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—— Abstract

Constraint satisfaction (CSP) and structure isomorphism (SI) are among the most well-studied
computational problems in Computer Science. While neither problem is thought to be in PTIME,
much work is done on PTIME approximations to both problems. Two such historically important
approximations are the k-consistency algorithm for CSP and the k-Weisfeiler-Leman algorithm
for SI, both of which are based on propagating local partial solutions. The limitations of these
algorithms are well-known — k-consistency can solve precisely those CSPs of bounded width and
k-Weisfeiler-Leman can only distinguish structures which differ on properties definable in C*. In
this paper, we introduce a novel sheaf-theoretic approach to CSP and SI and their approximations.
We show that both problems can be viewed as deciding the existence of global sections of presheaves,
Hi (A, B) and Zi (A, B) and that the success of the k-consistency and k-Weisfeiler-Leman algorithms
correspond to the existence of certain efficiently computable subpresheaves of these. Furthermore,
building on work of Abramsky and others in quantum foundations, we show how to use Cech
cohomology in H (A, B) and Zx(A, B) to detect obstructions to the existence of the desired global
sections and derive new efficient cohomological algorithms extending k-consistency and k-Weisfeiler-
Leman. We show that cohomological k-consistency can solve systems of equations over all finite
rings and that cohomological Weisfeiler-Leman can distinguish positive and negative instances of
the Cai-Firer-Immerman property over several important classes of structures.
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1 Introduction

Constraint satisfaction problems (CSP) and structure isomorphism (SI) are two of the most
well-studied problems in complexity theory. Mathematically speaking, an instance of one
of these problems takes a pair of structures (A, B) as input and asks whether there is a
homomorphism A — B for CSP or an isomorphism A = B for SI. These problems are
not in general thought to be tractable. Indeed the general case of CSP is NP-Complete
and restricting our structures to graphs the best known algorithm for SI is Babai’s quasi-
polynomial time algorithm [8]. As a result, it is common in complexity and finite model
theory to study approximations of the relations — and =.
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The k-consistency and k-Weisfeiler-Leman' algorithms efficiently determine two such
approximations to — and = which we call —; and =;. These relations have many char-
acterisations in logic and finite model theory, for example in [18] and [13]. One that is
particularly useful is that of the existence of winning strategies for Duplicator in certain
Spoiler-Duplicator games with k pebbles [28, 25]. For both of these games Duplicator’s
winning strategies can be represented as non-empty sets S C Homy (A, B) of k-local partial
homomorphisms which satisfy some extension properties and connections between these
games have been studied before. For example, a joint comonadic semantics is given by the
pebbling comonad of Abramsky, Dawar and Wang [4].

The limitations of these approximations are well-known. In particular, it is known that
k-consistency only solves CSPs of bounded width and k-Weisfeiler-Leman can only distinguish
structures which differ on properties expressible in the infinitary counting logic C*. Feder
and Vardi [18] showed that CSP encoding linear equations over the finite fields do not have
bounded width, while Cai, Fiirer, and Immerman [13] demonstrated an efficiently decidable
graph property which is not expressible in C* for any k.

In the present paper, we introduce a novel approach to the CSP and SI problems based on
presheaves of k-local partial homomorphisms and isomorphisms, showing that the problems
can be reframed as deciding whether certain presheaves admit global sections. We show that
the classic k-consistency and k-Weisfeiler-Leman algorithms can be derived by computing
greatest fixpoints of presheaf operators which remove some efficiently computable obstacles
to global sections. Furthermore, we show how invariants from sheaf cohomology can be
used to find further obstacles to combining local homomorphisms and isomorphisms into
global ones. We use these to construct new efficient extensions to the k-consistency and
k-Weisfeiler-Leman algorithms computing relations —>% and E% which refine — and =.

The application of presheaves has been particularly successful in computer science in
recent decades with applications in semantics [32, 19], information theory [33] and quantum
contextuality [3, 5, 2]. This work draws in particular on the application of sheaf theory to
quantum contextuality, pioneered by Abramsky and Brandenburger [3] and developed by
Abramsky and others for example in [5] and [2].

Using this work, we prove that these new cohomological algorithms are strictly stronger
than k-consistency and k-Weisfeiler-Leman. In particular, we show that cohomological
k-consistency decides solvability of linear equations with k& variables per equation over all
finite rings and that there is a fixed k such that E% distinguishes structures which differ on
Cai, Firer and Immerman’s property.

