For u, v ∈ S, every
induced u-v path P in G satisfies that V (P) ⊆ N [S].

MFCS 2022

6:10 On Non-Separating and Non-Disconnecting Paths and Sets

For u, v ∈ V (G), a set of vertices S ⊆ V (G) \ {u, v} is called a u-v separator of G if there
is no u-v path in G−S. An inclusion-wise minimal u-v separator of G is called a minimal u-v
separator. A minimal separator of G is a minimal u-v separator for some u, v ∈ G. Dirac’s
well-know characterization [8] of chordal graphs states that a graph is chordal if and only if
every minimal separator induces a clique.

▶ Lemma 20. Let s, t ∈ V (G) be such that {s, t} /∈ E(G). If v ∈ V (G) \ {s, t} is an internal
vertex of a shortest s-t path P , then N [v] \ {s, t} is an s-t separator of G.

Proof. Let d = dist(s, t). For 0 ≤ i ≤ d, let

Di = {v ∈ V (G) : dist(s, v) = i ∧ dist(v, t) = d − i}

and V (P) ∩ Di = {ui}. Observe that each Di is a clique: if i ∈ {0, d}, then it is a singleton;
otherwise, it is a minimal s-t separator of the chordal graph G[

⋃
0≤j≤d Dj], meaning that

Di is a clique. From this observation, we have Di ⊆ N [ui] \ {s, t} for 0 < i < d. Let j

(0 < j < d) be the index such that v = uj .
Suppose to the contrary that there is an induced s-t path Q such that V (Q) ∩ (N [uj] \

{s, t}) = ∅. By Lemma 19, V (Q) ⊆ N [V (P)] =
⋃

0≤i≤d N [ui] holds. Since Q starts in
N [u0] and ends in N [ud], there are indices i and k with 0 ≤ i < j < k ≤ d such that Q

consecutively visits a vertex vi ∈ N [ui] and then a vertex vk ∈ N [uk] in this order. Since
dist(ui, uk) = k − i ≥ 2 and {vi, vk} ∈ E, at least one of vi ̸= ui and vk ≠ uk holds. By
symmetry, we assume that vi ̸= ui.

If vk = uk, then vi ∈ N(ui) ∩ N(uk). In this case, we have i = j − 1 and k = j + 1 since
otherwise P admits a shortcut using the subpath ⟨ui, vi, uk⟩. This implies that dist(s, vi) ≤
dist(s, ui)+1 = i+1 = j and dist(vi, t) ≤ 1+dist(vk, t) = 1+dist(uk, t) = 1+(d−k) = d−j.
Since dist(s, vi) + dist(vi, t) ≥ d, we have dist(s, vi) = j and dist(vi, t) = d − j. This implies
that vi ∈ Dj ⊆ N [uj] \ {s, t}, a contradiction.

Next we consider the case vk ̸= uk. Recall that we also have vi ̸= ui as an assumption.
In this case, we have k − i ≤ 3 as ⟨ui, vi, vk, uk⟩ is not a shortcut for P . Assume first
that k − i = 3. By symmetry, we may assume that i = j − 1 and k = j + 2. Since
dist(s, vi) ≤ dist(s, ui) + 1 = j and dist(vi, t) ≤ 2 + dist(uk, t) ≤ 2 + (d − k) = d − j, we have
vi ∈ Dj ⊆ N [uj] \ {s, t}, a contradiction. Next assume that k − i = 2. That is, i = j − 1 and
k = j + 1. Since vi, vk /∈ N [uj] \ {s, t} and P is shortest, the vertices vi, ui, uj , uk, vk are
distinct and form a cycle of length 5. Observe that vi /∈ {s, t} since otherwise ⟨vi = s, vk, uk⟩
or ⟨ui, vi = t⟩ is a shortcut. Similarly, vk /∈ {s, t}. Hence, vi, vk /∈ N [uj]. Therefore, the
possible chords for the cycle ⟨vi, ui, uj , uk, vk⟩ are {ui, vk} and {uk, vi}. In any combination
of them, the graph has an induced cycle of length at least 4. ◀

Let d and Di be defined as in the proof of Lemma 20, and let D =
⋃

0≤i≤d Di. Recall
that each Di is a clique. Observe that if |Di| = 1 for all 0 ≤ i ≤ d, then G contains a
unique shortest s-t path, and thus the problem is trivial. Otherwise, we define ℓ to be the
minimum index such that |Dℓ| > 1 and r to be the maximum index such that |Dr| > 1.
Since |D0| = |Dd| = 1, we have 0 < ℓ ≤ r < d.

