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Abstract
We study the problem of active learning deterministic visibly pushdown automata. We show that
in the classical L∗-setting, efficient active learning algorithms are not possible. To overcome this
difficulty, we propose the accessible stack setting, where the algorithm has the read and write access
to the stack. In this setting, we show that active learning can be done in polynomial time in the
size of the target automaton and the counterexamples provided by the teacher. As counterexamples
of exponential size are inevitable, we consider an algorithm working with words in a compressed
representation via (visibly) Straight-Line Programs. Employing compression allows us to obtain
an algorithm where the teacher and the learner work in time polynomial in the size of the target
automaton alone.
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1 Introduction

Visibly pushdown automata (VPA), also known as input-driven pushdown automata, are a
subclass of pushdown automata, in which the type of stack operation is determined by the
input letter [33, 4]. This implies that the stack height, but not its content, is determined
by the input word. This enables the construction of the product VPA from two given VPA.
In consequence, the class of visibly pushdown languages recognized by VPA is closed under
intersection, union and complement, which makes the universality problem decidable.

Even though VPA can be determinized, deterministic VPA (DVPA) enjoy better com-
plexity properties: DVPA recognizing the union, the intersection or the complement of other
DVPAs can be computed in polynomial time. In consequence, inclusion, equivalence and
universality for DVPA can be decided in polynomial time. In contrast, the universality
problem for VPA is ExpTime-complete, which implies that the exponential blow-up in the
complementation (resp., determinization) of VPA is unavoidable. These properties render
DVPA attractive for verification [16, 2, 28, 15], XML processing [31], approximating recurrent
neural networks [12] and others [22].

For successful applications of DVPA, elimination of redundancy is essential. Furthermore,
beyond minimization of a given DVPA [17], the automaton can be given implicitly, or before
the minimization it can be too big to be constructed. The problem of minimization without
explicit construction of the input DVPA can be addressed with active learning.

Active learning of automata has been originally proposed for deterministic finite-state
automata (DFA) [6] with a minimally adequate teacher, which is an oracle for a hidden
regular language L. The teacher answers membership queries whether a given word belongs
to L, and equivalence queries whether a proposed automaton recognizes L, and if not it
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returns a counterexample. There is a polynomial-time algorithm, called the L∗ algorithm,
which only asks membership and equivalence queries and returns the minimal DFA AL

recognizing L. Therefore, to construct the minimal DFA AL, we only need to be able to
answer the above queries; the explicit construction of the input automaton can be avoided.

While the L∗ algorithm is versatile and has been generalized to various types of automata,
extensions of the L∗ algorithm to pushdown languages are elusive [7]. The main problems are
the lack of the counterpart of the Myhill-Nerode theorem for pushdown languages (despite
some attempts [13]) and the complexity of equivalence checking for DPDA, which is decidable
but currently the only upper bound is primitive recursive [41, 24]. However, there is a
counterpart of Myhill-Nerode theorem for visibly pushdown languages [3] and equivalence
checking for DVPA is decidable in polynomial time. Thus, we focus our research on DVPA.

Still, active learning visibly pushdown languages is elusive. First, the canonical DVPA
defined based on the right congruence relation from [3] is not a minimal-size DVPA recognizing
a given language; it can be even exponentially larger than a minimal equivalent DVPA [3].
Second, a minimal-size DVPA recognizing a given visibly pushdown language is not unique,
which indicates difficulty in improving the definition of the canonical DVPA. Finally, the
minimization problem for DVPA is NP-complete, which rules out possible generalizations of
the L∗ algorithm, which would return any minimal-size DVPA (unless P=NP). For these
reasons, we adapt the active learning framework to learn DVPA rather than their languages,
i.e., we consider queries, which depend on the automaton structure.

1.1 Our framework
In our framework, we consider a hidden DVPA, which we call the target automaton, and the
teacher answering queries about it. The learning algorithm is expected to return a DVPA
equivalent to the target DVPA. We assume that we can observe the stack content. To model
this, we introduce a third type of queries, called stack content queries, which return the stack
content of the hidden automaton upon reading a given input.

This alone is insufficient to circumvent the hardness inherited from minimization of DVPA
(see Proposition 1). Thus, we additionally assume that we can change the stack content
during the computation. To model writing, we employ control words consisting of standard
letters and special control letters. A control letter is of the form u, where u is the stack
content. Upon reading u, the automaton swaps its stack content to u, while retaining the
current state. Control words can be sent by the algorithm as parameters for appropriate
queries. The ability to swap the stack content to the one provided in the word makes it
possible to reveal behavior of the target automaton under certain stack contents.

We first discuss the framework, in which there may be an arbitrary number of control
letters altering the stack content. Such an approach directly reduces active learning of DVPA
to active learning of regular languages. This technique can be employed for minimization
of the product of DVPA while avoiding the need of the construction of the whole product
in the first place (Section 5.1). The drawback is that the returned automata may contain
states unreachable with any path that obeys stack operations (i.e., the usual runs in DVPA).

