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Abstract
Schelling’s famous model of segregation assumes agents of different types, who would like to be
located in neighborhoods having at least a certain fraction of agents of the same type. We consider
natural generalizations that allow for the possibility of agents being tolerant towards other agents,
even if they are not of the same type. In particular, we consider an ordering of the types, and
make the realistic assumption that the agents are in principle more tolerant towards agents of types
that are closer to their own according to the ordering. Based on this, we study the strategic games
induced when the agents aim to maximize their utility, for a variety of tolerance levels. We provide
a collection of results about the existence of equilibria, and their quality in terms of social welfare.
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1 Introduction

Residential segregation is a broad phenomenon affecting most metropolitan areas, and is
known to be caused due to racial or socio-economic differences. The severity of its implications
to society [5] is the main reason for the vast research attention it has received, with many
different models being proposed over the years that aim to conceptualize it (e.g., see [23]).
The most prominent of those models is that of Schelling [21, 22], which studies how motives
at an individual level can lead to macroscopic behavior and, ultimately, to segregation. In
particular, the individuals are modelled as agents of two different types (usually referred
to using colors, such as red and blue), and the environment is abstracted by a topology
(such as a grid graph), representing a city. The agents occupy nodes of the topology, and
prefer neighborhoods in which the presence of their own type exceeds a specified tolerance
threshold. If an agent is unhappy with her current location, then she either jumps to a
randomly selected empty node of the topology, or swaps positions with another random
unhappy agent. Schelling’s crucial observation was that such dynamics might lead to largely
segregated placements, even when the agents are relatively tolerant of mixed neighborhoods.

A recent series of papers (discussed in Section 1.2) have generalized Schelling’s model to
include more than two types, and have taken a game-theoretic approach, according to which
the agents behave strategically rather than randomly, aiming to maximize their individual
utility. There are many ways to define the utility of an agent i of type T . For instance, Elkind
et al. [16] defined it as the ratio of the number of agents of type T in i’s neighborhood over
the total number of agents therein. Echzell et al. [15] proposed a similar definition, which
however does not take into account all the agents of different type in the denominator, but
only those of the majority type. The first definition essentially assumes that the agents view
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all the agents of different type as enemies. On the other hand, the second definition assumes
that the agents view only the majority type as hostile. An alternative way of thinking about
these particular utility functions is as if the agents have binary tolerance towards other agents
in the sense that agents are either friends or enemies; in the case of Elkind et al. all the
neighbors of an agent are taken into account when computing her utility, whereas in the case
of Echzell et al. some of her neighbors are ignored.

These functions are natural generalizations of the quantity that determines the happiness
of agents in Schelling’s original model for two types. However, they fail to capture realistic
scenarios in which the agents do not have a single-dimensional view of the other agents, but
rather have different preferences over the different types of agents. For example, suppose
that the agents correspond to voters while the types correspond to political parties. In this
case the preferences of voters over other voters are defined based on the distances of the
political views expressed by the parties they are affiliated with. Another example is when
the types correspond to research areas, in which case people working on a specific research
agenda will be more willing to collaborate with other people working on related problems.

1.1 Our Contribution
To capture scenarios like the examples above, we propose a clean model that naturally
extends the model of Elkind et al. [16] by incorporating different levels of tolerance among
agent types, and study the induced strategic games in terms of the existence and quality of
their equilibria; in Section 5, we discuss potential generalizations of our model.

To be more specific, our model consists of a set of agents who are partitioned into λ ≥ 2
types of equal size, a graph topology, and an ordering of the different agent types which
determines the relative tolerance among agents of different types. Naturally, we assume that
there is higher tolerance between agents whose types are closer according to the ordering.
The exact degree of tolerance between the different types is specified by a tolerance vector,
which consists of weights representing the tolerance between the different types depending on
their distance in the given ordering. For example, agents of the same type are in distance 0
and are fully tolerant towards each other, which is captured by a weight of 1. The utility of
an agent can then be computed as a weighted average of the tolerance that she has towards
her neighbors, and every agent aims to occupy a node of the topology to maximize her utility;
agents are allowed to unilaterally jump to empty nodes to increase their utility.

We study the dynamics of such tolerance Schelling games. We first focus on questions
related to equilibrium existence. For general games, we show that equilibria are not guaranteed
to exist if agents are not fully tolerant towards agents in type-distance 1 (Theorem 2). We
complement this impossibility by showing many positive results for important subclasses of
games, in which the topology is a structured graph (such a 4-grid or a tree) and the tolerance
vector satisfies certain properties (Theorems 3, 5, 6 and 7). We then turn our attention
to the quality of equilibria measured by the social welfare objective, defined as the total
utility of the agents, and prove (asymptotically tight) bounds on the price of anarchy [19]
(Theorems 8 and 9) and price of stability [2] (Theorem 14), which depend on the number of
types, the number of agents and/or the tolerance parameters.