It is also interesting to compare —>% and E% with other well-studied refinements of —,
and =;. For —, such refinements include the algorithms of Bulatov [12] and Zhuk [35]
which decide all tractable CSPs and the algorithms of Brakensiek, Guruswami, Wrochna and
Zivny [11] and Ciardo and Zivny [14] for Promise CSPs. For =}, comparable approximations
to = include linear Diophantine equation methods employed by Berkholz and Grohe [9] and
the invertible-map equivalence of Dawar and Holm [17] which bounds the expressive power
of rank logic. The latter was recently used by Lichter [30] to demonstrate a property which
is decidable in PTIME but not expressible in rank logic. In our paper, we show that =Z, for
some fixed k, can distinguish structures which differ on this property. Comparing —Z to the
Bulatov-Zhuk algorithm and algorithms for PCSPs remains a direction for future work.

! The algorithm we call “k-Weisfeiler-Leman” is more commonly called “(k — 1)-Weisfeiler-Leman” in
the literature, see for example [13]. We prefer “k-Weisfeiler-Leman” to emphasise its relationship to
k-variable logic and sets of k-local isomorphisms.
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The rest of the paper proceeds as follows. Section 2 establishes some background and
notation. Section 3 introduces the presheaf formulation of CSP and SI and new formulations
of k-consistency and k-Weisfeiler-Leman in this framework. Section 4 demonstrates how
to apply aspects of sheaf cohomology to CSP and SI and defines new algorithms along
these lines. Section 5 surveys the strength of these new cohomological algorithms. Section
6 concludes with some open questions and directions for future work. Major proofs and
additional background are left to the full version.

2 Background and definitions

In this section, we record some definitions and background which are necessary for our work.

2.1 Relational structures & finite model theory

Throughout this paper we use the word structure to mean a relational structure over some
finite relational signature o. A structure A consists of an underlying set (which we also call
A) and for each relational symbol R of arity r in o a subset R* C A" or tuples related by
R. A homomorphism of structures A, B over a common signature is a function between the
underlying sets f: A — B which preserves related tuples. An isomorphism of structures
is a bijection between the underlying sets which both preserves and reflects related tuples.
A partial function s: A — B (seen as a set s C A x B) is a partial homomorphisms if
it preserves the related tuples in dom(s). s is a partial isomorphism if it is a bijection
onto its image and both preserves and reflects related tuples. A partial homomorphism or
isomorphism is said to be k-local if |[dom(s)| < k. For two structures over the same signature
we write Homy (A, B) and Isomy (A, B) respectively for the sets of k-local homomorphisms
and isomorphisms from A to B.

In the paper, we make reference to several important logics from finite model theory and
descriptive complexity theory. The logics we make reference to in this paper are as follows.

Fixed-point logic with counting (written FPC) is first-order logic extended with operators

for inflationary fixed-points and counting, for example see [20)].

For any natural number k, C* is infinitary first-order logic extended with counting

quantifiers with at most k variables. This logic bounds the expressive power of FPC in

the sense that, for each k' there exists k such that any FPC formula in k' variables is

equivalent to one in C*. We write C* for the union of these logics.

Rank logic is first-order logic extended with operators for inflationary fixed-points and

computing ranks of matrices over finite fields, see [34].

Linear algebraic logic is first-order infinitary logic extended with quantifiers for computing

all linear algebraic functions over finite fields, see [15]. This logic bounds rank logic in

the sense described above.

At different points in the history of descriptive complexity theory, both FPC and rank
logic were considered as candidates for “capturing PTIME” and thus refuting a well-known
conjecture of Gurevich [23]. Each has since been proven not to capture PTIME, for FPC see
Cai, Fiirer and Immerman [13], for rank logic see Lichter [30]. Infinitary logics such as C¥
and linear algebraic logic are capable of expressing properties which are not decidable in
PTIME but have been shown not to contain any logic which does not capture PTIME. For C*,
see Cai, Fiirer and Immerman [13] and for linear algebraic logic, see Dawar, Gridel, and
Lichter [16].
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2.2 Constraint satisfaction problems & Structure Isomorphism

Assuming a fixed relational signature o, we write C'SP for the set of all pairs of o-structures
(A, B) such that there is a homomorphism witnessing A — B. We use CSP(B) to denote
the set of relational structures A such that (A, B) € CSP. We also use CSP and CSP(B)
to denote the decision problem on these sets. For general B, CSP(B) is well-known to
be NP-complete. However for certain structures B the problem is in PTIME. Indeed, the
Bulatov-Zhuk Dichotomy Theorem (formerly the Feder-Vardi Dichotomy Conjecture) states
that, for any B, C'SP(B) is either NP-complete or it is PTIME. Working out efficient algorithms
which decide C'SP(B) for larger and larger classes of B was an active area of research which
culminated in Bulatov and Zhuk’s exhaustive classes of algorithms [12, 35].