To avoid unreachable states, we propose another framework, in which all words contain
at most one control letter (Section 6). In this setting, active learning can be done in
polynomial time in the size of the target automaton and the counterexamples provided by the
teacher. Unfortunately, the length of counterexamples may be exponential, making the whole
learning process intractable. We consider two solutions: bounding the length of considered
counterexamples (Section 7) and employing grammar-based compression (Section 8). This
leads us to a scenario where the teacher and the learning algorithm work in time polynomial
in the size of the target automaton alone, learning a DVPA equivalent to the target one.
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1.2 Related work

Learning context-free languages has been intensively studied. Typically, the context-free
grammars (CFGs) have been considered as the representation of a language rather than
pushdown automata. On the negative side, it has been shown that learning a CFG from mem-
bership and equivalence queries is intractable under reasonable cryptographic assumptions [7].
To overcome this difficulty, as well as to learn grammars more humanly understandable,
learning structurally equivalent grammars has been considered [40, 12]. Two grammars are
strongly equivalent [37] if their sets of derivation trees with erased names of non-terminals are
the same. The problem with that approach is the complexity of checking strong equivalence,
which is in ExpTime, but PSpace-hard [39]. Furthermore, some grammar-based learning
algorithms [40] are based on the L∗ algorithm for regular tree languages. Basically, for a
CFG G, one can learn a tree language of derivations in G of all words from L(G). However,
the minimal deterministic bottom-up tree automaton recognizing all derivation trees in G

can be exponentially larger than G. This extends to visibly pushdown languages and such a
tree automaton can be exponentially larger than a DVPA recognizing the visibly pushdown
language.

Besides [40], there is a large body of work on learning CFGs [26, 43, 5, 42, 19]. Among
them, [5] shares some similarities to our approach. However, the framework from [5] can be
considered as learning the transitions of a pushdown automaton with known states, while in
our approach we learn the set of states and the transitions.

While CFGs fit well into the active learning setting, pushdown automata are better suited
and more popular in verification [1]. The above-mentioned algorithms cannot be used to
learn automata. Active learning of automata is an active research topic. Initially, active
learning has been developed for DFA in the seminal paper by Angluin [6]. Recently, there
has been a renewed interest in learning various types of automata [11, 32, 9, 8, 10, 36, 34].
Learning based on syntactic properties of the target automaton has been recently proposed
in [35], where a syntactic property called the loop index has been employed to overcome the
difficulty of learning automata on infinite words.

Learning DVPA is studied in [23]. The algorithm provided there learns the canonical
DVPA defined by the congruence relation introduced in [3]. It uses only membership and
equivalence queries and works in polynomial time in the size of the canonical automaton.
However, the size of the canonical DVPA can be exponential in the size of a minimal DVPA [3].
Therefore, the time and space complexity of the algorithm presented in [23] is exponential.

Another approach to learning VPA from [27] considers VPA with significant stack
limitations so that every VPA has a unique minimal equivalent DVPA, computable in
polynomial time. For this restricted class, polynomial-time learning using only membership
and equivalence queries is possible.

A comprehensive survey of related work has been presented in [23, Chapter 7].

2 Preliminaries

Given a finite alphabet Σ of letters, a word w is a finite sequence of letters. For a word w,
we define w[i] as the i-th letter of w and |w| as its length. We denote the set of all words
over Σ by Σ∗. We use ϵ to denote the empty word.

The index of an equivalence relation is the number of its equivalence classes. An
equivalence relation ≡ on words Σ∗ is a right congruence relation if and only if for all words
w1, w2 ∈ Σ∗ and all a ∈ Σ, if w1 ≡ w2, then w1a ≡ w2a.

MFCS 2022
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Real-time Pushdown automata. A (non-deterministic) real-time pushdown automaton (rt-
PDA) is a tuple consisting of: (1) Σ, an input alphabet, (2) Γ, a finite stack alphabet, (3) Q,
a finite set of states, (4) Q0 ⊆ Q, a set of initial states, (5) δ ⊆ Q × Σ × (Γ ∪ {⊥}) × Q × Γ∗,
a finite transition relation, and (6) F ⊆ Q, a set of accepting states. We assume that ⊥
is never popped from the stack, i.e., for every (q, a, ⊥, q′, u) ∈ δ, the stack update u starts
with ⊥. The size of an rt-PDA A, denoted by |A|, is defined as the number of states plus
the number of transitions, i.e., |Q| + |δ|. An rt-PDA is deterministic if |Q0| = 1 and δ is a
function from Q × Σ × (Γ ∪ {⊥}) to Q × Γ∗. Deterministic rt-PDA are denoted as rt-DPDA.

Semantics of rt-PDA. Consider an rt-PDA A = (Σ, Γ, Q, Q0, δ, F ). A configuration of A is
a pair consisting of the current state q ∈ Q of A and its current stack content u ∈ (⊥ · Γ∗).
An rt-PDA defines an infinite-state transition system over its configurations Q × (⊥ · Γ∗),
where configurations Q0 × {⊥} are initial. For a ∈ Σ, let →a

A be an auxiliary relation
defined such that (q, uB) →a

A (q′, uv) if (q, a, B, q′, v) ∈ δ, where q, q′ are states, uB, uv are
stack contents with B being a single (top) symbol. For a word w = a1 . . . an, we define
→w

A as the composition of relation →a1
A . . . →an

A , i.e., (q, u0) →w
A (q′, un) if there exist

intermediate configurations (q1, u1), . . . , (qn−1, un−1) such that for each 1 ≤ i ≤ n we have
(qi−1, ui−1) →ai

A (qi, ui).
A word w is accepted by A if there are q0 ∈ Q0, q ∈ F and u ∈ ⊥ · Γ∗ such that

(q0, ⊥) →w
A (q, u). The language recognized by A, denoted L(A), is the set of words accepted

by A. For an rt-DPDA A, we define the stack content upon reading w, denoted by SCA(w),
as the unique u such that (q0, ⊥) →w

A (q′, u) for some q′.