1.2 Related Work
Residential segregation, and Schelling’s original randomized model in particular, has been the
basis of a continuous stream of multidisciplinary research in Sociology [13], Economics [20, 25],
Physics [24], and Computer Science [4, 6, 8, 9, 17].
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Most related to our work is a quite recent series of papers in the TCS and AI communities,
which deviated from the premise of random behavior, and instead studied the strategic games
induced when the agents act as utility-maximizers. Chauhan et al. [12] studied questions
related to dynamics convergence in games with two types of agents who can either jump to
empty nodes of a topology (as in our case) or swap locations with other agents to minimize a
cost function; their model was generalized to multiple types of agents by Echzell et al. [15].
In this paper we extend the utility model of Elkind et al. [16], who initially refined the
cost model of Chauhan et al. [12]. They introduced a simpler utility function (fraction of
same-type agents in the one’s neighborhood) which the agents aim to maximize, and studied
the existence, complexity and quality of equilibria in jump games with multiple types of
agents and general topologies. They also proposed many interesting variants, such as enemy
aversion (agents might prefer being alone to being in a group full of agent of different type
than their own) and social Schelling games (where the agents types are determined by a
social network), which have been partially studied by Kanellopoulos et al. [18] and Chan et
al. [11], respectively. Agarwal et al. [1] studied similar existence, complexity and qualitative
questions for swap games. Bilò et al. [7] also focused on swap games, and in particular, on a
constrained setting, where the agents can only view a small part of the topology near their
current location and can only swap with agents in this part of the topology. Finally, Bullinger
et al. [10] and Deligkas et al. [14] studied the (parameterized) complexity of computing
assignments with good welfare guarantees, focusing on the social welfare, Nash welfare, and
Pareto optimality, and many other welfare objectives.

2 Preliminaries

A λ-type tolerance Schelling game consists of:
A set N of n ≥ 4 agents, partitioned into λ ≥ 2 disjoint sets T1, . . . , Tλ representing types,
such that

⋃
ℓ∈[λ] Tℓ = N .

A simple connected undirected graph G = (V, E) called topology, such that |V | > n.
A tolerance vector tλ = [t0, . . . , tλ−1] consisting of λ parameters, such that td represents
the tolerance that agents of type Tℓ have towards agents of type Tk in Manhattan
distance |ℓ − k| = d ∈ {0, . . . , λ − 1} according to a given ordering ≻ of the types (say,
T1 ≻ . . . ≻ Tλ). We assume that agents are more tolerant towards agents of types that
are closer to their own according to ≻, and we thus have that 1 = t0 ≥ . . . ≥ tλ−1 ≥ 0.
We also assume that tλ−1 < 1; otherwise, all agents are completely tolerant towards all
others and the game is trivial. Let τ =

∑λ−1
d=0 td be the sum of all tolerance parameters.

Clearly, the class of λ-type tolerance Schelling games includes as a special case the classic
Schelling games studied in the related literature (e.g., see [16]), for which t0 = 1 and td = 0
for every d ∈ {1, . . . , λ − 1}. Because of this particular tolerance vector, we will use the term
λ-type zero-tolerance games to refer to the classic Schelling games.

In this paper we consider balanced games, in which the agents are partitioned in types of
equal size, such that |Tℓ| = n/λ ≥ 2 for every ℓ ∈ [λ]; thus, n is a multiple of λ. Balanced
games are the most fundamental ones that admit non-trivial and interesting results1. We
use the abbreviation λ-TS to refer to such a balanced λ-type tolerance Schelling game
I = (N, G, tλ). For convenience, we will also use the abbreviation λ-ZTS to refer to a
balanced λ-type zero-tolerance game I = (N, G).

1 Note that equilibria are not guaranteed to exist even for balanced games (see Theorem 2), while it
is not hard to observe that the price of anarchy can be unbounded when the sizes of the types are
arbitrary [16].

MFCS 2022
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Let v = (vi)i∈N be an assignment specifying the node vi of G that each agent i ∈ N

occupies, such that vi ̸= vj for i ̸= j. The neighborhood of a node v consists of the nodes
at distance 1 from v in G. For every node v, we denote by nℓ(v|v) the number of agents
of type Tℓ that occupy nodes in the neighborhood of v according to the assignment v, and
also let n(v|v) =

∑
ℓ∈[λ] nℓ(v|v). Given an assignment v, the utility of agent i of type Tℓ is

computed as

ui(v) = 1
n(vi|v)

∑
k∈[λ]

t|ℓ−k| · nk(vi|v),

if n(vi|v) ̸= 0, and 0 otherwise (in which case we say that the agent is isolated). The agents
are strategic and aim to maximize their utility by jumping to empty nodes of the topology if
they can increase their utility by doing so. We say that an assignment v is an equilibrium if
no agent i of any type Tℓ has incentive to jump to any empty node v of the topology, that is,
ui(v) ≥ ui(v, v−i), where (v, v−i) is the assignment resulting from this jump. Let EQ(I) be
the set of equilibrium assignments of a given λ-TS game I.