Similarly, we write SI for the set of all pairs of o-structures (A, B) such that there is
an isomorphism witnessing A = B. The decision problem for this set is also thought not
to be in PTIME however there are no general hardness results known for this. The best
known algorithm (in the case where o is the signature of graphs) is Babai’s [8] which is
quasi-polynomial.

There are many efficient algorithms which approximate the decision problems of C'SP and
SI. Two such examples, which are of particular importance to this paper, are the k-consistency
and k-Weisfeiler-Leman algorithms. Explicit modern presentations of these algorithms can
be seen, for example, in [7] and [27]. We instead focus on equivalent formulations in terms
of positional Duplicator winning strategies. These are given by Kolaitis and Vardi [28] for
k-consistency and Hella [24] for k-Weisfeiler-Leman. In the case of k-consistency, a pair (A, B)
is accepted by the algorithm if and only if there is a non-empty subset S C Homy (A, B)
which is downward-closed and satisfies the so-called forth property. This means any s € S
with |dom(s)| < k satisfies the property Forth(S,s) which is defined as

Va € A, 3b € B s.t. sU{(a,b)} € S.

If such an S exists we write A —; B. The similar strategy-based characterisation of k-
Weisfeiler-Leman is captured by non-empty downward-closed sets S C Isomy (A, B) where
each element satisfies the bijective forth property BijForth(S, s) defined by

dbs: A — B a bijection s.t. Va € A sU{(a,bs(a))} € S.

If such an S exists we write A =, B. For more details, see the full version of this paper.

2.3 Presheaves & cohomology

Here we give a brief account of the category-theoretic preliminaries for this paper. For a
more comprehensive introduction to category theory we refer to Chapter 1 of Leinster’s
textbook [29] and for a complete account of presheaves we refer to Chapter 2 of MacLane
and Moerdijk [31].

Given two categories C and S, an S-valued presheaf over C is a contravariant functor
F: C? — S. We will assume that C is some subset of the powerset of some set X with
subset inclusion as the morphisms. We call X the underlying space of C. For this reason,
when U’ C U in C we write (-)|,, for the restriction map F(U" C U): F(U) — F(U’). We
assume S is either the category Set of sets or the category AbGrp of abelian groups. We
call AbGrp-valued presheaves, abelian presheaves. Set-valued presheaves are just called
presheaves or presheaves of sets where there is ambiguity.
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For any C and S as above, the category of presheaves PrSh(C,S) has as objects
the presheaves F: C°? — S and, as morphisms, natural transformations between these
functors. If S has a terminal object 1 (as both Set and AbGp do) then the presheaf
I € PrSh(C,S) which sends all elements of C to 1 is a terminal object in PrSh(C, S). For
any F € PrSh(C,S), a global section of F is a natural transformation S: I = F.

3 Presheaves of local homomorphisms and isomorphisms

Some important efficient algorithms for CSP and SI involve working with sets of k-local
homomorphisms between the two structures in a given instance. These sets of partial
homomorphisms of domain size < k are useful for constructing efficient algorithms because
computing the sets Homy, (4, B) and Isomy (A, B) can be done in polynomial time in |A|-|B].
In this section, we see that these sets can naturally be given the structure of sheaves, that
the CSP and SI problems can be seen as the search for global sections of these sheaves and
that the k-consistency and k-Weisfeiler-Leman algorithms can both be seen as determining
the existence of certain special subpresheaves. The framework of considering sheaves of
local homomorphisms and isomorphisms is novel in this work and essential for the main
cohomological algorithms later. The results in Section 3.3 are from a technical report of
Samson Abramsky [1] and we thank him for his permission to include them here.

3.1 Defining presheaves of homomorphisms and isomorphisms

Let A and B be relational structures over the same signature. A partial homomorphism is a
partial function s: A — B that preserves related tuples in dom(s). A partial isomorphism
is a partial homomorphism s: A — B which is injective and reflects related tuples from
im(s). A k-local homomorphism (resp. isomorphism) is a partial homomorphism (resp.
isomorphism) s such that |[dom(s)| < k. We write Homy, (A, B) (resp. Isomy (A, B)) for the
sets of k-local homomorphisms (resp. isomorphisms). We write Hom(A, B) for the union
Ui<k<|a Homy (A, B) and Isom(A, B) for the union |, < <| 4 Isomy (A, B).