Visibly pushdown automata. Consider a partition of the alphabet Σ into three sets
(Σc, Σl, Σr) called, respectively, the sets of call, local and return letters. We say that a
rt-PDA A = (Σ, Γ, Q, Q0, δ, F ) is a visibly pushdown automaton (VPA) (with respect to the
partition (Σc, Σl, Σr)) if the following conditions hold:

transitions over letters from Σc (call transitions) push a single symbol on the stack and
do not depend on the stack content, i.e., if (q, a, B, q′, v) ∈ δ, then v = BG, where G ∈ Γ
and for all B′ ∈ Γ ∪ {⊥} we have (q, a, B′, q′, B′G) ∈ δ,
transitions over letters from Σl (local transitions) neither change nor depend on the
stack content, i.e., if (q, a, B, q′, v) ∈ δ, then v = B and for all B′ ∈ Γ ∪ {⊥} we have
(q, a, B′, q′, B′) ∈ δ,
transitions over letters from Σr (return transitions) pop a single symbol from a nonempty
stack; if the stack is empty they leave ⊥ on the stack.

Since VPA are a subclass of rt-PDA, the definitions of size, determinacy, and semantics carry
over from rt-PDA to VPA. Since DVPA are a subclass of rt-DPDA, the stack content upon
reading w, SCA(w), is well defined.

3 The L∗ algorithm

We briefly describe a variant of the L∗ algorithm for active learning of a hidden regular
language L [6], which is similar to the algorithms we propose later on. To learn the language
L, the algorithm asks the following queries to an oracle called the teacher :

membership queries: given w ∈ Σ∗, is w ∈ L?, and
equivalence queries: given a DFA A, is L(A) = L? If not, return a counterexample, which
is a word distinguishing A and L (i.e., from the symmetric difference of L(A) and L).
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The L∗ algorithm constructs the minimal DFA AL recognizing L by refining approxima-
tions of the right congruence relation ∼L⊆ Σ∗ × Σ∗ defined such that u ∼L v if and only
if ∀w(uw ∈ L ⇐⇒ vw ∈ L). Due to the Myhill–Nerode theorem, the right congruence
relation ∼L defines AL.

The algorithm maintains two sets of words: the set of selectors S containing ϵ, and the
set of test words C. The set C defines an approximation ∼C

L of the right congruence relation
defined such that u ∼C

L v if and only if ∀w ∈ C(uw ∈ L ⇐⇒ vw ∈ L). The set S contains
exactly one selector of each equivalence class of ∼C

L . More precisely, the algorithm maintains
two properties: separability: different words from S are not ∼C

L -equivalent, and closedness:
for every s ∈ S and a ∈ Σ, there is some word s′ ∈ S such that sa ∼C

L s′. Note that if the
pair S, C satisfies the above properties, we can construct a DFA corresponding to S, C, i.e., a
DFA whose states are S and the transition relation is defined based on ∼C

L , i.e., the successor
of s ∈ S over a is s′ ∈ S′ such that sa ∼C

L s′.
The algorithm starts with S = {ϵ} and C = ∅ and it iterates the following steps in the

loop until it terminates in Step 2.
Step 1. Starting with separable S, C, close S, C, i.e., construct S′ ⊇ S and C ′ ⊇ C that are

closed and remain separable.
Step 2. Construct the DFA A corresponding to the separable and closed pair S′, C ′. Check

whether A recognizes L; if yes, return A (and terminate).
Step 3. Otherwise, take the counterexample w and find s ∈ S, a ∈ Σ and a suffix w′ of w

such that S ∪ {sa}, C ∪ {w′} is separable, i.e., sa is a new selector for ∼C∪{w′}
L .

The L∗ algorithm returns the minimal DFA recognizing AL and it works in polynomial
time in |AL| and the total length of returned counterexamples.

3.1 Difficulty of adapting L* to visibly pushdown languages

We discuss the difficulty of learning visibly pushdown languages, which motivates our learning
framework presented in the following sections.

The key property used by the L∗-algorithm is that for every regular language there is the
canonical DFA recognizing it, which is also the minimal-size DFA for that language. Visibly
pushdown languages do not have this property [3]. First, minimal-size DVPA are not unique;
for a given visibly pushdown language L there can be multiple non-isomorphic minimal-size
DVPA recognizing L [3, Proposition 1]. Second, a notion of canonical automaton for visibly
pushdown languages was proposed in [3], but the canonical automaton can be exponentially
larger than a minimal-size DVPA.