The social welfare of an assignment v is defined as the total utility of the agents, that is,

SW(v) =
∑
i∈N

ui(v).

Let OPT(I) = maxv SW(v) be the maximum social welfare among all possible assignments
in the λ-TS game I. For a given subclass C of λ-TS games, the price of anarchy is defined as
the worst-case ratio, over all possible games I ∈ C such that EQ(I) ̸= ∅, between OPT(I)
and the minimum social welfare among all equilibria:

PoA(C) = sup
I∈C:EQ(I) ̸=∅

OPT(I)
minv∈EQ(I) SW(v) .

Similarly, the price of stability takes into account the ratio between OPT(I) and the maximum
social welfare among all equilibria:

PoS(C) = sup
I∈C:EQ(I)̸=∅

OPT(I)
maxv∈EQ(I) SW(v) .

3 Equilibrium Existence

In this section, we show several positive and negative results about the existence of equilibrium
assignments, for interesting subclasses of tolerance Schelling games. We start with the relation
of equilibrium assignments in λ-ZTS games and general λ-TS games.

▶ Theorem 1. Consider a λ-ZTS game I = (N, G) and a λ-TS game I ′ = (N, G, tλ). For
λ = 2, EQ(I ′) ⊆ EQ(I) and EQ(I) \ EQ(I ′) consists of assignments with isolated agents.
For λ ≥ 3, EQ(I) and EQ(I ′) are incomparable.

Proof. We start with λ = 2; for convenience, we will refer to the two types as red and blue.
Let v be an equilibrium of I ′. Clearly, for I and I ′ to be different, it must be the case
that t1 > 0. Consequently, there are no isolated agents in v as they would have incentive to
deviate to nodes that are adjacent to any other agent and increase their utility from 0 to
(at least) t1. We will show that v is an equilibrium of I as well. Without loss of generality,
consider a red agent i who occupies a node vi that is adjacent to nr(vi) red and nb(vi) blue
agents. Since agent i is not isolated, it holds that nr(vi) + nb(vi) ≥ 1. If nb(vi) = 0, then



P. Kanellopoulos, M. Kyropoulou, and A. A. Voudouris 60:5

agent i has maximum utility 1 in both I and I ′. Hence, we can assume that nb(vi) ≥ 1.
Since v is an equilibrium of I ′, agent i has no incentive to unilaterally jump to any empty
node v of the topology. That is,

nr(vi) + t1 · nb(vi)
nr(vi) + nb(vi)

≥ nr(v) + t1 · nb(v)
nr(v) + nb(v) ⇔ (1 − t1)

(
nr(vi)
nb(vi)

− nr(v)
nb(v)

)
≥ 0,

where nr(v) and nb(v) are the number of red and blue agents that are adjacent to v after
agent i jumps to v; observe that nb(v) ≥ 1, as otherwise agent i would obtain maximum
utility of 1 by jumping to v, contradicting that v is an equilibrium of I ′. Since t1 < 1, we
equivalently have that

nr(vi)
nb(vi)

≥ nr(v)
nb(v) ⇔ nr(vi)

nr(vi) + nb(vi)
≥ nr(v)

nr(v) + nb(v) .

Therefore, agent i has no incentive to jump to the empty node v in I, and v is an equilibrium
of I as well. Using similar arguments, we can show that any equilibrium of I such that there
is no isolated agent is also an equilibrium of I ′.

For λ ≥ 3, to show that EQ(I) is incomparable to EQ(I ′), consider the tolerance vector
t3 = (1, 1/2, 0) and the following two partial assignments v and v′:

In v, an agent i of type T1 occupies a node vi which is adjacent to two nodes, one
occupied by an agent of type T1 and one occupied by an agent of type T3. There is also
an empty node v which is adjacent to two nodes, one occupied by an agent of type T1
and one occupied by an agent of type T2. In I, agent i has no incentive to jump from
vi to v as both nodes give her utility 1/2. On the other hand, in I ′, agent i has utility
(1 + t2)/2 = 1/2 and has incentive to jump to v to increase her utility to (1 + t1)/2 = 3/4.
Hence, v can be an equilibrium of I, but not of I ′.
In v′, an agent i of type T1 occupies a node vi which is adjacent to three nodes, one
occupied by an agent of type T1, one occupied by an agent of type T2 and one occupied
by an agent of type T3. There is also an empty node v which is adjacent to two nodes,
one occupied by an agent of type T1 and one occupied by an agent of type T3. In I,
agent i has incentive to jump from vi to v in order to increase her utility from 1/3 to 1/2.
However, in I ′, agent i has no incentive to jump as she has utility (1 + t1)/3 = 1/2 by
occupying node vi, which is exactly the utility she would also obtain by jumping to v.
Consequently, v′ can be an equilibrium of I ′, but not of I.

