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Abstract
The Traveling Tournament Problem (TTP) is a well-known benchmark problem in the field of
tournament timetabling, which asks us to design a double round-robin schedule such that each pair
of teams plays one game in each other’s home venue, minimizing the total distance traveled by all
n teams (n is even). TTP-k is the problem with one more constraint that each team can have at
most k consecutive home games or away games. The case where k = 3, TTP-3, is one of the most
investigated cases. In this paper, we improve the approximation ratio of TTP-3 from (1.667 + ε) to
(1.598 + ε), for any ε > 0. Previous schedules were constructed based on a Hamiltonian cycle of the
graph. We propose a novel construction based on triangle packing. Then, by combining our triangle
packing schedule with the Hamiltonian cycle schedule, we obtain the improved approximation ratio.
The idea of our construction can also be extended to k ≥ 4. We demonstrate that the approximation
ratio of TTP-4 can be improved from (1.750+ε) to (1.700+ε) by the same method. As an additional
product, we also improve the approximation ratio of LDTTP-3 (TTP-3 where all teams are allocated
on a straight line) from 4/3 to (6/5 + ε).
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1 Introduction

In the field of the tournament schedule, the traveling tournament problem (TTP) is a widely
known benchmark problem that was first systematically introduced in [10]. This problem
aims to find a double round-robin tournament satisfying some constraints, minimizing the
total distance traveled by all participant teams. In a double round-robin tournament of n
teams, each team will play 2 games against each of the other n− 1 teams, one at its home
venue and one at its opponent’s home venue. Additionally, each team should play one game
a day, all games need to be scheduled on 2(n− 1) consecutive days, and so there are exactly
n/2 games on each day. According to the definition, we know that n is always even. For
TTP, we have the following two basic constraints or assumptions on the double round-robin
tournament.
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Traveling Tournament Problem (TTP).
No-repeat: Two teams cannot play against each other on two consecutive days.
Direct-traveling: Before the first game, all teams are at home, and they will return home
after the last game. Furthermore, a team travels directly from its game venue on ith day
to its game venue on (i+ 1)th day.

TTP-k, a well-known variant of TTP, is to add the following constraint on the maximum
number of consecutive home games and away games.

Bounded-by-k: Each team can have at most k consecutive home games or away games.

The smaller the value of k, the more frequently a team has to return home. By contrast,
if k is very large, say k = n− 1, then this constraint loses meaning, and TTP-k becomes TTP
where a team can schedule their travel distance as short as that in the traveling salesman
problem (TSP).

A weight function w on the complete undirected graph is called a metric if it satisfies the
symmetry and triangle inequality properties: w(a, b) = w(b, a) and w(a, c) ≤ w(a, b) +w(b, c)
for all a, b, c ∈ V .

The input of TTP-k contains a complete graph where each vertex is a team, and the
weight between two vertices u and v is the distance from the home of team u to the home
of team v. In this paper, we only consider the case when the weight function w is a metric.
Due to page limitations, the proofs of some lemmas and theorems marked with ‘*’ may be
omitted or incomplete. The full proofs can be found in the full version of this paper.

1.1 Related Work
TTP and TTP-k are difficult optimization problems. The NP-hardness of TTP and TTP-k
with k ≥ 3 has been established [2, 24, 5]. Although the hardness of TTP-2 is still not formally
proved, it is believed that TTP-2 is also hard since it is also not easy to construct a feasible
solution to it. In the literature there is a large number of contributions on approximation
algorithms [25, 28, 31, 30, 6, 21, 29, 18, 27, 16, 17] and heuristic algorithms [11, 20, 1, 9, 13, 14].

For heuristic algorithms, most known works are concerned with the case of k = 3. Since
the search spaces of TTP and TTP-k are usually very large, many instances of TTP-3 with
more than 10 teams in the online benchmark [26, 3] have not been completely solved even by
using high-performance machines.