Furthermore, assuming that P ̸= NP, there is no polynomial-time L∗-type learning
algorithm for visibly pushdown languages. L∗-type algorithms learn a minimal-size automaton
and run in polynomial time, and hence such an algorithm for DVPA can be used to minimize
DVPA in polynomial time by running the learning algorithm as a black-box and computing
answers to all its queries in polynomial time. The automaton returned by the algorithm would
be a minimal-size DVPA language-equivalent to the input one T . However, the minimization
problem for DVPA (its decision version) is NP-complete [20]. For these reasons, we settle
for learning automata rather than languages.

One may suspect that there is an L∗-type learning algorithm, which only queries the
stack content along the run on the input word. We show, however, that the NP-hardness
proof from [20] can be adjusted to DVPA with singleton stack alphabets (i.e., where |Γ| = 1):

MFCS 2022
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▶ Proposition 1. The following problem is NP-complete: given a DVPA T with a singleton
stack alphabet (a deterministic visibly counter automaton) and N > 0, decide whether there is
a DVPA with a singleton stack alphabet language-equivalent to T that has at most N states.

For DVPA over a singleton stack alphabet, the stack height, which is the only information
the stack provides, can be deduced from the input word. Therefore, allowing for stack
observation alone does not lead to a polynomial-time learning algorithm.

4 Theoretical underpinnings

We introduce control words, which are words able to alter automata stack content. Then, we
state and prove a Myhill-Nerode type theorem for DVPA using control words.

Control words. For a stack alphabet Γ, let Γ be defined as the infinite set {⊥ · u | u ∈ Γ∗},
consisting of control letters. The intuitive meaning of the letter ⊥ · u is “set the stack to
⊥ · u”. Given an alphabet Σ, a control word is a word over Σ ∪ Γ. The size of a control word
w, denoted by size(w), is the sum of the number of letters from Σ and the sum of lengths of
control letters from Γ. We will sometimes use the term standard word to emphasize that the
considered word does not contain control letters, i.e., it belongs to Σ∗.

Restricted control words. Let Σ be a finite alphabet and Γ be a finite stack alphabet. We
define the set of initializing words InitΣ,Γ = Γ ·(Σ ∪ Γ)∗, the set of control words, in which the
first letter is a control letter. Furthermore, we define single-reset words Reset1

Σ,Γ = Σ∗ ·Γ ·Σ∗

to be the set of control words with exactly one control letter, and the set of single-reset
initializing words Init1

Σ,Γ = Γ · Σ∗, in which the first letter is a control letter and the
remaining letters are standard. We will omit the superscript Σ, Γ for readability.

Automata processing control words. Let T be a DVPA over the alphabet Σ and the stack
alphabet Γ. We extend the relation →w

T defined over words to control words as follows: let
v ∈ ⊥ · Γ∗, for every configuration (q, u) we have (q, u) →[ v ]

T (q′, u′) if and only if q = q′ and
u′ = v, i.e., a control letter v resets the stack content of the automaton to v, while it retains
the state. We straightforwardly generalize acceptance to control words. A control word w is
accepted by T if there are q0 ∈ Q0, q ∈ F and u ∈ ⊥ · Γ∗ such that (q0, ⊥) →w

T (q, u). The
language of control words accepted by T is denoted by L(T ).

We define a counterpart of the right congruence of a regular language.

▶ Definition 2. Let C ⊆ Init be a set of initializing words. We define the relation ≡C
T on

control words as follows: we have w1 ≡C
T w2 if and only if (1) for each v ∈ C we have

w1v ∈ L(T ) ⇐⇒ w2v ∈ L(T ) and (2) for each v ∈ C we have SCT (w1v) = SCT (w2v).

For every C, the relation ≡C
T is an equivalence relation. The definition of ≡C

T is monotonic
w.r.t. C, i.e., for all sets C1 ⊆ C2, the relation ≡C2

T is a refinement of ≡C1
T . In particular, the

index of ≡C1
T does not exceed the index of ≡C2

T .
We require C ⊆ Init, because otherwise the relation ≡C

T may have infinitely many
equivalence classes, which correspond to configurations rather than states of T .

For C being a strict subset of control words, ≡C
T need not be a right congruence; w1 ≡C

T w2
does not imply w1a ≡C

T w2a. Intuitively, words w1, w2 may lead to the same state in the
automaton, but different configurations and after a single transition over letter a we obtain
two configurations with different states. Thus, the right-congruence notion is incompatible
with DVPA. We solve these problems by introducing another notion of congruence and
restricting considered sets of control words.
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Control right congruence. A relation ≃ is a control right congruence if and only if for all
words w1, w2 ∈ (Σ ∪ Γ)∗ and α ∈ Γ · Σ we have w1 ≃ w2 implies w1α ≃ w2α.

▶ Example 3. Consider the equal-state relation ≃T : for all w1, w2 ∈ Σ∗, we have w1 ≃T w2
if and only if configurations reached by the DVPA T over w1 and w2 respectively, have the
same state, i.e., there are a state q and stack contents u1, u2 such that (q0, ⊥) →w1

T (q, u1)
and (q0, ⊥) →w2

T (q, u2). The relation ≃T need not be a right congruence relation as w1 and
w2 can reach the same state with different symbols on the tops of stacks, and hence the
states reached over w1a and w2a may differ, i.e., w1a ̸≃T w2a. However, the relation ≃T is
a control right congruence as the first control letter of α = ca resets the stack to the same
value in w1c and w2c, and hence these words lead to the same configuration and the next
transition over a leads to the same configuration. In consequence, w1ca ≃T w2ca.