It is not hard to see that these sets can be given the structure of presheaves on the
underlying space A. Indeed, we define the presheaf of homomorphisms from A to B
H(A,B): P(A)”” — Set as H(A,B)(U) = {s € Hom(4,B) | dom(s) = U} with re-
striction maps H(A, B)(U’ C U) given by the restriction of partial homomorphisms (), -
Similarly, let Z(A, B) be the subpresheaf of H(A, B) containing only partial isomorphisms.
Now, consider the cover of A by subsets of size at most k, written AS* C P(A). We define
the presheaves of k-local homomorphisms and isomorphisms Hy (A, B) and Iy (A, B) as the
functors H(A, B) and Z(A, B) restricted to the subcategory (ASk)°r c P(A)?.

We now see how these presheaves and their global sections encode the CSP and SI
problems for the instance (A, B).

3.2 CSP and Sl as search for global sections

Fix an instance (A, B) for the CSP or SI problem and let  and Z stand for the presheaves of
all partial homomorphisms and isomorphisms between A and B defined in the last section. For
either of these presheaves S a global section s: I = S is a collection {sy € S(U)}uep(a)
where naturality implies that for any subsets U and U’ of A (sv)|,,.,,, = (5U7)|,,, - As the
poset P(A) has a maximal element, namely A, any such global section is determined by a
choice of s4 € S(A). This leads us to the following observation.
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» Observation 1. Given a pair (A, B) relational structures over the same signature then
(A,B) € CSP <= H has a global section

and if |A| = |B| then
(A,B) € SI < T has a global section.

This observation reframes the CSP and SI problems in terms of presheaves but algorith-
mically this not a particularly useful restating as computing the full objects H and Z requires
solving the CSP and SI problems for all subsets of A and B. A much more interesting
equivalent condition is that for large enough k, whether or not a particular instance (A, B) is
in CSP or SI is determined by the global sections of the presheaves of k-local homomorphisms
and isomorphisms.

» Lemma 2. For a pair (A, B) relational structures over the same signature, o, and k at
least the arity of sigma then

(A,B) € CSP < Hj. has a global section
and if |A] = |B| then
(A,B) € SI <= T}, has a global section.

Proof. See full version. |

This is more interesting than the previous observation as Hj and Z; can be computed
for any relational structures A and B in O(poly(|4| - |B|)). Indeed, we can just list all
O(|Al* - | B|*) possible k-local functions and check which ones preserve (and reflect) related
tuples. This also gives us an interesting starting point for designing efficient algorithms for
approximating CSP and SI. In particular, any efficient algorithms which finds obstacles to
the existence of global sections in H; and Zj will provide a tractable approximation to CSP
and SI. We now see how this approach can be used to capture some classical approximations
of these problems.

3.3 Algorithms and games in terms of presheaves

In this section, we consider the approximations A —;, B and A =, B to CSP and SI which are
computed respectively by the k-consistency and k-Weisfeiler-Leman algorithms and we show
that these algorithms can be seen as searching for certain obstructions to global sections in
Hi (A, B) and Ty (A, B). In particular, we define efficiently computable monotone operators
on subpresheaves of Hj, and Z; and show that they have non-empty greatest fixpoints if and
only if (A, B) are accepted by k-consistency and k-Weisfeiler-Leman respectively. Proposition
3 is reproduced with permission from an unpublished technical report of Samson Abramsky
and the formulation of the fixpoint operators is inspired by the same report.

3.3.1 Flasque presheaves and k-consistency

Recall that A —, B if and only if there is a positional winning strategy for Duplicator in the
existential k-pebble game [18] and that a presheaf F is flasque if all of the restriction maps
F(U C U’) are surjective. In a recent technical report, Abramsky [1] proves the following
characterisation of these strategies in our presheaf setting.
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» Proposition 3. For A, B relational structures and any k there is a bijection between:
positional strategies in the existential k-pebble game from A to B, and
non-empty flasque subpresheaves S C Hy (A, B).

This gives an alternative description of the k-consistency algorithm as constructing
the largest flasque subpresheaf Hj, of H; and checking if it is empty. As pointed out by
Abramsky [1], this is the process of coflasquification of the presheaf H; and can be seen
as dual to the Godement construction [21], an important early construction in homological
algebra. 7 can be computed efficiently as the greatest fixpoint of the presheaf operator (-)™
which computes the largest subpresheaf of a presheaf S C Hj, such that every s € S™(O)
satisfies the forth property Forth(S,s). For further details see the full version of this paper.

3.3.2 Greatest fixpoints and k-Weisfeiler-Leman

In a similar way to the k-consistency algorithm, k-Weisfeiler-Leman can be formulated as
determining the existence of a positional strategy for Duplicator in the k-pebble bijection
game between A and B. This inspires the definition of another efficiently computable presheaf
operator (-)*+ which computes the largest subpresheaf of a presheaf S C Z;, such that for
every s € S#+(C) satisfies the bijective forth property BijForth(S,s). We call the greatest
fixpoint of this operator S and we have that A =, B if and only if 7, is non-empty. For
more details, see the full version of this paper.

