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Abstract
Given a set P of n points that are moving in the plane, we consider the problem of computing a
spanning tree for these moving points that does not change its combinatorial structure during the
point movement. The objective is to minimize the bottleneck weight of the spanning tree (i.e., the
largest Euclidean length of all edges) during the whole movement. The problem was solved in O(n2)
time previously [Akitaya, Biniaz, Bose, De Carufel, Maheshwari, Silveira, and Smid, WADS 2021].
In this paper, we present a new algorithm of O(n4/3 log3 n) time.
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1 Introduction

Given a set P of n points in the plane, let GP be the complete graph whose vertex set is P

such that the weight of each edge connecting two points p and q of P is the Euclidean distance
between p and q. The Euclidean minimum spanning tree (EMST) of P is the spanning tree
of GP with minimum sum of edge weights. The Euclidean minimum bottleneck spanning tree
(EMBST) of P is the spanning tree of GP whose largest edge weight is minimized. It is well
known that a Delaunay triangulation of P contains an EMST of P [24] and thus an EMST
of P can be computed in O(n log n) time by constructing a Delaunay triangulation of P first.
This is also the case for the bottleneck problem.

In this paper, motivated by visualizations of time-varying spatial data [2], we consider
a moving version of the EMBST problem where every point of P is moving during a time
interval. Without loss of generality, we assume that the time interval is [0, 1]. A moving
point p ∈ P is a continuous function p : [0, 1] → R2. Let p(t) denote the location of p at
time t ∈ [0, 1]. We assume that p moves on a straight line segment with a constant velocity,
i.e., p(t) is linear in t and points of {p(t)| t ∈ [0, 1]} form a straight line segment in the
plane (see Fig. 1; different points may have different velocities). A moving spanning tree
T of P connects all points of P and does not change its connection during the whole time
interval (i.e., for any two points p, q ∈ P , the path connecting p and q in T always contains
the same set of edges). We use T (t) to denote the tree at the time t. The instantaneous
bottleneck bT (t) at time t is the maximum length of all edges in T (t). The bottleneck b(T ) of
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82:2 Computing the Minimum Bottleneck Moving Spanning Tree

Figure 1 Each pair of red and blue points
connected by an arrow represents a moving point.
Blue points denote locations at t = 0 and red
points are locations at t = 1. Black boxes are
locations of these moving points at certain time
and the dashed segments form a spanning tree.

λ/2

Figure 2 Illustrating a unit-disk graph. Two
points are connected (by a blue segment) if their
distance is less than or equal to λ. In other
words, two points are connected if congruent
disks centered at them with radius λ/2 intersect.

the moving spanning tree T is defined to be the maximum instantaneous bottleneck during
the whole time interval, i.e., b(T ) = maxt∈[0,1] bT (t). The Euclidean minimum bottleneck
moving spanning tree (or moving-EMBST for short) T ∗ refers to the moving spanning tree of
P with minimum bottleneck.

In this paper, we study the problem of computing the moving-EMBST T ∗ for a set P

of n moving points in the plane as defined above. Previously, this problem was solved in
O(n2) time by Akitaya, Biniaz, Bose, De Carufel, Maheshwari, Silveira, and Smid [2]. To
solve the problem, the authors of [2] first proved the following key property: The function
of the distance between two moving points over time is convex (this is because each point
moves linearly with constant velocity), implying that the maximum distance between two
moving points is achieved at t = 0 or t = 1 (note that this does not mean T ∗ is attained
at either t = 0 or t = 1; a counterexample is provided in [2]). Using the above property,
the authors of [2] proposed the following simple algorithm to compute T ∗. First, compute a
complete graph G with P as the vertex set such that the weight of each edge connecting
two points p and q of P is defined as the maximum length of their distances at t = 0 and at
t = 1. Then the authors [2] showed that a minimum bottleneck spanning tree (MBST) of
G is also a moving-EMBST of P and thus it suffices to compute an MBST in G. Since an
MBST of a graph can be computed in linear time in the graph size [7], the entire algorithm
for computing T ∗ runs in O(n2) time in total [2].

1.1 Our result
We present an algorithm of O(n4/3 log3 n) time to compute T ∗. We sketch the main idea
below.

For any two points p and q in the plane, let |pq| denote their Euclidean distance. Due
to the above key property from [2], we observe that b(T ∗) must be equal to |pq|max for
two moving points p and q of P , where |pq|max = max{|p(0)q(0)|, |p(1)q(1)|}, i.e., b(T ∗) ∈
{|pq|max | p, q ∈ P}. As such, our main idea is to find b(T ∗) in {|pq|max | p, q ∈ P} by binary
search. To this end, we first solve a decision problem: Given any value λ > 0, decide whether
b(T ∗) ≤ λ. We reduce the decision problem to the problem of finding a common spanning tree
in two unit-disk graphs. Specifically, the unit-disk graph Gλ(Q) for a set Q of points in the
plane with respect to a parameter λ is an undirected graph whose vertex set is Q such that
an edge connects two points p, q ∈ Q if |pq| ≤ λ (alternatively, Gλ(Q) can be viewed as the
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intersection graph of the set of congruous disks centered at the points of Q with radius λ/2,
i.e., two vertices are connected if their disks intersect; see Fig. 2). Observe that b(T ∗) ≤ λ if
and only if the unit-disk graph Gλ(P ) for P at time t = 0 and the unit-disk graph Gλ(P )
for P at time t = 1 share a common spanning tree. To determine whether the two unit-disk
graphs share a common spanning tree, we apply breadth-first-search (BFS) on the two graphs
simultaneously. To avoid quadratic time, we do not compute these unit-disk graphs explicitly.
Instead, we use a batched range searching technique of Katz and Sharir [19] to obtain a
compact representation for searching one graph. For searching the other graph, we derive a
semi-dynamic data structure for the following deletion-only unit-disk range emptiness query
problem: Preprocess a set Q of n points in the plane with respect to λ so that the following
two operations can be performed efficiently: (1) given a query point p, determine whether Q