We show that ≡Init
T is a control right congruence with the index bounded by the number

of states of T . Therefore, there is a finite C such that ≡C
T and ≡Init

T coincide. We also show
that ≡Init

T allows us to construct the transition relation of a DVPA corresponding to ≡Init
T .

▶ Lemma 4. Let T be a DVPA. (1) The relation ≡Init
T is a control right congruence, (2) the

index of ≡Init
T is bounded by |T |, and (3) the relation ≡Init

T defines a unique DVPA A, which
is language-equivalent to T .

▶ Example 5. We discuss why the second condition of the definition of ≡C
T is needed.

Consider Σ = Σc ∪ Σl ∪ Σr and a DVPA A = (Σ, Γ, Q, q0, δ, F ). We assume that the sets Q,
Σ, Γ and {#, $} are pairwise disjoint. Let Σ′

c = Σc ∪ Q, Σ′
r = Σr ∪ {$}, Σ′

l = Σl ∪ {#} and
Σ′ = Σ′

c ∪ Σ′
r ∪ Σ′

l.
We consider a language L over the alphabet Σ′ that consists of the words of the form

wq#w#w$, where wq ∈ Q∗ and w$ ∈ {$}∗. The idea is as follows: we want to accept words
that make the stack empty (hence we use $ at the end, to remove remaining stack elements)
such that A after reading w is in one of the states listed in wq.

The language L can be recognized by the automaton A′ that works in three stages. First,
it pushes all the symbols from wq on the stack. Then, it emulates A on w. Finally, it pops
stack symbols and checks whether the state of A after reading w is on the stack.

We argue that the automaton A′ has the following property: its behaviour on the wq

part has no impact on its behaviour on the w part, but is crucial for the acceptance. Thus,
the symbols that are put on the stack in the wq part are significant only in processing the
w$ part. This shows non-locality: the behaviour of A′ on w$ is defined by wq, which are
separated by an arbitrary long word w.

Such non-locality is what often makes the learning problems intractable. To avoid this,
we allow the learning algorithm to read the stack content, and we use the definition of the
relation ≡C

T . There, we require that for each a ∈ Σ and for each c ∈ {⊥γ | γ ∈ Γ ∪ {ϵ}} we
have SCT (w1ca) = SCT (w2ca). In this way, the parts of the automaton reading wq and w$
can be learned independently, as the results of reading letters on the stack are immediate.

If control letters are applied after each transition, DVPA behaves essentially as a DFA
(see Section 5) and hence we attempt to minimize the use of control letters. In particular,
we argue that considering C = Init1 instead of Init is sufficient, i.e., single-reset initializing
words are sufficient. We formalize it below.

We say that a DVPA A is constructed from the equivalence relation ≡Init1
T if its states are

selectors of the equivalence classes of ≡Init1
T and if A has a transition δ(s, a, α, s′, γ), then

either s⊥αa ≡Init1
T s′, or α = ⊥ and a is a return letter, and s⊥αa and s′ are equivalent over

words ⊥w′ only. The stack content after reading s⊥αa is updated according to γ. Such an
automaton is not necessarily unique as ≡Init1

T is not a control right congruence in general.
However, we show that any such DVPA is admissible:

MFCS 2022
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Table 1 Queries for learning with control words.

Query membership query stack-content query equivalence query
Input a control word w a control word w a DVPA A

Output whether T accepts w SCT (w)
YES if A and T are language-
equivalent, otherwise a control
word w distinguishing A and T

▶ Lemma 6. Any DVPA constructed from ≡Init1
T restricted to standard words is language-

equivalent with T .

All equivalence classes of ≡Init
T , which do not contain standard words are irrelevant for

language-equivalence as they correspond to unreachable states. Thus, Lemma 6 implies that
in order to learn a DVPA language-equivalent to T , we can construct ≡Init1

T restricted to
standard words. This observation is the backbone of the learning algorithm presented in
Section 6.

5 Learning with resets

We present the first active learning algorithm for DVPA based on control words and discuss
its applications. We consider a learning framework with three types of queries: (modified)
membership and equivalence queries and a new type called stack-content queries, which
return the content of the stack upon reading a given word. The queries involve control letters,
as we showed that using only standard words is insufficient (Section 3.1). Here, control
words can have any number of control letters. In such a case, learning DVPA boils down to
the standard learning of DFA. Indeed, with arbitrarily many control letters every path in a
DVPA can be realized. Furthermore, we can address each transition and learn how the stack
changes with stack-content queries. The solution for learning with unlimited control letters
is a simple adaptation of the original L∗ algorithm.

We consider an oracle, called the teacher, which has access to the target DVPA T and
answers the following three types of queries detailed in Table 1. Note that the counterexample
can contain control letters as well.

We reduce active learning of DVPA to active learning of regular languages. Consider
Σlab = (Σc × Γ) ∪ Σl ∪ (Σr × (Γ ∪ {⊥})), which characterizes labels of transitions of T :
(1) call transitions are characterized by a call letter a ∈ Σc and a stack symbol B ∈ Γ
pushed to the stack, (2) local transitions are characterized by a local letter alone a ∈ Σl,
and (3) return transitions are characterized by a call letter a ∈ Σr and the top of the stack
symbol γ ∈ Γ ∪ {⊥}.