This completes the proof. ◀

Since there exist simple 2-ZTS games that do not admit any equilibria [16], the first part
of Theorem 1 implies that equilibria are not guaranteed to exist for general 2-TS games as
well. In fact, by carefully inspecting the proof of Elkind et al. [16] that λ-ZTS games played
on trees do not always admit equilibria for every λ ≥ 2, we can show the following stronger
impossibility result.

▶ Theorem 2. For every λ ≥ 2 and every tolerance vector tλ such that t1 < 1, there exists a
λ-TS game I = (N, G, tλ) in which G is a tree and does not admit any equilibrium.

Since Theorem 2 implies that it is impossible to hope for general positive existence results,
in the remainder of this section we focus on games with structured topologies and tolerance
vectors. In particular, we consider the class of α-binary λ-TS games with α ∈ {1, . . . , λ} in
which the tolerance vector tλ is such that

MFCS 2022
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td =
{

1, if d < α

0, otherwise.

Clearly, the class of 1-binary λ-TS games coincides with that of λ-ZTS.
We next show that when the topology is a grid2 or a tree, there exist values of α ∈

{1, . . . , λ} for which α-binary λ-TS games played on such a topology always admit at least
one equilibrium. Our first result for grids is the following.

▶ Theorem 3. Every 2-ZTS game I = (N, G) in which G is a grid admits at least one
equilibrium.

The proof of Theorem 3 is constructive and such that in the computed equilibrium no
agent is isolated. Consequently, in combination with Theorem 1, it further implies the
following:

▶ Corollary 4. Every 2-TS game I = (N, G, t2) in which G is a grid admits at least one
equilibrium.

Unfortunately, showing a result similar to Theorem 3 for every λ ≥ 3 is a very challenging
task. Instead, we show the following result for 2-binary games.

▶ Theorem 5. Every 2-binary λ-TS game I = (N, G, tλ) in which G is a grid admits at
least one equilibrium.

Proof. Consider a 2-binary λ-TS game with n agents played on an m × M grid (m rows
and M columns) such that m ≤ M . Let x = n/λ ≥ 2 be the number of agents per type and
e = mM − n be the number of empty nodes.

We compute an equilibrium assignment v using Algorithm 1, which in turn relies on
the Tile procedure described in Algorithm 2. In particular, Algorithm 2 considers the yet
unassigned agents in increasing type according to the ordering ≻, and assigns them in an
r × M subgrid having row s as the top row, so that the k leftmost nodes of the top row
are left empty, while all other nodes host an agent (assuming the number of unassigned
agents is large enough). Tile visits these rows in a column-major order, skipping the empty
nodes. Informally, Algorithm 1 repeatedly calls Algorithm 2 to compute an assignment for
consecutive sub-grids, along the largest dimension of the topology. The exact size of the
sub-grid considered at each time is determined by the number of remaining rows of the
topology.

Algorithm 1 terminates immediately (at any step) when all agents have been assigned.
First, observe that if it terminates in Lines 3 or 7, each agent of type ℓ has neighbors of
types in {ℓ − 1, ℓ, ℓ + 1}, and, hence, v is an equilibrium. Note that the algorithm cannot
terminate at Line 11 since e < M , so let us assume that the algorithm terminates in Line 14.
Again, all agents placed in Line 3 have utility 1. Each agent i of type ℓ placed during Line
11 has utility at least 2/3; indeed, i has at least one neighbor of type ℓ, at least one neighbor
of a type in {ℓ − 1, ℓ + 1}, and at most one neighbor of type at distance at least 2. If α = 1
all agents placed in Line 14 have utility 1. Otherwise, agents placed in Line 14 at the last
x − 1 rows have utility 1, while any agent on the row with the empty nodes has utility at
least 1/2 when e = M − 1, and at least 2/3 otherwise.

2 We focus on 4-grids where internal nodes have 4 neighbors.
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Algorithm 1 Equilibrium construction for a 2-binary λ-TS game on an m × M grid.
/* x: number of agents per type */

/* e: number of empty nodes */

/* The algorithm terminates immediately when all agents have been assigned. */

1 Initialize k = 0
2 while x ≤ m − k and e ≥ M do
3 Tile(k + 1, x, 0)
4 leave the next row empty
5 update k := k + x + 1, e := e − M

6 if x > m − k then
7 Tile(k + 1, m − k, 0)
8 else /* In this case it holds that e < M and x ≤ m − k */

9 Define non-negative integers α ∈ N>0 and β ≤ x − 1 such that m − k = αx + β

10 for i = 1, . . . , α − 1 do
11 Tile(k + 1, x, 0)
12 update k := k + x

13 if β = 0 then
14 Tile(k + 1, x, e)
15 else if β = 1 then
16 if Line 3 was executed then
17 Shift all agents down by one row
18 Tile(1, 1, e)
19 Tile(k + 2, x, 0)
20 else
21 Tile(k + 1, 1, e)
22 Tile(k + 2, x, 0)

23 else
24 Tile(k + 1, x, 0)
25 Tile(k + x + 1, β, e)

Algorithm 2 Tile(s, r, k).