has a point q such that |pq| ≤ λ, and if yes, return such a point q; (2) delete a point from
Q. We refer to the first operation as unit-disk range emptiness query (or UDRE query for
short). We build a data structure of O(n) space in O(n log n) time such that each UDRE
query can be answered in O(log n) time while each deletion can be performed in O(log n)
amortized time. This result might be interesting in its own right. Combining this result with
the batched range searching [19], we implement the BFS simultaneously on the two unit-disk
graphs in O(n4/3 log2 n) time, which solves the decision problem.

Next, equipped with the above decision algorithm, we find b(T ∗) from the set
{|pq|max | p, q ∈ P} by binary search. Computing the set explicitly would take Ω(n2)
time. We avoid doing so by resorting to the distance selection algorithm of Katz and
Sharir [19], which can compute the k-th smallest distance among all interpoint distances of a
set of n points in the plane in O(n4/3 log2 n) time for any k with 1 ≤ k ≤

(
n
2
)
. Combining

with our decision algorithm, b(T ∗) can be computed in O(n4/3 log3 n) time. Applying the
value λ = b(T ∗) to the decision algorithm can produce the optimal spanning tree T ∗ in
additional O(n4/3 log2 n) time.

1.2 Related work
Similar to the moving-EMBST problem, one can consider the Euclidean minimum moving
spanning tree (moving-EMST) for a set of moving points (i.e., minimizing the total sum
of the edge weights instead). The authors of [2] proved that the moving-EMST problem is
NP-hard and they gave an O(n2) time 2-approximation algorithm and another O(n log n)
time (2+ ϵ)-approximation algorithm for any ϵ > 0. These spanning tree problems for moving
points are relevant in the realm of moving networks that is motivated by the increase in
mobile data consumption and the network architecture containing mobile nodes [2].

Geometric problems for moving objects have been studied extensively in the literature,
e.g., [3, 4]. In particular, kinetic data structures were proposed to maintain the minimum
spanning tree for moving points in the plane [3, 25]. Different from our problem, research
in this domain focuses on bounds of the number of combinatorial changes in the minimum
spanning tree during the point movement [4].

For solving the deletion-only UDRE query problem, by the standard lifting transformation,
one can reduce the problem to maintaining the lower envelope of a dynamic set of planes
in R3, which has been extensively studied [1, 9, 15, 18]. Applying Chan’s recent work [11]
for the problem can achieve the following result: With O(n log n) preprocessing time, each
UDRE query can be answered in O(log2 n) time and each point deletion can be handled in
O(log4 n) amortized time (the data structure is actually fully-dynamic and can also handle
each point insertion in O(log2 n) amortized time). The same problem in 2D (whose dual
problem becomes maintaining the convex hull for a dynamic set of points) is easier and

MFCS 2022



82:4 Computing the Minimum Bottleneck Moving Spanning Tree

has also been studied extensively, e.g., [5, 8, 17, 23]. In addition, Wang [26] studied the
unit-disk range counting query problem for a static set of points in the plane, by extending
the techniques for half-plane range counting query problem [10,20,21].

Our algorithm for the decision problem uses some techniques for unit-disk graphs. Many
problems on unit-disk graphs have been studied, i.e., shortest paths and reverse shortest
paths [6, 12,13,27–30], clique [14], independent set [22], diameter [12,13,16], etc. Although
a unit-disk graph of n vertices may have Ω(n2) edges, many problems can be solved in
subquadratic time by exploiting its underlying geometric structures, e.g., computing shortest
paths [6, 27]. Our O(n4/3 log2 n) time algorithm for finding a common spanning tree in two
unit-disk graphs adds one more problem to this category.

Outline. In the following, we present our algorithm for the moving-EMBST problem in
Section 2. The algorithm uses our data structure for the deletion-only unit-disk range
emptiness query problem, which is given in Section 3. Section 4 concludes. Due to the space
limit, some proofs are omitted but can be found in the full paper.

2 Algorithm for moving-EMBST

We follow the notation in Section 1, e.g., P , t, b(T ), bT (t), T ∗, |pq|, |pq|max, Gλ(P ), etc. Given
a set P of n points in the plane, our goal is to compute b(T ∗). As discussed in Section 1.1,
we first consider the decision problem: Given any λ > 0, decide whether b(T ∗) ≤ λ. We refer
to the original problem for computing b(T ∗) as the optimization problem. In what follows,
we solve the decision problem in Section 2.1 and the algorithm for the optimization problem
is described in Section 2.2.

2.1 The decision problem
Given any λ > 0, the decision problem is to decide whether b(T ∗) ≤ λ.

For any time t ∈ [0, 1], we use P (t) to denote the set of points of P at their locations
at time t, i.e., P (t) = {p(t) | p ∈ P}. Consider the two unit-disk graphs Gλ(P (0)) and
Gλ(P (1)). To simplify the notation, we use Gλ(t) to refer to Gλ(P (t)) for any t ∈ [0, 1]. For
every point p ∈ P , we consider p(0) in Gλ(0) and p(1) in Gλ(1) as the same vertex p, and
thus define Gλ = Gλ(0) ∩ Gλ(1) as the intersection graph of Gλ(0) and Gλ(1), i.e., the vertex
set of Gλ is P and Gλ has an edge connecting two vertices p and q if and only Gλ(0) has an
edge connecting p(0) and q(0) and Gλ(1) has an edge connecting p(1) and q(1). A spanning
tree of Gλ is called a common spanning tree of Gλ(0) and Gλ(1).