Let Llab(T ) be the language of words w over Σlab, which correspond to paths in T
terminating in an accepting state. Note that paths need not obey the stack; for instance
pushing a symbol A can be followed by pulling a symbol B, and hence not all paths correspond
to runs of T . However, the language Llab(T ) is regular and hence can be learned with the
L∗-algorithm for DFA. The detailed constructions have been relegated to the appendix.

▶ Theorem 7. Assume that the teacher returns minimal-size counterexamples. Then, active
learning of DVPA with a teacher answering queries detailed in Table 1 can be done in time
polynomial in the size of the target automaton.
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Table 2 Queries for learning with single resets.

Query membership query stack-content query equivalence query
Input a single-reset word w a single-reset word w a DVPA A

Output whether T accepts w SCT (w)

YES if A and T are language-
equivalent, otherwise, a (stand-
ard) word w distinguishing A
and T

5.1 Applications
The active learning of DVPA can be used for reducing the number of states of DVPA given
implicitly. For instance, consider a model M consisting of k components A1, . . . , Ak being
DVPA. Models that are products of smaller components occur frequently in verification tasks
(e.g., to express union or intersection of languages) and there is a large body of work on
efficient model checking on such models [38, 21]. Even though the size of M is the product
of sizes of A1, . . . , Ak, the number of reachable states may be considerably smaller, so it can
be explicitly represented.

We can use the above active learning algorithm for DVPA to construct a reduced model
of A1 × . . . × Ak without the need of constructing the whole product. Now having DVPA
A1, . . . , Ak, we can compute the values of membership and stack-content queries. For the
equivalence queries with a given A, we can check whether for all i we have L(Ai) ⊇ L(A),
which implies that the language of the product of automata contains the language of A.
The opposite inclusion can be approximated with queries over random words, guided by
various heuristics as is often the case with equivalence queries [12, 18]. It is difficult to answer
equivalence queries for the product of automata as it subsumes the emptiness problem for
intersections of regular languages, which is PSpace-complete.

Note that the constructed automaton can have states that are not reachable by any run
(see Example 8). This is an inherent problem of considered words with multiple control
letters; it diminishes the influence of the stack on reachability. To solve this problem, we
focus on the single-reset approach presented in the following Section 6.

▶ Example 8 (Automaton with redundant states). Consider a DVPA T and its state q, which
is reachable only with call transitions pushing A on the stack. Suppose that q has an outgoing
return transition over A′ ̸= A, which leads to a component B of T not reachable with any
other transition. Then, the algorithm from Theorem 7 explores the component B of T as it
is reachable over words with multiple control letters and hence the returned DVPA contains
redundant states.

6 Learning with a single reset

Here we study a learning framework with three types of queries as in Section 5, but restricted
to words with one control letter. Those queries are detailed in Table 2. For a finite C ⊆ Init1,
these queries are sufficient to decide whether w1 ≡C

T w2 holds over w1, w2 ∈ Σ∗; the first
condition from the definition of ≡C

T (Definition 2) can be implemented with membership
queries, and the second one with stack-content queries.

We present an active learning algorithm for DVPA, which works in polynomial time in
size of the target automaton and the size of counterexamples provided by the teacher. The
algorithm is a modification of the L∗ algorithm, so we discuss only the differences with the
vanilla L∗ algorithm. The main difference is that while L∗ constructs the right congruence
relation of the target language L, our algorithm constructs ≡Init1

T over standard words.
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Our algorithm, similarly to L∗, maintains two sets of words: a set of selectors S and a set
of test words C such that S are selectors of equivalence classes of ≡C

T . Selectors in S ⊂ Σ∗

are standard words over Σ and test words in C ⊂ Init1 are single-reset initializing words. We
start with S = {ϵ} and C = {⊥ϵ}.

We adjust the terminology to the current setting as follows. Separability means that
different words from S are not ≡C

T -equivalent. Closedness means that for every s ∈ S, a ∈ Σ
and B ∈ Γ ∪ {ϵ}, there is some word s′ ∈ S such that s · ⊥ · B · a ≡C

T s′. The algorithm
maintains separability and some restricted form of closedness. The latter is due to the fact
that some transitions may be unreachable in a DVPA. For example, if the only way to reach
some state is to push B on the stack, then all the transitions assuming that the top of
the stack is not B are unreachable and thus irrelevant. For that reason, two steps in the
L∗ algorithm: computing closure of S, C and generating the corresponding automaton, are
interleaved and encapsulated in a single procedure generate automaton.

Generating automata. Given S, C and access to the teacher for T , we construct a (partial)
DVPA whose set of states is S ⊂ Σ∗, possibly extended with some additional states as
discussed below. The initial state is ϵ ∈ S. The accepting states are those states w ∈ S

such that the membership query on w returns true, i.e., w is accepted by T . It remains to
compute the transition function δ.