/* s, r: starting row and number of rows definining an r × M grid */

/* k: number of nodes to be left empty */

for i = 1 to k do
mark node (s, i) as empty

for j = 1 to M do
for i = s to s + r − 1 do

if node (i, j) is unmarked then
place the next agent (if one exists) according to the ordering ≻ at node
(i, j)

MFCS 2022
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Figure 1 On the left, an example of how Algorithm 1 operates when it terminates in Line 19.
On the right, an example when the algorithm terminates in Line 14. Agents of the same number
and color are of the same type, while ≻ is {1, 2, . . . , 9, 0, a, b, c}.

If the algorithm terminates in Line 19 (see also the leftmost part of Figure 1), agents
placed in Lines 3, 11, or 19 have utility at least 2/3, while agents placed in Line 18 have
utility at least 1/2. If the algorithm terminates in Line 22, agents placed in Line 3 have
utility 1, agents placed in Lines 11 and 22 have utility at least 2/3, while agents placed in
Line 21 have utility at least 2/3 except (perhaps) the first and the last agent on the row that
have utility at least 1/3. If the algorithm terminates in Line 25, again all agents placed in
Line 3 have utility 1, while agents placed in Lines 11 and 24 have utility at least 2/3. Finally,
the agents placed in Line 25 have utility at least 1/2 if e = M − 1 and at least 2/3 otherwise.

We now argue that no agent has an incentive to jump. Note that an empty node may
have another empty node as a top or bottom neighbor if the algorithm terminates in Line
3, or in Line 7, or in Line 14 in case α = 1. In all these cases, by the discussion above, all
agents have utility 1 and the assignment is an equilibrium. Also, note that an empty node
has always a bottom neighbor, while the only case the empty node has no top neighbor is
if the algorithm terminates in Line 19. In that case, any agent with utility less than 1 can
obtain utility at most 1/2 by jumping; again, v is an equilibrium.

So, in the following we assume that any empty node has a top and bottom neighboring
agent. Observe that, in that case, an agent gets utility at most 2/3 by jumping to an empty
node, since either the top or the bottom neighbor will have a large type distance and there
is no left neighbor. As in almost all cases, agents in v have utility at least 2/3, it remains to
argue about the nodes that have utility less than that. The agent in Line 14 with utility
1/2 (when α > 1) obtains utility at most 1/2 by jumping, the agents in Line 21 with utility
at least 1/3 obtain utility at most 1/3 by jumping, and, finally, the agent in Line 25 with
utility 1/2 obtains utility at most 1/2 by jumping. We conclude that v is an equilibrium and
the theorem follows. ◀

Note that Algorithm 1 may fail to return an equilibrium for lexicographically larger
tolerance vectors. Indeed, consider a 4 × 4 grid and 7 types of two agents each. Algorithm 1
puts agents of types 1 to 4 in each of the first two rows, skips 2 nodes, puts agents of types 6
and 7 in the third row, and places agents of types 5, 5, 6 and 7 in the last row; see also the
rightmost example in Figure 1. Under tolerance vector t7 = {1, 1, 0, 0, 0, 0, 0} the assignment
is an equilibrium (by Theorem 5), while under tolerance vector t′

7 = {1, 1, t2 > 1
2 , 0, 0, 0, 0},

the agent of type 4 in the second row has utility 2/3, but can obtain utility 1+2t2
3 > 2/3 by

jumping to the rightmost empty node.
So, a different algorithm is needed for computing equilibria in α-binary games with α ≥ 3.

While we have not been able to show this result for every α, we do show it for α ≥
√

λ. In
particular, the equilibrium constructed in the proof of the next theorem guarantees a utility
of 1 to all agents, and thus it is also an equilibrium for games with lexicographically larger
tolerance vectors, not necessarily binary ones.



P. Kanellopoulos, M. Kyropoulou, and A. A. Voudouris 60:9

Algorithm 3 Equilibrium construction for a
⌊

λ
2

⌋
-binary λ-TS game on a tree (or games

with lexicographically larger tolerance vectors).

/* tree1, . . . , treek denote the subtrees of the tree topology in non-increasing order

by size, when the topology is rooted at a centroid node. */

1 Run Bottom-Up(tree1, T1, T2, . . . , T⌈ λ
2 ⌉). If at least one agent of type T1 remains

unassigned, repeat with the next subtree. Let a ≤
⌈

λ
2
⌉

be the smallest type index
among unassigned agents, and let treek1 be the last subtree considered in this step.