The following observation has been proved in [2].

▶ Observation 1 ([2]). maxt∈[0,1] |p(t)q(t)| = max{|p(0)q(0)|, |p(1)q(1)|} holds for every pair
of points p, q ∈ P .

Using the above observation, the following lemma reduces the decision problem to the
problem of finding a common spanning tree of Gλ(0) and Gλ(1). The proof can be found in
the full paper.

▶ Lemma 2. Given any λ > 0, b(T ∗) ≤ λ if and only if Gλ(0) and Gλ(1) have a common
spanning tree.

In light of Lemma 2, to solve the decision problem, it suffices to determine whether Gλ(0)
and Gλ(1) have a common spanning tree, or alternatively, whether the intersection graph
Gλ has a spanning tree, which is true if and only if the graph is connected. To determine
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whether Gλ is connected, we perform a breadth-first search (BFS) in Gλ, or equivalently, we
perform a BFS on Gλ(0) and Gλ(1) simultaneously; we do so without computing the two
unit-disk graphs explicitly to avoid the quadratic time. Our algorithm relies on the following
lemma for the deletion-only UDRE query problem, which will be proved in Section 3.

▶ Theorem 3. Given a value λ and a set Q of n points in the plane, we can build a
data structure of O(n) space in O(n log n) time such that the following first operation can
be performed in O(log n) worst case time while the second operation can be performed in
O(log n) amortized time.
1. Unit-disk range emptiness (UDRE) query: Given a point p, determine whether there

exists a point q ∈ Q such that |pq| ≤ λ, and if yes, return such a point q.
2. Deletion: delete a point from Q.

In the following, we begin with an algorithm overview and then flesh out the details.

Algorithm overview. Starting from an arbitrary point s ∈ P , we run BFS in the graph
Gλ. For each i = 0, 1, 2, . . ., let Pi be the set of points whose shortest path lengths from s

in Gλ are equal to i. In each i-th iteration, the algorithm computes Pi. Initially, P0 = {s}.
The algorithm stops once we have Pi = ∅, after which we check whether all points of P

have been discovered. If yes, then the BFS tree is a spanning tree of Gλ; otherwise, Gλ

is not connected. Consider the i-th iteration. Suppose Pi−1 is already known. For each
point p ∈ Pi−1, we wish to find the set S(p) of all points q ∈ P such that (1) q has not been
discovered yet, i.e., q ̸∈

⋃i−1
j=0 Pj ; (2) |p(0)q(0)| ≤ λ; (3) |p(1)q(1)| ≤ λ. To implement this

step efficiently, we use two techniques. First, we use a batched range searching technique of
Katz and Sharir [19] to obtain a compact representation of all points of P (0). The compact
representation can provide us with a collection N (p) of canonical subsets of P whose union
is exactly the subset of points q of P such that |p(0)q(0)| ≤ λ. Second, for each subset Q of
N (p), a data structure of Theorem 3 is constructed for Q(1) = {q(1) | q ∈ Q}, i.e., the set of
points of Q at their locations at time t = 1. Then, we apply the UDRE query with p(1) as
the query point; if the query returns a point q(1), then we know that q is in S(p) and we
delete q from Q (we also delete q from other canonical subsets of the compact representation
that contain q; the deletion guarantees that points of P already discovered by the BFS have
been removed from the canonical subsets of the compact representation) and applying the
UDRE query with p(1) again. We keep doing this until the UDRE query does not return any
point, and then we process the next subset of N (p) in the same way. In this way, S(p) will
be computed, which is a subset of Pi. Processing every point p ∈ Pi−1 as above will produce
Pi. The details of the algorithm are given below.

Preprocessing. Before running BFS, we conduct some preprocessing work.
First, using a batched range searching technique [19], we have the following lemma (which

is essentially Theorem 3.3 in [19]) for computing a compact representation of all pairs (p, q)
of points of P with |p(0)q(0)| ≤ λ.

▶ Lemma 4 (Theorem 3.3 [19]). We can compute a collection {Xr × Yr}r of complete
edge-disjoint bipartite graphs in O(n4/3 log n) time and space, where Xr, Yr ⊆ P , with the
following properties.
1. For any r, |p(0)q(0)| ≤ λ holds for any point p ∈ Xr and any point q ∈ Yr.
2. The number of these complete edge-disjoint bipartite graphs is O(n4/3), and both

∑
r |Xr|

and
∑

r |Yr| are bounded by O(n4/3 log n).
3. For any two points p, q ∈ P with |p(0)q(0)| ≤ λ, there exists a unique r such that p ∈ Xr

and q ∈ Yr.

MFCS 2022



82:6 Computing the Minimum Bottleneck Moving Spanning Tree

We refer to each Xr (resp., Yr) as a canonical subset of P . After the collection {Xr ×Yr}r

is computed, we further do the following. For each point p ∈ P , if p is in Xr, then we add
(the index of) Yr to N (p). By Lemma 4(3), subsets of N (p) are pairwise disjoint and the
union of them is exactly the subset of points q ∈ P with |p(0)q(0)| ≤ λ. Similarly, for each
point p ∈ P , if p is in Yr, then we add (the index of) Yr to M(p). The purpose of having
M(p) is that after a point p is identified in Pi, we will need to remove p from all subsets
Yr that contain p (so M(p) helps us to keep track of these subsets Yr). We can compute
N (p) and M(p) for all points p ∈ P in O(n4/3 log n) time since both

∑
r |Xr| and

∑
r |Yr|

are O(n4/3 log n) by Lemma 4(2). For the same reason, both
∑

p∈P |N (p)| and
∑

p∈P |M(p)|
are bounded by O(n4/3 log n).