To conclude, in this section, we have seen how to reformulate the search for homomorph-
isms and isomorphisms between relational structures A and B as the search for global sections
in the presheaves Hy (A, B) and Z (A, B). We have also seen that well-known approximations
of homomorphism and isomorphism, — and =g, can be computed as greatest fixpoints of
presheaf operators which remove elements which cannot form part of any global section. In
the next section, we look at sheaf-theoretic obstructions to forming a global section which
come from cohomology and see how these can be used to define stronger approximations of
homomorphism and isomorphism.

4 Cohomology of local homomorphisms and isomorphisms

As we showed in the previous section, an instance of CSP and SI with input (A4, B) can be
seen as determining the existence of a global section for the presheaf Hy (A, B) or Zy(A, B)
respectively and that the classic k-consistency and k-Weisfeiler-Leman algorithms can be
reformulated as computing greatest fixed points of presheaf operations which successively
remove sections which are obstructed from being part of some global section. In this section,
we extend these algorithms by considering further efficiently computable obstructions which
arise naturally from presheaf cohomology. From this we derive new cohomological algorithms
for CSP and SI.

4.1 Cohomology and local vs. global problems

The notion of computing cohomology valued in an AbGp-valued presheaf F on a topological
space X has a long history in algebraic geometry and algebraic topology which dates back
to Grothendieck’s seminal paper on the topic [22]. The cohomology valued in F consists
of a sequence of abelian groups H*(X, F) where H(X, F) is the free Z-module over global
sections of F. As seen in the previous section we may be interested in such global sections
but their existence may be difficult to determine. This is where the functorial nature of
cohomology is extremely useful. Indeed, any short exact sequence of presheaves

0—=Fr,—=+F—=>Fr—0

75:7
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lifts to a long exact sequence of cohomology groups
0— H'(X,Fr) — H*(X,F) = H(X,Fr) = HY(X,Fp) = ....

This tells us that the global sections of Fr which are not images of global sections of F are
mapped to non-trivial elements of the group H'(X, Fr) by the maps in this sequence. This
means that these higher cohomology groups can be seen as a source of obstacles to lifting
“local” solutions in Fr to “global” solutions in F.

An important recent example of such an application of cohomology to finite structures
can be found in the work of Abramsky, Barbosa, Kishida, Lal and Mansfield [2] in quantum
foundations. They show that cohomological obstructions of the type described above
can be used to detect contextuality (locally consistent measurements which are globally
inconsistent) in quantum systems which were earlier given a presheaf semantics by Abramsky
and Brandenburger [3]. In the full version of this paper, we describe these obstructions in
general and show how the presheaves we constructed in the last section admit the same
cohomological obstructions. This similarity inspires the definitions and algorithms which
follow in the next two sections.

4.2 Z-local sections and Z-extendability

Returning to presheaves of local homomorphisms and isomorphisms let S be a subpresheaf of
Hi. Then we define the presheaf of Z-linear local sections of S to be the presheaf of formal
Z-linear sums of local sections of S. This means that for any C' € ASF

ZS8(C) = Z ass | as €Z
seS(C)

This is an abelian presheaf on ASF and we call the global sections {ry € ZS(U)}yea<k
Z-linear global sections of S. We say that a local section s € S(C') is Z-extendable if there is
a Z-linear global section {ry € ZS(U)}yeca<r such that rc = s. We write this condition as
Zext(S, s). As outlined by Abramsky, Barbosa and Mansfield [5], this condition corresponds
to the absence of a cohomological obstruction to S containing a global section involving s.

Importantly for our purposes, deciding the condition Zext(S, s) for any S C Hy (A4, B) is
computable in polynomial time in the sizes of A and B. This is because the compatibility
conditions for a collection {ry € ZS(U)}yca<+ being a global section of ZS can be expressed
as a system of polynomially many linear equations in polynomially many variables. Indeed,
we write each ry as ZSQS(U) ass where ay is a variable for each s € S(U). This gives a total
number of variables bounded by O(|A[* - |B|F), the size of Homy (A, B). For each of the
O(|A**) pairs of contexts U,U’ € AS¥, the compatibility condition (rv )|, = (rv7)|,.0r
yields a linear equation in the a; variables for each s’ € S(UNU’), leading to a total number
of equations bounded by O(|A|?* - | B|F). By an algorithm of Kannan and Bachem [26] can
be solved in polynomial time in the sizes of A and B. This allows us to define the following
efficient algorithms for CSP and SI based on removing cohomological obstructions.