Our algorithm works as follows.
1. If G contains a unique shortest s-t path P , then test if P is non-separating.
2. Otherwise, find a shortest s-t path P satisfying the following conditions.

a. V (P) does not contain a minimal a-b separator for all a ∈ Dℓ and b ∈ V \ D.
b. V (P) does not contain a minimal a-b separator for all a ∈ Dℓ and b ∈ Dr.

A. Abhinav et al. 6:11

▶ Lemma 21. The algorithm is correct.

▶ Lemma 22. The algorithm has a polynomial-time implementation.

We do not optimize the running time of the above algorithm, and a straightforward
implementation runs in time O(n2m), where n = |V (G)| and m = |E(G)|, which might be
improved with some data structure.

▶ Theorem 23. There is a polynomial-time algorithm for Shortest Non-Separating
Path on chordal graphs, given that k is equal to the shortest path distance between s and t.

4 Shortest Non-Disconnecting Path

The goal of this section is to establish the fixed-parameter tractability and a conditional
lower bound on polynomial kernelizations for Shortest Non-Disconnecting Path.

4.1 Fixed-parameter tractability
▶ Theorem 24. Shortest Non-Disconnecting Path can be solved in time 2ωknO(1),
where ω is the matrix multiplication exponent and n is the number of vertices of G.

To prove this theorem, we give a dynamic programming algorithm with the aid of
representative families of cographic matroids. Let (G, s, t, k) be an instance of Shortest
Non-Disconnecting Path. For 0 ≤ i ≤ k and v ∈ V (G), we define dp(i, v) as the family
of all sets of edges F satisfying the following two conditions: (1) F is the set of edges of
an s-v path of length i and (2) G − F is connected. An edge set F is legitimate if F forms
a path and G − F is connected. For a family of edge sets F and an edge e, we define
F ⋊⋉ e := {F ∪ {e} : F ∈ F} and leg(F) as the subfamily of F consisting of all legitimate
F ∈ F . The following simple recurrence correctly computes dp(i, v).

dp(i, v) =



{∅} i = 0 and s = v (3)
∅ i = 0 and s ̸= v (4)

leg

 ⋃
u∈N(v)

(dp(i − 1, u) ⋊⋉ {u, v})

 i > 0 . (5)

A straightforward induction proves that dp(i, t) ̸= ∅ if and only if G has a non-disconnecting
s-t path of length exactly i and hence it suffices to check whether dp(i, t) ̸= ∅ for 0 ≤ i ≤ k.
However, the running time to evaluate this recurrence is nO(k). To reduce the running time
of this algorithm, we apply Theorem 4 to each dp(i, v). Now, instead of (5), we define

dp(i, v) = repk−i

leg

 ⋃
u∈N(v)

(dp(i − 1, u) ⋊⋉ {u, v})

 , (3’)

where repk−i(F) is a (k − i)-representative family of F for the cographic matroid M =
(E(G), I) defined on G. In the following, we abuse the notation of dp to denote the families
of legitimate sets that are computed by the recurrence composed of (3), (4), and (3’).

▶ Lemma 25. The recurrence composed of (3), (4), and (3’) is correct, that is, G has a
non-disconnecting s-t path of length at most k if and only if

⋃
0≤i≤k dp(i, t) ̸= ∅.