In addition, for each canonical subset Yr, we construct the data structure of Theorem 3
for Yr(1) = {q(1) | q ∈ Yr}, denoted by D(Yr). Since

∑
r |Yr| = O(n4/3 log n), constructing

the data structures for all Yr can be done in O(n4/3 log2 n) time and O(n4/3 log n) space.
This finishes our preprocessing work, which takes O(n4/3 log2 n) time in total.

Implementing the BFS algorithm. We next implement the BFS algorithm as overviewed
above (we follow the same notation).

For each point p ∈ Pi−1, the key step is to compute the subset S(p) of P . We implement
this step as follows. For each Yr ∈ N (p), we perform a UDRE query with p(1) on the data
structure D(Yr). If the query returns a point q(1), then we add q to S(p) and delete q(1)
from the data structure D(Y ′

r ) for every Y ′
r ∈ M(q). Next, we perform a UDRE query with

p(1) on D(Yr) again and repeat the same process as above until the query does not return
any point. According to the definitions of N (p) and M(p) and also due to the deletions on
D(Y ′

r ) for all Y ′
r ∈ M(q), the union of S(p) thus computed for all p ∈ Pi−1 is exactly Pi.

This finishes the i-th iteration of the BFS algorithm.
For the time analysis, since both

∑
p∈P |N (p)| and

∑
p∈P M(p) are O(n4/3 log n), the

total number of UDRE queries and deletions on the data structures D(Yr) in the entire
algorithm is O(n4/3 log n), which together take O(n4/3 log2 n) time. Therefore, the BFS
algorithm runs in O(n4/3 log2 n) time.

The following theorem summarizes our result for the decision problem.

▶ Theorem 5. Given a value λ > 0, we can decide whether b(T ∗) ≤ λ in O(n4/3 log2 n) time,
and if yes, a moving spanning tree T of P with b(T ) ≤ λ can be found in O(n4/3 log2 n) time.

2.2 The optimization problem
As discussed in Section 1, by Observation 1, b(T ∗) is equal to |p(0)q(0)| or |p(1)q(1)| for two
moving points p, q ∈ P . As such, we can compute b(T ∗) by searching the two sets S(0) and
S(1) using our decision algorithm in Theorem 5, where S(t) is defined as {|p(t)q(t)| | p, q ∈ P}
for any t ∈ [0, 1]. To avoid explicitly computing S(0) and S(1), which would take Ω(n2) time,
we resort to the distance selection algorithm of Katz and Sharir [19], which can compute
the k-th smallest distance among all interpoint distances of a set of n points in the plane in
O(n4/3 log2 n) time for any k with 1 ≤ k ≤

(
n
2
)
. Combining the distance selection algorithm

and our decision algorithm, we can compute b(T ∗) in O(n4/3 log3 n) time by doing binary
search on the values of S(0) and S(1). The details are given in the proof of the following
theorem, which can be found in the full paper.

▶ Theorem 6. Given a set P of n moving points in the plane, we can compute a Euclidean
minimum bottleneck moving spanning tree for them in O(n4/3 log3 n) time.
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C

Figure 3 The cells in the gray region bounded by the blue curve are all neighbors of the red cell.

3 Deletion-only unit-disk range emptiness query data structure

In this section, we prove Theorem 3. We follow the notation in the theorem, e.g., Q, λ.
We use a unit-disk to refer to a disk with radius λ. For any point p in the plane, we use

Ap to denote the unit-disk centered at p. With this notation, a unit-disk range emptiness
(UDRE) query with query point p becomes the following: Determine whether Ap ∩ Q is
empty, and if not, return a point from Ap ∩ Q.

We use a grid Ψλ to capture the neighboring information of the points of Q, which
partitions the plane into square cells of side length λ/

√
2 by horizontal and vertical lines,

so that the distance of any two points in each cell is at most λ. For ease of discussion, we
assume that each point of Q is in the interior of a cell of Ψλ. Define Q(C) as the subset of
points of Q lying in a cell C. A cell C ′ of Ψλ is a neighbor of another cell C if the minimum
distance between a point of C and a point of C ′ is at most λ (see Fig. 3). For each cell C, we
use N(C) to denote the set of neighbors of C in Ψλ; for convenience, we let N(C) include
C itself. Note that the number of neighbors of each cell of Ψλ is O(1) and each cell is a
neighbor of O(1) cells (since C ′ ∈ N(C) if and only if C ∈ N(C ′)). Let C denote the set of
cells of Ψλ that contain at least one point of Q as well as their neighbors. Note that C has
O(n) cells. By the definition of C, the following observation is self-evident.

▶ Observation 7. For any point p in the plane, if p is not in any cell of C, then Ap ∩ Q = ∅.

The grid technique was widely used in algorithms for unit-disk graphs [12,27,29,30]. The
following lemma has been proved in [26].

▶ Lemma 8 ([26]).
1. The set C, along with the subsets Q(C) and N(C) for all cells C ∈ C, can be computed in

O(n log n) time and O(n) space.
2. With O(n log n) time and O(n) space preprocessing, given any point p in the plane, we

can do the following in O(log n) time: Determine whether p is in a cell C of C, and if
yes, return C and the set N(C).

Note that we do not compute the entire grid Ψλ but only compute the information in
Lemma 8. We next prove Theorem 3 using the information computed in Lemma 8.