Consider a state s ∈ S, a letter a ∈ Σ and γ ∈ Γ ∪ {⊥}. To find δ(s, a, γ), we feed s to
the target automaton T , implant γ on the top of its stack and take the transition over a.
Next, we identify the state from S equivalent to the current state of T or create a new one,
if there is no fitting one in S. The details are in the appendix.

Equivalence and processing a counterexample. Given a partial DVPA A, we complete it
to a DVPA Ac by setting all undefined transitions so that their destination is ϵ and putting
some designated B0 ∈ Γ on the stack over call transitions. Next, we test for equivalence and if
it happens to be language-equivalent to T we return Ac. Otherwise, we get a counterexample
that distinguishes Ac and T . We show how to use it to ensure progress of the algorithm.
There are two possible cases of counterexamples: either the stack content diverges at some
point, or the values of some suffixes mismatch. In both cases, we can modify S and C to
ensure the progress. The details are in the appendix.

Irredundancy. Observe that all states in the returned automaton are reachable by some
run (in contrast to the automaton from Example 8). To see this, note that we start with
the initial state ϵ. Next, new successors are added either in the automata construction or
in processing of a counterexample. In the former case, the new state is a successor of some
reachable state over a consistent transition. That is, it is a call or local transition, which can
be always executed, or it is a return transition and the stack content over ws reaching s ∈ S

in the constructed automaton is consistent with the expected stack content in the transition.
In the latter case, the successor va is added because the values of suffixes mismatch. There va

is not ≡C′

T -equivalent to any state from S and hence upon reading va the automaton reaches
the new state va. Therefore, the algorithm with single-reset words avoids computation of
redundant states in contrast to the algorithm from Section 5.

Complexity. The algorithm always terminates and works in polynomial time in the size of
the target automaton and the size of teachers’ responses. The details are in the appendix.
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▶ Theorem 9. Active learning of DVPA with teacher answering queries detailed in Table 2
can be done in time polynomial in the sizes of the target automaton and teachers’ responses.

For L∗, if we assume that the teacher always returns a minimal-length counterexample,
the algorithm works in polynomial time in the size of the target automaton alone. For DVPA,
the shortest counterexample for language-equivalence can be of exponential-size in |T |. In
the following sections we propose two approaches to solve this problem: the first one is based
on relaxed equivalence and the second one on employing grammar-based compression.

7 Active learning with bounded counterexamples

To avoid processing exponentially-long counterexamples, we can impose a bound on the
length of admissible counterexamples. In some scenarios we may be interested in trading
accuracy for performance and focus on words of length bounded by some fixed value t. A
similar approach led to the development of bounded model checking methods, which are highly
efficient [14, 25]. Furthermore, in applications of active learning of automata, equivalence
queries, which are often costly to implement, are only approximated by equivalence over
bounded-length words [12, 18].

Two DVPA A1, A2 are t-equivalent, where t ∈ N, if and only if their languages agree
on all words of the length bounded by t. We adjust the framework in a natural way: we
replace equivalence queries with t-equivalence queries, which say whether a given DVPA A is
t-equivalent to T . If it is not, then we require a counterexample of length bounded by t.

Under the modified framework, we can run the algorithm described in Section 6. Note
that each counterexample there is bounded by t and the algorithm terminates when A is
t-equivalent to T . Furthermore, each counterexample can be used to increase the size of S,
which is bounded by the number of states of T . In consequence, we have:

▶ Theorem 10. Active learning of DVPA with teacher answering membership and stack-
content queries defined in Table 2 and t-equivalence queries can be done in time polynomial
in the size of the target automaton and t.

Finally, observe that the teacher can answer t-equivalence queries in polynomial time in
|A| + |T | + t. It suffices to construct a DFA At accepting all words of the length at most t

and compute the emptiness of the intersection of the languages A, At and T C , where T C is
the complemented T .

8 Active learning with compressed representation

Here we propose to solve the problem of exponential counterexamples using compression by
means of visibly context-free grammars to represent counterexamples as well as selectors and
test words. We show that in this setting the teacher can always provide a counterexample
of polynomial size in the size of the target automaton and a candidate automaton sent in
the equivalence query. If the teacher does so, the algorithm we propose works in polynomial
time in size of the target automaton.

Context-free grammars (which are equivalent to pushdown automata) can generate
finite languages with exponential-length words. This observation led to the development of
grammar-based compression, where a word w is represented through a context-free grammar
(called Straight-Line Programs or SLPs) generating exactly one word w. Equivalence of SLPs
with other compression methods and algorithmic problems are discussed in [30].
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Table 3 Queries for learning with vSLP.

Query membership query stack-content query equivalence query

Input a vSLP representing
a single-reset word w

a vSLP representing
a single-reset word w

a DVPA A

Output whether T accepts w SCT (w)

YES if A and T are language-
equivalent, otherwise, a vSLP
representing a standard word w

distinguishing A and T

We use polynomial-size SLPs to represent counterexamples as well as selectors. Note
that processing SLPs can be expensive in general. There is a visibly pushdown language
Lh such that the membership problem for this language over words given by SLPs is
PSpace-complete [29]. However, if we restrict SLPs to those that are represented by visibly
pushdown grammars G (over the same alphabet partition as the visibly pushdown language
Lh) defined below, then the membership problem is equivalent to the emptiness problem for
the intersection of Lh and L(G), and hence it can be decided in polynomial time.