MFCS 2022

6:12 On Non-Separating and Non-Disconnecting Paths and Sets

Proof. It suffices to show that dp(k′, t) ̸= ∅ if G has a non-disconnecting s-t path P of length
k′ ≤ k. Let P = (v0 = s, v1, . . . , vk′ = t) be a non-disconnecting path in G. We assume that
G has no non-disconnecting s-t path of length strictly smaller than k′. For 0 ≤ i ≤ k′, we let
Pi = (vi, vi+1, . . . , vk′). In the following, we prove, by induction on i, a slightly stronger claim
that there is a legitimate set F ∈ dp(i, vi) such that F ∪ E(Pi) forms a non-disconnecting s-t
path in G for all 0 ≤ i ≤ k′. As dp(0, s) = {∅} and P0 = P itself is a non-disconnecting path,
we are done for i = 0. Suppose that i > 0. By the induction hypothesis, there is a legitimate
F ∈ dp(i−1, vi−1) such that F ∪E(Pi−1) forms a non-disconnecting s-t path in G. Note that
F ∩ E(Pi−1) = ∅ as otherwise G has a non-disconnecting s-t path of length smaller than k′.
Let F = leg(

⋃
u∈N(vi)(dp(i − 1) ⋊⋉ {u, vi})). Since F ∪ E(Pi−1) is legitimate, F ∪ {{vi−1, vi}}

is also legitimate, implying that F is nonempty. Let F̂ = repk−i(F) be (k − i)-representative
for F , X = F ∪ {{vi−1, vi}}, and let Y = E(Pi). As |Y | ≤ k − i, X ∩ Y = ∅, and X ∪ Y ∈ I,
F̂ contains an edge set X̂ with X̂ ∩Y = ∅ and X̂ ∪Y ∈ I, implying that there is X̂ ∈ dp(i, vi)
such that X̂ ∪ E(Pi) forms a non-disconnecting s-t path in G. ◀

▶ Lemma 26. The recurrence can be evaluated in time 2ωknO(1) ⊂ 5.18knO(1), where
ω < 2.373 is the exponent of the matrix multiplication.

Proof. By Theorem 4, dp(i, v) contains at most 2kkn sets for 0 ≤ i ≤ k and v ∈ V (G) and
can be computed in time 2ωknO(1). ◀

Thus, Theorem 24 follows.

4.2 Kernel lower bound
It is well known that a parameterized problem is fixed-parameter tractable if and only if it
admits a kernel (see [6], for example). By Theorem 24, Shortest Non-Disconnecting
Path admits a kernel. A next natural step next is to explore the existence of polynomial kernel
for Shortest Non-Disconnecting Path. However, the following theorem conditionally
rules out the possibility of polynomial kernelization. We first show the following lemma.

▶ Lemma 27. Let H be a connected graph. Suppose that H has a cut vertex v. Let C be a
component in H − {v} and let F ⊆ E(H[C ∪ {v}]). Then, H − F is connected if and only if
H[C ∪ {v}] − F is connected.

Proof. If H − F is connected, then all the vertices in C ∪ {v} are reachable from v in H − F

without passing through any vertex in V (H) \ ({C} ∪ {v}). Thus, such vertices are reachable
from v in H[C ∪ {v}] − F . Conversely, suppose H[C ∪ {v}] − F is connected. Then, every
vertex in C is reachable from v in H − F . Moreover, as F does not contain any edge outside
H[C ∪ {v}], every other vertex is reachable from v in H − F as well. ◀

▶ Theorem 28. Unless coNP ⊆ NP/poly, Shortest Non-Disconnecting Path does not
admit a polynomial kernelization (with respect to parameter k).

Proof. We give an OR-composition for Shortest Non-Disconnecting Path. Let
(G1, s1, t1, k), . . . , (Gp, sp, tp, k) be p instances of Shortest Non-Disconnecting Path.

We assume that for 1 ≤ i ≤ p, ti is not a cut vertex in Gi. To justify this assumption,
suppose that ti is a cut vertex in Gi. Let C be the component in Gi − {ti} that contains
si. By Lemma 27, for any si-ti path, it is non-disconnecting in Gi if and only if so is in
Gi[C ∪ {ti}]. Thus, by replacing Gi with Gi[C], we can assume that ti is not a cut vertex
in Gi.

A. Abhinav et al. 6:13

s s1

s2

s3

s4

G1

G2

G3

G4
t

Figure 2 An illustration of the graph G obtained from q = 4 instances.

From the disjoint union of G1, . . . , Gp, we construct a single instance (G, s, t, k′) as follows.
We first add a vertex s and an edge between s and si for each 1 ≤ i ≤ p. Then, we identify
all ti’s into a single vertex t. See Figure 2 for an illustration.