Consider a UDRE query with a query point p. By Lemma 8(2), we can determine whether
p is in a cell C ∈ C. If not, by Observation 7, we are done with the query. Below we assume
that p is in a cell C ∈ C. In this case, Ap ∩ Q ̸= ∅ if and only if Ap ∩ Q(C ′) ̸= ∅ for a cell
C ′ ∈ N(C). As such, as |N(C)| = O(1), it suffices to check for each cell C ′ ∈ N(C), whether
Ap ∩ Q(C ′) = ∅. In this way, we reduce our original problem for Q to Q(C ′). As such, below
we construct a data structure DC(C ′) for Q(C ′) with respect to C. Note that we also need
to handle deletions for Q(C ′). Depending on whether C ′ = C, there are two cases.

MFCS 2022
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If C ′ = C, then all points of Q(C ′) are in the disk Ap and thus we can return an arbitrary
point of Q(C ′) as the answer to the UDRE query. To support the deletions on Q(C ′), we
build a balanced binary search tree T (C ′) for all points of Q(C ′) sorted by their indices (we
can arbitrarily assign indices to points of Q) as our data structure DC(C ′). In this way,
deleting a point from DC(C ′) can be done in O(log n) time. Therefore, in the case where
C ′ = C, we can perform each UDRE query and each deletion in O(log n) time.

In what follows, we assume that C ′ ≠ C, which is our main focus. In this case, C ′ and
C are separated by an axis-parallel line. Without loss of generality, we assume that they
are separated by a horizontal line ℓ such that C ′ is above ℓ and C is below ℓ. We further
assume that ℓ contains the upper edge of C. The rest of this section is organized as follows.
In Section 3.1, we first present some observations which our approach is based on. We
describe our preprocessing algorithm for Q(C ′) in Section 3.2 while handling the UDRE
queries and deletions is discussed in Section 3.3. Section 3.4 finally summarizes everything.
In the following, we let m = |Q(C ′)|.

3.1 Observations
Our basic idea is to maintain the portion U inside C of the lower envelope of the unit-disks
centered at points of Q(C ′). Then, Ap ∩ Q(C ′) ̸= ∅ if and only if p is above U . Determining
whether p is above U can be easily done by binary search because U is x-monotone. To handle
deletions, we borrow an idea from Hershberger and Suri [17] for maintaining the convex hull
of a semi-dynamic (deletion-only) set of points in the plane. To make our approach work, we
first present some observations in this subsection.

Recall that Aq denotes a unit-disk centered at point q. We use ∂Aq to denote the
boundary of Aq, which is a unit-circle. Let ξq = ∂Aq ∩ C, i.e., the portion of the circle ∂Aq

inside C. Note that it is possible that ξq = ∅, in which case either Aq ∩ C = ∅ or C ⊆ Aq.
If Aq ∩ C = ∅, then |pq| > λ holds for all points p ∈ C and thus q can be ignored from
constructing our data structure DC(C ′). If C ⊆ Aq, then |pq| ≤ λ always holds for all points
p ∈ C and thus we can process all such points q in the same way as the above case C ′ = C.
As such, in the following we assume that ξq ̸= ∅ for every point q ∈ Q(C ′). Because the
radius of Aq is λ while the side-length of C is λ/

√
2, ξq consists of at most two arcs of ∂Aq.

Further, ξq has exactly two arcs only if ∂Aq intersects the lower edge of C. For simplicity of
discussion, we remove the lower edge from C and make C a bottom-unbounded rectangle
(i.e., C’s upper edge does not change, its two vertical edges extend downwards to the infinity,
and its lower edge is removed); so now C has three edges. In this way, ξq = ∂Aq ∩ C is
always a single arc.

Since q is above the horizontal line ℓ, which contains the upper edge of C, ξq must be
x-monotone. This means the lower envelope U of Ξ = {ξq | q ∈ Q(C ′)} is also x-monotone
(see Fig. 4). We will show that U can be computed in linear time by a Graham’s scan style
algorithm once the arcs of Ξ are ordered in a certain way. To define this special order, we
first introduce some notation below.

Recall that the boundary ∂C consists of three edges. Let l∗ denote the lower endpoint
of the left edge of C at −∞; similarly, let r∗ denote the lower endpoint of the right edge
of C (see Fig. 4). For any two points a and b on ∂C, we say that a is left of b if a is
counterclockwise from b around C (i.e., if we traverse from l∗ to r∗ along ∂C, a will be
encountered earlier than b). For each arc ξq, if a and b are its two endpoints and a is left
of b (see Fig. 4), then we call a the left endpoint of ξq and b the right endpoint. For ease of
exposition, we make a general position assumption that no two arcs of Ξ share a common
endpoint. The special order mentioned above for the Graham’s scan style algorithm is the
order of arcs of Ξ by their right endpoints on ∂C, called right-endpoint left-to-right order.
To justify the correctness, we prove some properties for the lower envelope U below.
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ℓ

C

l∗ r∗

a

b

Figure 4 Illustrating the lower envelope (the
red curve).

ℓ

C

l∗ r∗

Figure 5 Illustrating a lower envelope (the red
curve) that has two connected components.

Suppose we traverse on ∂C from l∗ until we meet U , and then we traverse on U until
we come back on ∂C again. We keep traversing. We may meet U again if U has multiple
connected components (see Fig. 5). We continue in this way until we arrive at r∗. The
order of the arcs of Ξ that appear on U encountered during the above traversal is called the
traversal order of U . The following is a crucial lemma that our algorithm relies on. The proof
can be found in the full paper.

▶ Lemma 9. Every arc of Ξ has at most one portion on U and the traversal order of U is
consistent with the right-endpoint left-to-right order of Ξ (i.e., if an arc ξ appears in the front
of another arc ξ′ in the traversal order of U , then the right endpoint of ξ is to the left of that
of ξ′).