In terms of approximation algorithms, most results are based on the assumption that
the distance holds the symmetry and triangle inequality properties. This is natural and
practical in the sports schedule. For k = 2, one significant contribution to TTP-2 was done
by Thielen and Westphal [25]. They proposed a (1 + 16/n)-approximation algorithm for n/2
being even and a (3/2 + O(1/n))-approximation algorithm for n/2 being odd. Currently,
approximation ratios for these two cases have been improved to (1 + 3/n) and (1 + 12/n),
respectively [30, 31]. For k = 3, the first approximation algorithm, proposed by Miyashiro et
al., admits a 2 +O(1/n) approximation ratio using the Modified Circle Method [21]. Then,
the approximation ratio was improved to 5/3 + O(1/n) by Yamaguchi et al. [29]. Their
approximation algorithm also works for 3 < k ≪ n. For k = 4, the ratio is 1.750 +O(1/n)
and for 4 < k ≪ n, the ratio is (5k − 7)/(2k) +O(k/n) [29]. For k = Θ(n), Westphal and
Noparlik proposed a 5.875 approximation algorithm for any choice of k ≥ 4 and n ≥ 6 [27],
and Imahori et al. gave a 2.75 approximation algorithm for k = n− 1 where they also proved
the approximation ratio can be further improved to 2.25 if the optimal TSP is given [18].
The current best approximation ratio for k = 3 is still 5/3 +O(1/n) [29].
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We refer the readers to [3] for more variants of TTP (including the traveling tournament
problem with predefined venues, the time-relaxed traveling tournament problem, etc.) with
detailed benchmarks for each.

1.2 Our Results

In this paper, we consider TTP-k with the cases of k = 3 and k = 4. Our contributions can
be summarized as follows.

We mainly focus on TTP-3. Firstly, we analyze the structural properties in more detail,
which leads us to strengthen some of the current-known lower bounds and propose several
new ones. Secondly, we design an approximation algorithm that improves the approximation
ratio from (5/3 + ε) to (139/87 + ε). Our algorithm consists of two constructions. The
first construction is based on the Hamiltonian cycle, which is a well-known method. The
Hamiltonian cycle used is commonly generated by the Christofides-Serdyukov algorithm,
while we propose a new Hamiltonian cycle that uses the minimum weight perfect matching.
The second construction proposed by us is based on triangle packing which can be seen as a
generalization of the matching packing schedule in TTP-2.

For a special case of TTP-3 where all teams are located on a line, Linear Distance TTP-3
(LDTTP-3), we prove that the approximation ratio of our triangle packing construction can
achieve (6/5 + ε), which improves the previous approximation ratio of 4/3 [15].

Finally, we extend our method to TTP-4 and show that we can improve the approximation
ratio from (7/4 + ε) to (17/10 + ε).

2 Preliminaries

We will always use n to denote the total number of teams in the problem. The set of n teams
is denoted by V = {t1, t2, . . . , tn}. Recall that n is even. For TTP-3, there are three cases
of n we consider: n ≡ 0 (mod 6), n ≡ 2 (mod 6) and n ≡ 4 (mod 6). Due to the different
structural properties, these three cases have to be handled separately. We mainly describe
the case of n ≡ 0 (mod 6) due to page limitations. So from here on, we assume that n is a
number divisible by 6.

We use G = (V,E) to denote the complete graph on the n vertices representing the n
teams. There is a positive weight function w : E → R≥0 on the edges of G. We often write
w(u, v) to mean the weight of the edge uv, instead of w(uv). Note that w(u, v) would be the
same as the distance between the home of team u and the home of team v. For any weight
function w : X → R≥0, we extend it to subsets of X. Define w(Y ) =

∑
x∈Y w(x) for Y ⊆ X.

The weight of a minimum weight spanning tree in G is denoted by MST(G). We use δ(u)
to denote the set of edges incident on u in G. We also use deg(u) to denote the weighted degree
of a vertex. That is the total weight of all edges incident on u in G, i.e., deg(u) = w(δ(u)).
We also let ∆ to be the sum of the weighted degrees, i.e., ∆ =

∑
u∈V deg(u) = 2w(E).

A cycle on k vertices is called a k-cycle. A triangle uvw is a 3-cycle on three different
vertices {u, v, w}. Two subgraphs or sets of edges are vertex-disjoint if they do not share
a common vertex. A triangle packing in G, denoted by T , is a set of edges such that each
component is a triangle, and all vertices are covered. Equivalently, it can be seen as the edges
of m vertex-disjoint triangles. Similarly, a P3 path is a simple path on three different vertices
{u, v, w}, which can be represented by u-v-w. A P3 path packing in G is a set of edges such
that every component is a P3 path, and each vertex is covered. We can obtain a triangle
packing from a P3 packing by connecting the two non-adjacent vertices in each component.

MFCS 2022
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Let m = n
3 , and then m is an even number. For a fixed triangle packing T of G, let the

components be u1, . . . , um. U = {u1, . . . , um} is a partition of V . Each u ∈ U is referred
as a super-team. We define a complete graph H = (U,F ) on U . We will also have a cost
function c(u, v) defined on vertices in U . It is c(u, v) =

∑
u′∈u,v′∈v w(u′, v′) for each edge

uv ∈ F . For simplicity we also define c(u, u) = 0. Despite not using this property, it is worth
noting that the cost function c is also a metric.