In the following, we may not distinguish t from ti. Now, we claim that (G, s, t, k + 1) is a
yes-instance if and only if (Gi, si, ti, k) is a yes-instance for some i.

Consider an arbitrary s-t path in G. Observe that all edges in the path except for the
one incident to s are contained in a single subgraph Gi for some 1 ≤ i ≤ p as {s, t} separates
V (Gi)\{ti} from V (Gj)\{tj} for j ̸= i. Moreover, the path P forms P = (s, si, v1, . . . , vq, t),
meaning that the subpath P ′ = (s1, v1, . . . , vq, ti) is an si-ti path in Gi. This conversion is
reversible: for any si-ti path P ′ in Gi, the path obtained from P ′ by attaching s adjacent to
si is an s-t path in G. Thus, it suffices to show that for F ⊆ E(Gi), F ∪ {{s, si}} is a cut of
G if and only if F is a cut of Gi. Since t is a cut vertex in G − {{s, si}}, by Lemma 27, the
claim holds. ◀

We obtain the following result for the Smallest Non-Separating Set problem.

▶ Theorem 29. Unless coNP ⊆ NP/poly, Smallest Non-Separating Set does not admit
a polynomial kernelization (with respect to parameter k) on planar graphs.

Proof. We give an OR-composition for Smallest Non-Separating Set. Given t planar
graphs G1, G2, · · · , Gt where each Gi contains ni many vertices. We construct a new planar
graph G′ as follows. We create k + 2 many copies for each planar graph Gi. For each
planar graph G and a vertex v ∈ V (G) there exists a planar embedding with v on the
outer-face. Fix an arbitrary set of k + 2 distinct vertices in Gi, say v1, v2, · · · , vk+2. Then,
we obtain embeddings for G1

i , G2
i , · · · , Gk+2

i such that v1
i , v2

i , · · · , vk+2
i are on the outer-face,

respectively. Now add an edge between vℓ
i and vℓ+1

i for all 1 ≤ ℓ ≤ k + 1. Also, add an edge
between vk+2

i and v1
i+1 for all 1 ≤ i ≤ t − 1. That is these planar graphs are chained into a

path. It is easy to see that the resulting instance G′ is planar.

▷ Claim 30. G′ is a YES instance if and only if at least one of the Gi is a YES instance.

Proof. We prove the forward direction first. Assume that in G′, there exists a connected set
X of size k in G′ such that G′ − X is connected. Notice, deleting any vertex vj

i from Gj
i

where j ∈ [k + 1] makes the graph G′ disconnected. Thus X can not contain any vertex vj
i

from Gj
i where j ∈ [k + 1]. Hence, we can assume that X ∩ {vj

i } = ∅ in Gj for 1 ≤ j ≤ k + 2,
i.e X is contained completely inside any one of Gj

i without containing any vertex at the
outer face that shares edges with other copies of Gi. Therefore, X is of size k inside Gj

i and
Gj

i − X is connected. Hence, Gi is a YES instance.

MFCS 2022

6:14 On Non-Separating and Non-Disconnecting Paths and Sets

Now, we prove the reverse direction. Assume that there is a graph, Gi in which there
exists a connected set X of size k such that Gi − X is connected. Without loss of generality,
assume X = {v1, v2, · · · , vk}. Since Gi contains X, all the copies of Gi in G′ also contain X.
Now, we show that there exists a copy of Gi, say Gp

i in G′, that does not contain any vertex
of X on the outer face which shares edges with other copies of Gi. As |X| = k, observe that
there can be at most k many different copies of Gi in G′ which has a vertex of X on the
outer faces which shares edges with the other copies. Hence, by pigeon hole principle, there
exists at least a copy of Gi in G′ which has no vertex on the outer face that shares edges
with other copies. Thus, deleting X from that copy will not disconnect any Ga

i or Gb
j in the

graph G′. Therefore, G′ is also a YES instance. ◁

This concludes the proof. ◀

References
1 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable

graphs. J. Algorithms, 12(2):308–340, 1991. doi:10.1016/0196-6774(91)90006-K.
2 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.

SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.
3 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On

problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009. doi:
10.1016/j.jcss.2009.04.001.

4 Guantao Chen, Ronald J. Gould, and Xingxing Yu. Graph connectivity after path removal.
Comb., 23(2):185–203, 2003. doi:10.1007/s003-0018-z.