3.2 Preprocessing
We perform the following preprocessing algorithm for Q(C ′). Due to Lemma 9, we are able
to extend to our problem a technique from Hershberger and Suri [17] for maintaining the
convex hull for a semi-dynamic (deletion-only) set of points in the plane (in the dual plane,
the problem is to maintain the lower/upper envelope for a semi-dynamic set of lines). Recall
that m = |Q(C ′)|.

We first compute the arcs of Ξ and sort them by their right endpoints from left to right
on ∂C. Let T be a complete binary tree whose leaves correspond to arcs in the above order.
For each node v, let Ξ(v) denote the subset of arcs in the leaves of the subtree of T rooted
at v.

For any subset Ξ′ of Ξ, let U(Ξ′) denote the lower envelope of the arcs of Ξ′. We use
a tree T (Ξ′) (which can be considered as a subtree of T ) to represent U(Ξ′). Initially, we
have the tree T (Ξ), and later T (Ξ) is modified due to point deletions from Q(C ′) (and
correspondingly arc deletions from Ξ). The tree T (Ξ′) is defined as follows. For each arc
ξ ∈ Ξ′, we copy the leaf of T storing ξ along with all ancestors of the leaf into T (Ξ′). If
we define Ξ′(v) = Ξ(v) ∩ Ξ′ for any node v of T , then v is copied into T (Ξ′) if and only if
Ξ′(v) ̸= ∅. Later we will add some additional node-fields to T (Ξ′) to represent the lower
envelope U(Ξ′). We call T (Ξ′) an envelope tree.

We wish to have each node v of T (Ξ′) represent the lower envelope U(Ξ′(v)) of arcs of
Ξ′(v), i.e., arcs stored in the leaves of the subtree of T (Ξ′) rooted at v. We add a node-field
arcs(v) for that purpose. Storing the entire lower envelope U(Ξ′(v)) at each arcs(v) of T (Ξ′)
leads to superlinear total space. To achieve O(m) space, we use the following standard
approach (which has been used elsewhere, e.g., [17, 23]): For each arc ξ stored in a leave
v ∈ T (Ξ′), ξ is stored only at arcs(u) for the highest ancestor u of v in T (Ξ′) such that ξ

MFCS 2022



82:10 Computing the Minimum Bottleneck Moving Spanning Tree

ℓ

C

U(Ξ′(u)) U(Ξ′(w))

Figure 6 Illustrating Lemma 10: The red (resp., blue) arcs are those from Ξ′(u) (resp., Ξ′(w)).
There is only one intersection between U(Ξ′(u)) and U(Ξ′(w)).

contributes an arc in the lower envelope U(Ξ′(u)). Arcs of arcs(v) in each node v of T (Ξ′)
are stored in a doubly linked list. Note that if v is the root of T (Ξ′), then arcs(v) stores the
whole lower envelope U(Ξ′) of Ξ′.

The following lemma, which can be easily obtained from Lemma 9, is crucial to the
success of our approach. The proof can be found in the full paper.

▶ Lemma 10. For each node v ∈ T (Ξ′), the lower envelopes U(Ξ′(u)) and U(Ξ′(w)) have at
most one intersection, where u and w are the left and right children of v, respectively (see
Fig. 6).

By Lemma 10, we add another node-field X(v) for each node v ∈ T (Ξ′) to store the two
arcs that define the intersection of U(Ξ′(u)) and U(Ξ′(w)), where u and w are the left and
right children of v in T (Ξ′), respectively. If U(Ξ′(u)) and U(Ξ′(w)) do not intersect, then
X(v) stores the rightmost arc of U(Ξ′(u)) and the leftmost arc of U(Ξ′(w)). As will be seen
later in Section 3.3, the two node-fields X(v) and arcs(v) in T (Ξ′) allow us to efficiently
maintain the envelope tree T (Ξ′) subject to deletions of arcs. We next have the following
lemma for constructing T (Ξ) initially.

▶ Lemma 11. Given the set Ξ of m arcs, we can build the envelope tree T (Ξ) in O(m log m)
time.

Proof. First of all, we can construct the tree T in O(m log m) time by sorting the arcs of Ξ
by their right endpoints on ∂C. The rest of the work is thus to compute the fields arcs(v)
and X(v) for all nodes v of T . This can be done in a bottom-up manner as follows.

At the outset, we have arcs(v) = Ξ(v) = {ξ} for each leaf node v ∈ T , where ξ is the arc
stored at v. We also set X(v) to null. Next, we compute arcs(·) and X(·) for other nodes
by merging the lower envelopes of their children. Specifically, consider a node v whose left
and right children are u and w, respectively. We assume that arcs(u) and arcs(w) store
the lower envelopes U(Ξ(u)) and U(Ξ(w)) in their traversal orders, respectively. The first
thing is to compute the lower envelope U(Ξ(v)). By Lemma 10, U(Ξ(u)) and U(Ξ(w)) have
at most one intersection. Since each lower envelope is x-monotone, U(Ξ(v)), which is also
the lower envelope of U(Ξ(u)) and U(Ξ(w)), can be computed by a standard line sweep
procedure. Specifically, a vertical sweeping line ℓ′ sweeps the plane from left to right. During
the sweeping, we maintain the two arcs of U(Ξ(u)) and U(Ξ(w)) intersecting ℓ′, respectively.
An event happens if ℓ′ hits a vertex of either U(Ξ(u)) or U(Ξ(w)). The sweeping procedure
takes O(|Ξ(v)|) time (note that Ξ(v) = Ξ(u) ∪ Ξ(w)).