2 Run Bottom-Up(treek1+1, Tλ, Tλ−1, . . . , T⌈ λ+1
2 ⌉), where Ti are the unassigned

agents of types Ti, i = λ, . . . ,
⌈

λ+1
2

⌉
. If at least one agent of type Tλ remains

unassigned, repeat with the next subtree. Let b ≥
⌈

λ+1
2

⌉
be the largest type index

among unassigned agents, and let treek2 be the last subtree considered in this step.
3 Run Bottom-Up(treek2+1, Ta, Ta+1, . . . , Tb), where Ti are the unassigned agents of

types Ti, i = a, . . . , b. Repeat with the next subtree and the unassigned agents of
these types, until all agents have been assigned.

4 If the last subtree among the ones considered in the previous steps contains at least
two isolated agents, then rearrange them within this subtree so that each of them
has at least one neighbor. If the last subtree contains a single isolated agent, then
move this agent to the root of the tree.

▶ Theorem 6. For λ ≥ 3, every
√

λ-binary λ-TS game I = (N, G, tλ) in which G is a grid
admits at least one equilibrium.

Next we turn our attention to games in which the topology is a tree. We show the
following result for α-binary games when λ ≥ 3.

▶ Theorem 7. Every 2-binary 3-TS game I = (N, G, t3) and every α-binary λ-TS game
I = (N, G, tλ) where α ≥

⌊
λ
2
⌋

for λ ≥ 4, in which G is a tree, admit at least one equilibrium.

Proof. To construct an equilibrium, we exploit the following known property of trees: Every
tree with x ≥ 3 nodes contains a centroid node, whose removal splits the tree into at least
two subtrees with at most x/2 nodes each. We root the tree from such a centroid node, and
leave the root empty. This leads to a partition of the topology in k ≥ 2 subtrees, which we
order in non-increasing size and denote by tree1, . . . , treek.

To assign the agents we use Algorithm 3, which in turn uses the Bottom-Up allocation
procedure (described in Algorithm 4). The procedure Bottom-Up(tree, T1, T2, . . . , Ts)
assigns the unassigned agents of types T1, T2, . . . , Ts to the nodes of the subtree tree from
bottom to top (higher to lower depth), so that all the agents of T1 are covered by either
agents of the same type or agents of type T2, and the assignment for the remaining agents
is connected. Informally, Algorithm 3 roots the topology at a centroid node and considers
subtrees in non-increasing size. As long as agents of type T1 are remaining, Algorithm 3
applies the Bottom-Up procedure to the next subtree with agents in increasing type index.
Then, as long as agents of type Tλ are remaining, Algorithm 3 applies the Bottom-Up
procedure to the next subtree with agents in decreasing type index. The remaining (smaller)
subtrees are filled with the remaining agents, again using the Bottom-Up procedure.

We first claim that at the end of Step 3 of Algorithm 3, every agent either gets utility 1
or gets utility 0 if she is isolated. Indeed, it holds that agents of type T1 can only be adjacent
to agents of type T1 and T2. Similarly, the agents of type Tλ can only be adjacent to agents
of type Tλ and Tλ−1. In addition, by design, the maximum type distance among all the other
agents assigned in Steps 1 and 2 is

⌈
λ
2
⌉

− 2. By this discussion, all agents have utility 1 when
λ = 3 and the game is 2-binary. Below, we assume that λ ≥ 4.
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Algorithm 4 Bottom-Up(tree, T1, T2, . . . , Ts).

/* For i = 1, . . . , s, Ti is the set of unassigned agents of a given type */

/* The algorithm terminates immediately when all agents have been assigned or all

nodes of tree have been occupied. */

1 Start at the lowest level of tree and place agents of type T1 so that an agent of type
T1 is placed at level h only if all nodes at levels at least h + 1 have been filled.
Furthermore, and assuming the previous condition holds, after filling a node at level
h we give priority to its sibling nodes. Continue until all agents of type T1 have been
assigned.

2 Consider the agents of type T2. Begin by placing an agent of type T2 to any empty
node having a child occupied by an agent of type T1 and repeat until the parent
nodes of all agents of type T1 are occupied. This is feasible as long as there are at
least as many agents of type T2 as there are agents of type T1. Continue by placing
agents of type T2 arbitrarily in tree by maintaining a connected assignment.

3 Arbitrarily assign the remaining agents in order of input so that the assignment
remains connected after assigning each agent.

To see the claim is true for agents assigned in Step 3, observe that if Step 2 is applied on
a subtree of at least n/3 nodes, then since we visit subtrees in non-increasing order of their
size, Step 1 is also applied on a subtree of at least n/3 nodes. Hence, at most n/3 agents
remain to be allocated. Otherwise, if no subtree on which Step 2 is applied has at least n/3
nodes, then, again due to the order we visit subtrees, any subtree to which we perform Step
3 has less than n/3 nodes. In any case, at most n/3 agents will be allocated at Step 3 at any
given subtree. These agents belong to at most ⌈λ/3⌉ + 1 different types and, due to Steps
2 and 3 in Algorithm 4, we are guaranteed that no agent allocated in Step 3 will have a
neighbor of type-distance ⌈λ/3⌉. Since ⌈λ/3⌉ − 1 ≤ ⌊λ/2⌋ − 1, such agents either get utility
1, or 0 if they are isolated, as required.