4.3 Cohomological algorithms for CSP and SlI

We saw in Section 3 that the k-consistency and k-Weisfeiler-Leman algorithms can be
recovered as greatest fixpoints of presheaf operators removing local sections which fail the
forth and bijective-forth properties respectively. Now that we have from cohomological
considerations a new necessary condition Zext(S, s) for a local section to feature in a global
section of S, we can define natural extensions to the k-consistency and k-Weisfeiler-Leman
algorithms as follows.
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4.3.1 Cohomological k-consistency

To define the cohomological k-consistency algorithm, we first define an operator which removes
those local sections which admit a cohomological obstruction. Let (-)%* be the operator
which computes for a given presheaf S C H; the subpresheaf S where S%(C) contains
exactly those local sections s € S(C') which satisfy both the forth property Forth(S, s) and
the Z-extendability property Zext(S,s). As this process may remove the local sections in
S which witness the extendability of other local sections we need to take a fixpoint of this
operator to get a presheaf with the right extendability properties at every local section. So,
we write SZ for the greatest fixpoint of this operator starting from S. As both Forth(S, s)
and Zext(S, s) are both computable in polynomial time in the size of S and S” has a global
section if and only if S has a global section, this allows us to define the following efficient
algorithm for approximating CSP.

» Definition 4. The cohomological k-consistency algorithm accepts an instance (A, B) if

— 7
the greatest fizpoint Hy (A, B) is non-empty and otherwise rejects.
If (A, B) is accepted by this algorithm we write A —% B and say that the instance (A, B) is
cohomologically k-consistent.

We conclude this section by showing that the relation —>% is transitive.
» Proposition 5. For all k, given A, B and C structures over a common finite signature
A=EB oo = AL

Proof. See full version. |

4.3.2 Cohomological k-Weisfeiler-Leman

We now define cohomological k-equivalence to generalise k-WL-equivalence in the same way as

we did for cohomological k-consistency, by removing local sections which are not Z-extendable.

As Z-extendability in S C Isomy (A, B) is not a priori symmetric in A and B we need to

check that both s is Z-extendable in S and s=! is Z-extendable in S=t = {¢t=! | t € S}.

We call this s being Z-bi-extendable in S and write it as Zbext(S,s). We incorporate
this into a new presheaf operator (-)2# as follows. Given a presheaf S C T let SZ# be
the largest subpresheaf of S such that every s € S%#(C) satisfies both the bijective forth

=Z
property BijForth(S,s) and the Z-bi-extendability property Zbext(S,s). We write S
for the greatest fixpoint of this operator starting from S. As both BijForth(S,s) and
Zbext(S, s) are computable in polynomial time in the size of S and § has a global section

if and only if S has a global section, this allows us to define the following efficient algorithm
for approximating SI.

» Definition 6. The cohomological k-Weisfeiler-Leman accepts an instance (A, B) if the

E—
greatest fizpoint I, (A, B) is non-empty and otherwise rejects.
If (A, B) is accepted by this algorithm we write A =2 B and say that the instance (A, B) is
cohomologically k-equivalent.

Finally, we observe that the existence of a non-empty subpresheaf of 7, satisfying the
BijForth and Zbext properties also satisfies the conditions for witnessing cohomological
k-consistency of the pairs (4, B) and (B, A). Formally we have
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» Observation 7. For any two structures A and B, A =% B implies that A =% B and
B =L A.

In Section 5, we will demonstrate the power of these new algorithms by showing that both
cohomological k-consistency and cohomological k-Weisfeiler-Leman can solve instances of
CSP and SI on which the non-cohomological versions fail. Before doing this, we briefly review
some other algorithms for CSP and SI which involve solving systems of linear equations and
establish a possible connection to be explored in future work.

4.4 Other algorithms for CSP and SI

While the connections to cohomology in approximating CSP and SI are novel in this paper,
the algorithms introduced here are not the first to use solving systems of linear equations to
approximate these problems.

On the CSP side, some examples of such algorithms include the BLP+AIP [11] and
CLAP [14] algorithms studied in the Promise CSP community. One difference here is that for
an instance (A, B) the variables in BLP and AIP are indexed by valid assignments to each
variable and to each related tuple instead of being indexed by valid k-local homomorphisms
as in the algorithm derived above. This means that directly comparing these algorithms
as stated is not straightforward and is beyond the scope of this paper. However, it seems
likely that these algorithms can also be expressed in terms of appropriate presheaves. For
example, let C(A) be the category whose objects are the elements of A and the related
tuples of A and with maps for each projection from a related tuple to an element, and let
the Set-valued presheaf Ho(A, B) on C(A) map any a € A to the set of all elements in B
and any a € R to the set of all related tuples RB. Then, in a similar way to above, we can
see that global sections of H¢ are homomorphisms from A to B. In future work, we will
compare the fixpoints H¢c and ’Hicz with solutions to the BLP and AIP systems of equations
and we will explore a possible presheaf representation for CLAP.