If U(Ξ(u)) and U(Ξ(w)) do not have any intersection, then U(Ξ(v)) is just the concate-
nation of U(Ξ(u)) and U(Ξ(w)), i.e., we concatenate arcs(u) and arcs(w) and store the
result at arcs(v); we also need to reset both arcs(u) and arcs(w) to null. In addition,
X(v) is set to including the rightmost arc of U(Ξ(u)) and the leftmost arc of U(Ξ(w)).
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If U(Ξ(u)) and U(Ξ(w)) have an intersection, say, a∗, then let ξu ∈ U(Ξ(u)) and ξv ∈
U(Ξ(v)) be the two arcs that intersect at a∗. We concatenate the part of U(Ξ(u)) left
to a∗ and the part of U(Ξ(w)) right to a∗ (ξu and ξw are cut off at a∗); the result is
U(Ξ(v)) and we store it into arcs(v). Further, arcs left to a∗ (including ξu) in U(Ξ(u))
and arcs right to a∗ (including ξw) in U(Ξ(w)) are removed from arcs(u) and arcs(w),
respectively. In addition, X(v) is set to {ξu, ξw}.

As such, computing the node-fields of v takes O(|Ξ(v)|) time. Doing this for all nodes
v in the same level of the tree takes O(m) time as the union of Ξ(v) of all nodes v in the
same level is exactly Ξ. Therefore, the construction of the envelope tree T (Ξ) can be done in
O(m log m) time in total. ◀

The above finishes our preprocessing for the points Q(C ′), which takes O(m log m) time
and O(m) space. Our preprocessing builds the envelope tree T (Ξ), which is our data structure
DC(C ′). Once points from Q(C ′) are deleted we use Ξ′ to refer to the subset of Ξ defined by
the remaining points and use T (Ξ′) to refer to the corresponding envelope tree.

3.3 Handling UDRE queries and point deletions
We now discuss how to handle the UDRE queries and point deletions.

UDRE queries. Handling the UDRE queries is relatively easy. Consider a query point p

in the cell C. We wish to determine whether Ap ∩ Q(C ′) = ∅, and if not, return a point
q ∈ Ap ∩ Q(C ′). Let Ξ′ be the set of arcs defined by the points in the current set Q(C ′). As
discussed before, it suffices to determine whether p is above the lower envelope U(Ξ′). To
this end, since U(Ξ′) is x-monotone, let a and b be the two adjacent vertices of U(Ξ′) such
that p’s x-coordinate is between those of a and b. Let ξq be the arc that contains the portion
of U(Ξ′) between a and b, where q is the center of the arc (and thus q ∈ Q(C ′)). As such,
p is above U(Ξ′) if and only if p is above ξq (i.e., p is inside the unit-disk Aq). If yes, then
q ∈ Ap ∩ Q(C ′) and thus we can return q as the answer to the query. Therefore, it suffices to
compute the arc ξq. To this end, one may attempt to perform binary search on the vertices
of U(Ξ′) to find a and b first. However, although the whole U(Ξ′) is stored in arcs(v) at
the root v, arcs of arcs(v) are stored in a doubly linked list, which does not support binary
search. To circumvent the issue, we can actually perform binary search using the node-fields
X(·) of T (Ξ′) as follows.

Observe that each vertex of U(Ξ′) appears as the intersection of the two arcs of X(v) for
some node v ∈ T (Ξ′). The subtree of T (Ξ′) rooted at any node v represents U(Ξ′(v)) by the
intersections of the arcs of X(·) stored at its nodes. To find ξq, starting from the root, for
each node v of T (Ξ′), we compute the intersection a∗ of the arcs of X(v). If the x-coordinate
of p is smaller or equal to that of a∗, we proceed on the left subtree of v recursively; otherwise,
we proceed on the right subtree. At the end we will reach a leaf and the arc stored at the
leaf is ξq. As such, ξq can be found in O(log m) time.

Therefore, each UDRE query can be answered in O(log m) time.

Deletions. Next, we discuss point deletions. To delete a point q from Q(C ′), it boils down
to deleting the arc ξq defined by q from the envelope tree T (Ξ′). The next lemma provides
an algorithm for this.

▶ Lemma 12. Deleting an arc from the envelope tree T (Ξ′) can be done in O(log m) amortized
time.
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ξu ξw ξu ξw

ξ′u

ξ′w

Before deleting ξ = ξw After deleting ξ = ξw

Figure 7 Illustrating the deletion of ξ = ξw. The red (resp., blue) arcs are those from Ξ′(u)
(resp., Ξ′(w)).

Proof. Let ξ be the arc we wish to delete from T (Ξ′) and let z be the leaf node of the tree
storing ξ. To delete ξ, we need to update arcs(·) and X(·) for all ancestors of z.

The algorithm is recursive. Starting from the root, for each node v, we process it by
calling Delete(ξ, v) as follows. We assume that arcs(v) now stores the whole lower envelope
U(Ξ′(v)), which is true initially when v is the root. Let u and w denote the left and right
children of v, respectively. We assume that the leaf z is in the right subtree of v since
the other case is symmetric. Let X(v) = {ξu, ξw}, with ξu ∈ U(Ξ′(u)) and ξw ∈ U(Ξ′(w)),
i.e., the intersection of ξu and ξw, denoted by a∗, is the intersection between U(Ξ′(u)) and
U(Ξ′(w)). We first restore U(Ξ′(u)), by concatenating the part of arcs(v) left to a∗ and
arcs(u). Restoring U(Ξ′(w)) can be done in a similar way. Depending on whether w = z,
there are two cases.

If w is the leaf z (which is the base case of our recursive algorithm), then arcs(w) = {ξ}
and we reset the right child of v and field X(v) to null. We also reset arcs(v) = arcs(u) and
arcs(u) = null.