Visibly pushdown grammars. A visibly pushdown grammar (VPG) is a syntactically restric-
ted pushdown grammar (see [4] for details). Consider a partition of Σ into (Σc, Σl, Σr). A
VPG is a triple G = (V, S, P ), where V = V0 ∪ V1 is a set of non-terminal symbols partitioned
into V0 and V1, I ∈ V is the start symbol, and P is the set of productions of the following
form:

X → ϵ, where X ∈ V

X → aY , where X, Y ∈ V , and if X ∈ V0, then a ∈ Σl and Y ∈ V0

X → aY bZ, where X ∈ V , Y ∈ V0, a ∈ Σc, b ∈ Σr, and if X ∈ V0, then Z ∈ V0.

X → Y Z, where X, Y ∈ V , and if X ∈ V0, then Y, Z ∈ V0.
The last rule is not present in the original definition, but it can be safely added as VPL are
closed under concatenation.

VPA and VPG are language-wise polynomially equivalent [4] (i.e., there is a polynomial-
time procedure that, given a PDA, outputs a CFG of the same language and vice versa).

For a VPG G, we define derivation →G as a relation on (Σ ∪ V )∗ × (Σ ∪ V )∗ as follows:
w →G w′ if and only if w = w1Xw2, with X ∈ V , and w′ = w1uw2 for some u ∈ (Σ ∪ V )∗

such that X → u is a production from G. We define →∗
G as the transitive closure of →G.

The language generated by G, denoted by L(G) = {w ∈ Σ∗ | s →∗
G w} is the set of words

that can be derived from I. VPA and VPG are language-wise polynomially equivalent [4]
(i.e., there is a polynomial-time procedure that, given a PDA, outputs a CFG of the same
language and vice versa). The size of a VPG G = (V, I, P ), denoted by |G|, is |V | + |P |.

A visibly Straight Line Program (vSLP) is a visibly pushdown grammar G, which generates
a single word denoted by wG.

Now, selectors in S and test words in C will be represented by vSLPs. We introduce the
framework and assume that words are represented as vSLPs, as detailed in Table 3. Import-
antly, the teacher can always return a polynomial size vSLP representing a counterexample.

▶ Lemma 11. Given two DVPA A1, A2 such that L(A1) ̸= L(A2), there exists a polyno-
mial size vSLP G such that wG belongs to the symmetric difference of L(A1) and L(A2).
Furthermore, this vSLP can be computed in polynomial time in |A1| + |A2|.
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The words represented by vSLPs can be efficiently processed. The procedure generating
a DVPA from S, C requires efficient computation of concatenation of vSLPs and compressed
membership and stack-content queries. Observe that for a polynomial-size vSLP G, the
length of SCT (wG) is polynomial in |T | even though |wG| can be exponential and hence the
answers to these queries have polynomial size. Processing counterexamples is more difficult
as it involves finding the prefixes of the counterexample wG with certain properties. Note
that these prefixes can be identified with binary search and hence only polynomially many
candidates need to be considered. It suffices to compute, for a given vSLP G, the prefix of
the first i letters of wG, which is possible in polynomial time in |G|. In consequence, we have
the following:

▶ Theorem 12.
(i) The teacher can answer membership and equivalence queries with vSLP input in poly-

nomial time in the input size and |T |.
(ii) The teacher can answer equivalence queries with polynomial size vSLP encoding a

counterexample in polynomial time (in the input size and |T |).
(iii) For the teacher as in (i) and (ii), active learning of DVPA with teacher answering

queries detailed in Table 3 can be done in time polynomial in the size of the target
automaton alone.

9 Future work

We have presented the first work on polynomial-time learning DVPA. The queries we use
depend not only on the language of the automaton, but its structure as well. It allows us to
bypass problems arising from the difficulty of minimizing DVPA.

There is an open field of possible future directions, which we discuss below.

Dropping the stack content queries. Control words are crucial in our solution, i.e, the
ability to alter the stack. We also assume that the stack can be observed, using the stack
content queries. While this is a reasonable assumption, we have not shown whether it is
necessary. In particular, we may explore the scenario from Section 5.1, in which we attempt
to minimize both the state space and the stack alphabet and hence we consider the stack
alphabet as unknown. We leave this as an open question.

Queries with registers. Another interesting scenario, but closely related to the previous one,
is where we cannot read and write the stack directly, but we can save its value to a register
and then use it. This corresponds to the case when we have access to the device memory, but
the stack is represented in a way that we cannot manipulate it (e.g. it is encrypted). Note
that in Section 6, we either use the stack contents that have been produced by some runs
with at most one symbol pushed on the top. Is active learning in polynomial time possible if
the stack content can be only copied between runs?

Learning all rt-DPDA. In the algorithm presented in Section 6, we rely on the fact that call
and local letters do not depend on the stack content. We can possibly improve the algorithm
to omit that assumption at the cost of more complex algorithm. We leave this problem for
further investigation.
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Learning all DPDA. Another challenging area is learning DPDA. One of the key challenges
is to deal with ϵ-transitions. The problem there is that for some DPDA there can be states
that are reachable with only ϵ-transitions, i.e., states without selectors. A solution to this
problem would require a new insight into the representation of states.
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