It remains to argue that after a possible execution of Step 4, no agent has a profitable
deviation. We distinguish between the following two cases when Step 4 is performed:

Case I: There are at least two isolated agents in the last subtree among those considered in
the first three steps. First observe that, since the subtrees are considered in non-increasing
order by size and the last subtree contains at least two agents, there is no subtree with a
single isolated agent. Now, by the definition of the bottom-up-like allocation algorithm,
all these agents must be of the last type Tb, since if agents of two or more types are
assigned in the same subtree, the resulting assignment therein is by construction connected.
Therefore, by rearranging the agents of type Tb in the last subtree so that all of them have
at least one neighbor, each of them gets utility 1 and the assignment is an equilibrium.
Case II: There is a single isolated agent i in the last subtree of the last type Tb considered,
who is moved to the root of the tree. Since Step 4 is performed, all the subtrees that have
been considered in the first three steps are full, with the exception of the last subtree
which has been left empty after moving agent i. Thus, the empty nodes of the topology
are only adjacent to other empty nodes or the root. As a result, an agent of some type
ℓ ∈ [λ] would be able to get utility t|ℓ−b| by jumping to an empty node that is adjacent
to the root, and utility 0 by jumping to any other empty node. However, every agent
j ̸= i already has utility at least t|ℓ−b|. In particular, agent j has utility 1 if she is not
adjacent to the root, utility at least 1+t|ℓ−b|

2 ≥ t|ℓ−b| if she is adjacent to the root but not
isolated before moving i to the root, and utility exactly t|ℓ−b| if she is adjacent to the
root and was isolated before moving i to the root.

This completes the proof. ◀
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For λ = 3, Theorem 7 is tight in the sense that equilibria are not guaranteed to exist
when t1 < 1 (Theorem 2). For λ ≥ 4, it is not hard to observe that the assignment computed
is also an equilibrium in games with lexicographically larger vectors (not necessarily binary
ones) than the one stated.

4 Quality of Equilibria

In this section, we consider the quality of equilibria measured in terms of social welfare, and
bound the price of anarchy and price of stability. Recall that these notions compare the
social welfare achieved in the worst and best equilibrium to the maximum possible social
welfare achieved in any assignment. We start with a general upper bound on the price of
anarchy, whose proof follows by bounding the social welfare at equilibrium by the total utility
the agents would be able to obtain by jumping to an arbitrary empty node. Recall that
τ =

∑λ−1
d=0 td.

▶ Theorem 8. The price of anarchy of λ-TS games with tolerance vector tλ is at most λn
τn−λ .

Proof. Consider a λ-TS game I = (N, G, tλ) with EQ(I) ̸= ∅. Let v be an equilibrium,
and denote by v an empty node. The utility that an agent of type Tℓ, ℓ ∈ [λ] would obtain
by unilaterally jumping to v is

1
n(v)

∑
k∈[λ] t|ℓ−k| · nk(v) if she is not adjacent to v;

1
n(v)−1

(∑
k∈[λ] t|ℓ−k| · nk(v) − 1

)
otherwise.

Also observe that for every type Tℓ, ℓ ∈ [λ] there are exactly n
λ − nℓ(v) agents that are not

adjacent to v, and nℓ(v) agents that are adjacent to v. Since v is an equilibrium, every agent
of type Tℓ is guaranteed to have at least as much utility as if she were to deviate to v, and
therefore the social welfare is

SW(v) ≥ 1
n(v)

∑
ℓ∈[λ]

(n

λ
− nℓ(v)

) ∑
k∈[λ]

t|ℓ−k| · nk(v)

+ 1
n(v) − 1

∑
ℓ∈[λ]

nℓ(v) ·

 ∑
k∈[λ]

t|ℓ−k| · nk(v) − 1


≥ 1

n(v)
∑
ℓ∈[λ]

n

λ

∑
k∈[λ]

t|ℓ−k| · nk(v) − nℓ(v)


= 1

n(v)
∑
ℓ∈[λ]

nℓ(v) ·

n

λ

∑
k∈[λ]

t|ℓ−k| − 1


= 1

λ · n(v)
∑
ℓ∈[λ]

nℓ(v)

n
∑

k∈[λ]

t|k−ℓ| − λ

 .

The second inequality is due to increasing the denominator of the second fraction. The
first equality follows by aggregating the factors of nℓ(v) for every ℓ ∈ [λ]. Finally, the
second equality follows by factorizing λ. Now observe that because the tolerance vector tλ is
non-increasing, we have that

∑
k∈[λ] t|ℓ−k| ≥

∑λ−1
d=0 td = τ . Combining this together with the

fact that n(v) =
∑

ℓ∈[λ] nℓ(v), we obtain

SW(v) ≥ τn − λ

λ
.