If w is not z, then to update arcs(v) and X(v), observe that if ξ ̸∈ X(v), then deleting ξ

does not affect the intersection between U(Ξ′(u)) and the new lower envelope U(Ξ′(w) \ {ξ}),
i.e., X(v) does not change. Hence, if ξ ̸∈ X(v), we proceed on w by calling Delete(ξ, w). After
Delete(ξ, w) is returned, the new U(Ξ′(w) \ {ξ}) is stored in arcs(w) and we cut U(Ξ′(u))
and U(Ξ′(w) \ {ξ}) using X(v) to obtain arcs(v) in the same way as the tree construction
algorithm in Lemma 11, which takes O(1) time as each arcs(·) is stored by a doubly linked
list. In the following, we discuss the case where ξ ∈ X(v) = {ξu, ξw}.

Since ξ is in the right subtree of v, ξ must be ξw. In this case, X(v) will be changed after
the deletion of ξ and thus we need to compute the new arcs that define the intersection of
U(Ξ′(u)) and the new lower envelope U(Ξ′(w) \ {ξ}) (see Fig. 7). We proceed on w by calling
Delete(ξ, w). After Delete(ξ, w) is returned, the new U(Ξ′(w) \ {ξ}) is stored in arcs(w). Let
{ξ′

u, ξ′
w} be the new X(v) to be computed, with ξ′

v and ξ′
w in U(Ξ′(u)) and U(Ξ′(w) \ {ξ}),

respectively. Observe that ξ′
u cannot lie to the left of ξu in arcs(u) while ξ′

w must lie on the
part of the new U(Ξ′(w) \ {ξ}) between the two old neighbors of ξ (=ξw) on U(Ξ′(w)) (see
Fig. 7). As such, we compute ξ′

u and ξ′
w using a line sweep procedure that is similar to the

algorithm in Lemma 11, but to make the algorithm faster, due to the above observation
it suffices to start the sweeping line from the left of the following two arcs: ξu and the
left neighbor of ξ in the original lower envelope U(Ξ′(w)). We stop the sweeping once the
intersection of U(Ξ′(u)) and U(Ξ′(w) \ {ξ}) is found, after which, we reset arcs(v) as well as
arcs(u) and arcs(w) in constant time in a way similar to the algorithm in Lemma 11.

The pseudocode summarizing the algorithm can be found in the full paper.
For the time analysis, the time we spend on each node v is O(1) except the line sweep

procedure for computing ξ′
u and ξ′

w in the case where ξ ∈ X(v). The procedure takes time
O(1 + ku + kw), where ku is the number of arcs between ξu and ξ′

u in U(Ξ′(u)) and kw is
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the number of arcs between ξw and ξ′
w in U(Ξ′(w)). Observe that the arcs between ξu and

ξ′
u in U(Ξ′(u)) are moved up from node u to node v after the deletion of ξ (i.e., they were

originally stored at arcs(u) but are stored at arcs(v) after the deletion). Similarly, the arcs
between ξw and ξ′

w in U(Ξ′(w)) are moved up to w from some lower levels after the deletion
(see Fig. 7). Because each arc can be moved up at most O(log m) times for all m point
deletions of Q(C ′), the total sum of ku + kw for all deletions is bounded by O(m log m). As
such, each deletion takes O(log m) amortized time. ◀

3.4 Putting everything together
The above shows that we can build a data structure DC(C ′) for the points of Q(C ′) with
respect to C in O(m log m) time and O(m) space, such that each UDRE query with a query
point in C can be answered in O(log m) time and deleting a point from Q(C ′) can be handled
in O(log m) amortized time.

To solve our original problem on Q, i.e., proving Theorem 3, for each cell C ∈ C, we build
data structures DC(C ′) for all cells C ′ ∈ N(C). Because |N(C)| = O(1) for every C ∈ C and
each cell C ′ is in N(C) for a constant number of cells C ∈ C, the total space for all these
data structures DC(C ′) is O(n) and the total preprocessing time is O(n log n).

For each UDRE query with a query point p, we first use Lemma 8(2) to determine whether
p is in a cell of C. If not, then by Observation 7, Ap ∩ Q = ∅ and thus we are done with the
query. Otherwise, Lemma 8(2) will return the cell C that contains p as well as N(C). Then,
for each C ′ ∈ N(C), we solve the query using the data structure DC(C ′). The total query
time is O(log n) as |N(C)| = O(1).

To delete a point q from Q, using Lemma 8(2) we first find the cell C ′ that contains q

as well as N(C ′). Notice that N(C ′) exactly consists of those cells C with C ′ ∈ N(C). We
then delete q from the data structure DC(C ′) for each C ∈ N(C ′). As |N(C ′)| = O(1), the
total deletion time is O(log n) amortized time. This proves Theorem 3.

4 Conclusion

In this paper, we presented an O(n4/3 log3 n) time algorithm for computing a Euclidean
minimum bottleneck moving spanning tree for a set of n moving points in the plane, which
significantly improves the previous O(n2) time solution [2]. To solve the problem, we first
solved the decision problem in O(n4/3 log2 n) time. This is done by reducing it to the problem
of computing a common spanning tree in two unit-disk graphs. To avoid computing the
unit-disk graphs explicitly, which would cost Ω(n2) time, we used a batched range searching
technique [19] to obtain a compact representation for searching one graph, and derived a
semi-dynamic (deletion-only) unit-disk range emptiness query data structure for searching
the other graph. We believe our data structure is interesting in its own right and will certainly
find applications elsewhere. We finally remark that although in our problem each moving
point is required to move linearly with constant velocity, our algorithm still works for other
types of point movements as long as Observation 1 holds.
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