On the SI side, Berkholz and Grohe [9] have studied Z-linear versions of the Sherali-Adams
hierarchy of relaxations of the graph isomorphism problem. They establish that no level of
this hierarchy decides the full isomorphism relation on graphs. Their algorithm for the kth
level of the hierarchy appears similar to checking the Z-extendability in ”HkA’B of the empty
solution € € ’HkA’B((Z)). A full comparison of this algorithm and the algorithm described above
is an interesting direction for future work.

5 The (unreasonable) effectiveness of cohomology in CSP and Sl

In this section, we prove that the new algorithms arising from this cohomological approach to
CSP and ST are substantially more powerful than the k-consistency and k-Weisfeiler-Leman
algorithms. In particular, we show that cohomological k-consistency resolves CSP over all
domains of arity less than or equal to & which admit a ring representation and that for
a fixed small k cohomological k-Weisfeiler-Leman can distinguish structures which differ
on a very general form of the CFI property, in particular, showing that cohomological
k-Weisfeiler-Leman can distinguish a property which Lichter [30] claims not to be expressible
in rank logic.

5.1 Cohomological k-consistency solves all affine CSPs

In this section, we demonstrate the power of the cohomological k-consistency algorithm by
proving that it can decide the solvability of systems of equations over finite rings.
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To express the main theorem of this section in terms of the finite relational structures
on which our algorithm is defined, we first need to fix a notion of ring representation of a
relational structure. Let A be a relational structure over signature o with relations given by
{R*}pe,. We say that A has a ring representation if we can give the set A a ring structure
(A, +,-,0,1) such that for every relational symbol R € o the set R* C A™ is an affine subset
of the ring (A, +,-,0,1), meaning that there exists bf*,... bE af € A such that

»Ym>

RA:{XEA"L | Z btz = a'}
i€[m]

With this necessary background we state the main theorem of this section.

» Theorem 8. For any structure B with a ring representation, there is a k such that the
cohomological k-consistency algorithm decides CSP(B).
Alternatively stated, there exists a k such that for all o-structures A

A—=EB «— A= B
Proof. See full version. <

This theorem is notable because there are relational structures B with ring representations
for which there are families of structures Ay such that Ay — B but Ay /4 B, see for example
the examples given by Feder and Vardi [18]. Furthermore, there exist pairs (A, Bi) where
Ay =k Bg, By — B and Ay — B but A 4 B, see for example the work of Atserias,
Bulatov and Dawar [6]. As the sequence of relations =, bounds the expressive power of FPC,
this effectively proves that the solvability of systems of linear equations over Z, which is
central to the cohomological k-consistency algorithm, is not expressible in FPC. This result
was not previously known to the author.

5.2 Cohomological k-Weisfeiler-Leman decides the CFI property

The Cai-Fiirer-Immerman construction [13] on ordered finite graphs is a very powerful tool for
proving expressiveness lower bounds in descriptive complexity theory. While it was originally
used to separate the infinitary k variable logic with counting from PTIME, it has since been
used in adapted forms to prove bounds on invertible maps equivalence [15], computation
on Turing machines with atoms [10] and rank logic [30]. In this section, we show that =%
separates a very general form of this

The version we consider in this paper is parameterised by a prime power ¢ and takes
any totally ordered graph (G, <) and any map g: E(G) — Z, to a relational structure
CFI,(G,g). The construction effectively encodes a system of linear equations over Z, based
on the edges of G and the “twists” introduced by the labels g. The result is the following
well-known fact.

» Fact 9. For any prime power, q, ordered graph G, and functions g, h: E(G) — Z,,

CFI,(G,g) = CFL,(G,h) <= Y g=> _h

We say that the structure CFI,(G, g) has the CFI property if Y g = 0. For more details
on this construction we refer to the recent paper of Lichter [30] whose presentation we follow
in the full version of this paper.

We now recall the two major separation results based on this construction. The first is a
landmark result of descriptive complexity from the early 1990’s.
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» Theorem 10 (Cai, Firer, Immerman [13]). There is a class of ordered (3-regular) graphs
G = {Gpn}nen such that in the respective class of CFI structures

K ={CFL(G,g) | GeG,g: V(GQ) = Zs}
the CFI property is decidable in polynomial-time but cannot be expressed in FPC.
The second is a recent breakthrough due to Moritz Lichter.