The bound on the price of anarchy follows by the fact that the optimal welfare is at most n

(the maximum utility of any agent is 1). ◀
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𝐾1

𝑐𝐾2

𝐾3

Figure 2 An instance used for the proof of Theorem 9 for the case of 3 types and 21 agents,
so that each type has 7 agents. The big squares K1, K2, K3 correspond to cliques of size 7 (the
number of agents per type), while the ovals represent cliques of size 3 (the number of types). In an
optimal assignment, each large clique contains agents of the same type and each agent gets utility 1.
In a bad equilibrium, each small clique contains a single agent of each type and all gray nodes are
left empty. For each type ℓ ∈ [3], all but one agents of type ℓ get utility τℓ/3, while the last agent
gets utility (τℓ − 1)/2.

For each ℓ ∈ {1, . . . , λ}, let τℓ =
∑

k∈[λ] t|ℓ−k| be the total tolerance of agents of type ℓ

towards any subset containing one agent of every type. We can show the following general
lower bound on the price of anarchy, as a function of these parameters; see Figure 2 for a
sketch of the proof for λ = 3.

▶ Theorem 9. The price of anarchy of λ-TS games with tolerance vector tλ is at least

λn∑
ℓ∈[λ]

τℓ

λ n −
λ2−

∑
ℓ∈[λ]

τℓ

λ−1

≥ λn
2(λ−1)τ

λ n − λ2

λ−1 + 2τ
.

From Theorems 8 and 9 we obtain an asymptotically tight bound for general λ-TS games.

▶ Corollary 10. The price of anarchy in λ-TS games is Θ(λ/τ).

Theorem 9 allows us to provide concrete bounds for subclasses of λ-TS games. In
particular, for λ-ZTS games, since τℓ = 1 for every ℓ ∈ [λ], we have

∑
ℓ∈[λ] τℓ = λ, and thus

the left-hand-side of the inequality in Theorem 9 allows us to improve upon the weaker lower
of [16] and obtain the following tight bound, for any values of n and λ.

▶ Corollary 11. The price of anarchy of λ-ZTS games is λn
n−λ .

We now define the following two natural classes of λ-TS games in which the tolerance
parameters are specific functions of the distance between the types. In the first one, the
difference of the tolerance level is proportional to the type distance, while in the other, the
difference of the tolerance is decreasing in the type distance in an inversely proportional way.

Proportional λ-TS games: td = 1− d
λ−1 for each d ∈ {0, . . . , λ−1}, while τ =

∑
ℓ∈[λ]

ℓ−1
λ−1 =

λ
2 .

Inversely proportional λ-TS games: td = 1
d+1 for every d ∈ {0, . . . , λ − 1}. We have

τ =
∑

ℓ∈[λ]
1
ℓ = Hλ, where Hλ is the λ-th harmonic number.

By Theorems 8, 9 and the above definitions, we obtain the following corollaries.
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▶ Corollary 12. For every λ ≥ 2, the price of anarchy of proportional λ-TS games is at most
2n

n−2 and at least λn
(λ−1)n− λ

λ−1
.

▶ Corollary 13. For every λ ≥ 2, the price of anarchy of inversely proportional λ-TS games
is at most λn

Hλn−λ and at least λn
2(λ−1)

λ Hλn− λ2
λ−1 +2Hλ

.

We conclude our technical contribution with a lower bound on the price of stability for
the case of two types of agents. For 2-ZTS games, the following lower bound improves upon
the bound of 34/33 of Elkind et al. [16], and is also tight when the number of agents tends
to infinity because of the upper bound implied by Theorem 8; recall that τ = 1 for λ-ZTS
games.

▶ Theorem 14. The price of stability of 2-TS games is at least 2/τ − ϵ, for any ϵ > 0.

5 Open Problems

The most important question that our work leaves open is the characterization of games for
which equilibria always exist. As this is a quite general and challenging direction, one could
start with games that exhibit some structure in terms of the topology or the tolerance vector.
For instance, do equilibria exist when the topology is a grid (4-grid or 8-grid) or a regular
graph, for every tolerance vector?

The tolerance model we defined in this paper depends on a given ordering of the types
and the tolerance parameters are symmetric. While this model captures certain interesting
settings, there are multiple ways in which it can be generalized. For example, the tolerance
parameters do not need to be symmetric and a different tolerance vector could be defined
per type. Taking this further, the tolerance between types does not need to depend on an
ordering of the types. Instead, one could define a weighted, directed tolerance graph that
is defined over the different types such that the edge weights indicate the tolerance of a
type towards another type; our ordered model can be thought of as the special case with an
undirected tolerance line graph. In fact, one could further generalize this idea by considering
scenarios in which there are no types of agents at all, but rather the agents are connected
to each other via a complete weighted social network, with the different weights indicating
tolerance levels. This is essentially a generalization of the class of social Schelling games
proposed by Elkind et al. [16], and is inspired by fractional hedonic games [3].
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