5 Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990.

6 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer Publishing
Company, Incorporated, 1st edition, 2015.

7 Erik D. Demaine and Mohammad Taghi Hajiaghayi. Diameter and treewidth in minor-
closed graph families, revisited. Algorithmica, 40(3):211–215, 2004. doi:10.1007/
s00453-004-1106-1.

8 G. A. Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar der
Universität Hamburg, 25:71–76, 1961.

9 David Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica,
27(3):275–291, 2000. doi:10.1007/s004530010020.

10 Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On
the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci.,
410(1):53–61, 2009. doi:10.1016/j.tcs.2008.09.065.

11 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. J. ACM,
63(4):29:1–29:60, 2016.

12 Martin Grohe and Stephan Kreutzer. Methods for algorithmic meta theorems. In AMS-ASL
Joint Special Session, volume 558 of Contemporary Mathematics, pages 181–206. American
Mathematical Society, 2009.

13 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. J. ACM, 64(3):17:1–17:32, 2017. doi:10.1145/3051095.

14 Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths in grid
graphs. SIAM J. Comput., 11(4):676–686, 1982. doi:10.1137/0211056.

15 Ken-ichi Kawarabayashi, Orlando Lee, Bruce A. Reed, and Paul Wollan. A weaker version
of lovász’ path removal conjecture. J. Comb. Theory, Ser. B, 98(5):972–979, 2008. doi:
10.1016/j.jctb.2007.11.003.

https://doi.org/10.1016/0196-6774(91)90006-K
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1007/s003-0018-z
https://doi.org/10.1007/s00453-004-1106-1
https://doi.org/10.1007/s00453-004-1106-1
https://doi.org/10.1007/s004530010020
https://doi.org/10.1016/j.tcs.2008.09.065
https://doi.org/10.1145/3051095
https://doi.org/10.1137/0211056
https://doi.org/10.1016/j.jctb.2007.11.003
https://doi.org/10.1016/j.jctb.2007.11.003

A. Abhinav et al. 6:15

16 Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In
62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO,
USA, February 7-10, 2022, pages 184–192. IEEE, 2021. doi:10.1109/FOCS52979.2021.00026.

17 Matthias Kriesell. Induced paths in 5-connected graphs. J. Graph Theory, 36(1):52–58, 2001.
doi:10.1002/1097-0118(200101)36:1<52::AID-JGT5>3.0.CO;2-N.

18 Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. Deterministic
truncation of linear matroids. ACM Trans. Algorithms, 14(2):14:1–14:20, 2018.

19 Xiao Mao. Shortest non-separating st-path on chordal graphs. CoRR, abs/2101.03519, 2021.
arXiv:2101.03519.

20 Haiko Müller. Hamiltonian circuits in chordal bipartite graphs. Discret. Math., 156(1-3):291–
298, 1996.

21 James G. Oxley. Matroid Theory (Oxford Graduate Texts in Mathematics). Oxford University
Press, Inc., USA, 2006.

22 Neil Robertson and Paul D. Seymour. Graph minors. III. planar tree-width. J. Comb. Theory,
Ser. B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.

23 William T. Tutte. How to draw a graph. Proceedings of the London Mathematical Society,
s3-13(1):743–767, 1963. doi:10.1112/plms/s3-13.1.743.

24 Bang Ye Wu and Hung-Chou Chen. The approximability of the minimum border problem. In
The 26th Workshop on Combinatorial Mathematics and Computation Theory, 2009.

MFCS 2022

https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.1002/1097-0118(200101)36:1<52::AID-JGT5>3.0.CO;2-N
http://arxiv.org/abs/2101.03519
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1112/plms/s3-13.1.743

	1 Introduction
	1.1 Our Results and Methods

	2 Preliminaries
	3 Shortest Non-Separating Path
	3.1 Hardness on graph classes
	3.2 W[1]-hardness
	3.3 Graphs with the diameter-treewidth property
	3.4 TI-Shortest Non-Separating Path on Unit Disk Graphs
	3.5 Chordal graphs with k = dist(s, t)

	4 Shortest Non-Disconnecting Path
	4.1 Fixed-parameter tractability
	4.2 Kernel lower bound