» Theorem 11 (Lichter [30]). There is a class of ordered graphs G = {Gy }nen such that in
the respective class of CFI structures

K ={CFIL,:(G,9) | Ge G}

the CFI property is decidable in polynomial-time (indeed, expressible in choiceless polynomial
time) but cannot be expressed in rank logic.

Despite this CFI property proving to be inexpressible in both FPC and rank logic, we show
that (perhaps surprisingly) there is a fixed k such that cohomological k-Weisfeiler-Leman
algorithm can separate structures which differ on this property in the following general
way. The proof of this theorem relies the on showing that =% behaves well with logical
interpretations and the details are left to the full version of this paper.

» Theorem 12. There is a fized k such that for any q given CFI,(G,g) and CFI (G, h)
with > g = 0 we have

CFI,(G,g) = CF1,(G,h) <= CFI,(G,g) = CFI,(G,h)
Proof. See full version. |

As a direct consequence of this result, there is some k such that the set of structures
with the CFI property in Lichter’s class I from Theorem 11 is closed under E%. This means
that, by the conclusion of Theorem 11, the equivalence relation E% can distinguish structures
which disagree on a property that is not expressible in rank logic. Indeed, Dawar, Gradel
and Lichter [16] show further that this property is also inexpressible in linear algebraic logic.
By the definition of our algorithm for =% this implies that solvability of systems of Z-linear
equations is not definable in linear algebraic logic.

6 Conclusions & future work

In this paper, we have presented novel approach to CSP and SI in terms of presheaves
and have used this to derive efficient generalisations of the k-consistency and k-Weisfeiler-
Leman algorithms, based on natural considerations of presheaf cohomology. We have shown
that the relations, %% and E%, computed by these new algorithms are strict refinements
of their well-studied classical counterparts —; and =;. In particular, we have shown
in Theorem 8 that cohomological k-consistency suffices to solve linear equations over all
finite rings and in Theorem 12 that cohomological k-Weisfeiler-Leman distinguishes positive
and negative instances of the CFI property on the classes of structures studied by Cai,
Fiirer and Immerman [13] and more recently by Lichter [30]. These results have important
consequences for descriptive complexity theory showing, in particular, that the solvability of
systems of linear equations over Z is not expressible in FPC, rank logic or linear algebraic
logic. Furthermore, the results of this paper demonstrate the unexpected effectiveness of a
cohomological approach to constraint satisfaction and structure isomorphism, analogous to
that pioneered by Abramsky and others for the study of quantum contextuality.
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The results of this paper suggest several directions for future work to establish the extent
and limits of this cohomological approach. We ask the following questions which connect it
to important themes in algorithms, logic and finite model theory.

Cohomology and constraint satisfaction. Firstly, Bulatov and Zhuk’s recent independent
resolutions of the Feder-Vardi conjecture [12, 35], show that for all domains B either
CSP(B) is NP-Complete or B admits a weak near-unanimity polymorphism and CSP(B)
is tractable. As the cohomological k-consistency algorithm expands the power of the k-
consistency algorithm which features as one case of Bulatov and Zhuk’s general efficient
algorithms, we ask if it is sufficient to decide all tractable CSPs.

» Question 13. For all domains B which admit a weak near-unanimity polymorphism, does
there exists a k such that for all A

A— B <= A-ED?

Cohomology and structure isomorphism. Secondly, as cohomological k-Weisfeiler-Leman
is an efficient algorithm for distinguishing some non-isomorphic relational structures we ask
if it distinguishes all non-isomorphic structures. As the best known structure isomorphism
algorithm is quasi-polynomial [8], we do not expect a positive answer to this question but
expect that negative answers would aid our understanding of the hard cases of structure
isomorphism in general.

» Question 14. For every signature o does there exists a k such that for all o-structures
A B

A2 B < A=Lp?

Cohomology and game comonads. Thirdly, as — and = have been shown by Abramsky,
Dawar, and Wang [4] to be correspond to the coKleisli morphisms and isomorphisms of a
comonad Py, we ask whether a similar account can be given to —% and =%. As the coalgebras
of the P, comonad relate to the combinatorial notion of treewidth, an answer to this question
could provide a new notion of “cohomological” treewidth.

» Question 15. Does there exist a comonad Cy, for which the notion of morphism and
isomorphism in the coKleisli category are —>% and E% ?

The search for a logic for PTIME. Finally, as the algorithms for —% and =% are likely
expressible in rank logic extended with a quantifier for solving systems of linear equations
over Z and as =% distinguishes all the best known family separating rank logic from PTIME,
we ask if solving systems of equations over Z is enough to capture all PTIME queries.

» Question 16. Is there a logic FPC+rk+7Z incorporating solvability of Z-linear equations
into rank logic which captures PTIME?
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