We also define c(u) for u ∈ U to be the same as w(a, b) + w(b, c) + w(c, a) for a, b, c ∈ u.
Note that c(U) =

∑
u∈U c(u) = w(T ). We can easily get

1
2∆ = w(E) = c(F ) + c(U) = c(F ) + w(T ). (1)

The remaining parts of the paper are organized as follows. In Section 3, we focus on
TTP-3. Specifically, in Section 3.1, we introduce some basic notations and propose several
new lower bounds. In Section 3.2, we give a brief introduction to the well-known construction
based on the Hamiltonian cycle. In Section 3.3, we propose a novel construction based on
triangle packing. Although these two constructions cannot make any improvement separately,
in Section 3.4, we show that together they can guarantee an improved approximation ratio
for TTP-3. In Section 4, we analyze the approximation ratio of our algorithm for LDTTP-3.
In Section 5, we extend our methods and prove that we can also improve the approximation
ratio for TTP-4.

3 TTP-3

3.1 The Independent Lower Bounds
For TTP and TTP-k, a well-known method to obtain the lower bounds is to use an independent
relaxation [4, 10]. The basic idea is to obtain a lower bound on the traveling distance of each
team independently without considering the feasibility of other teams and then sum them
together. Although there exist many independent lower bounds for TTP-3 [21, 29, 27], we
can not use them directly to get our result. We are interested in a stronger bound. Before
we make some observations on the independent lower bounds, we first need to explore some
properties of TTP-k.

For TTP-k, each team needs to visit each other team’s home once in the tournament.
A road trip of a team v is a simple cycle starting and ending at v. A k-itinerary of v, is a
connected subgraph of G that consists of road trips with each simple cycle of length at most
k + 1, and each vertex other than v in V has degree 2.

For TTP-3, the length of each road trip is at most 4. For simplicity, we omit k when k is
implicit. In the remainder of this section, k = 3.

An itinerary is optimal for a team if it is the itinerary of minimum weight.
Considering an optimal itinerary Iv for team v, we will use w(Iv) to denote the weight

of the optimal itinerary for team v. Then, ψ =
∑

v∈V w(Iv) is a simple independent lower
bound for the minimum weight solution of TTP-3. Note that this lower bound was also used
in the experiment [10]. However, it is NP-hard to compute w(Iv). Hence, we want to find an
alternative lower bound for each team’s optimal itinerary.

When n ≡ 0 (mod 6) and n ≡ 4 (mod 6), we can prove that there always exists an
optimal itinerary with no 2-cycles.

▶ Lemma 1. For TTP-3 with the cases of n ≡ 0 (mod 3) and n ≡ 1 (mod 3), there exists
an optimal itinerary with no 2-cycles for each team.
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Proof. Consider an optimal itinerary Iv of team v with the minimum number of 2-cycles.
Assume Iv contains a 2-cycle. Since all cycles share the vertex v, by the triangle inequality,
we can get a 3-cycle by shortcutting two 2-cycles, and the 3-cycle has a weight no greater
than the sum weight of the two 2-cycles. This shows that Iv contains exactly one 2-cycle.
Similarly, by the triangle inequality, a 4-cycle can be obtained by shortcutting one 2-cycle
and one 3-cycle without increasing the total weight. This shows there cannot be any 3-cycle.
Thus, there exists only one 2-cycle, and the rest of the cycles are all 4-cycles. Thus, we will
get n ≡ 2 (mod 3), a contradiction to n ≡ 0 (mod 3) or n ≡ 1 (mod 3). ◀

3.1.1 Bounds on optimal itinerary
For this subsection, we fix a single team v and start to consider the optimal itinerary Iv for
this team. We will write I as Iv to simplify the notation within this subsection. We will give
a more refined analysis than previous results [29].

Recall that we consider the case of n ≡ 0 (mod 6) here. By Lemma 1, there exists
an optimal itinerary I with no 2-cycles, and it consists of a set of 4-cycles and a set of
3-cycles. Hence we will partition I into two sets of edges I3 and I4, where I3 consists of all
3-cycles and I4 consists of all 4-cycles. Define 0 ≤ γ ≤ 1, such that w(I4) = γw(I), and so
w(I3) = (1 − γ)w(I). Hence γ measures the proportion of weights of the 4-cycles compared
to the entire itinerary. The edges in G incident to v in I are called home-edges, which is
the same as δ(v) ∩ I. Let a and b be the proportion of weights of the home-edges in I4 and
I3, respectively. Namely, aw(I4) = w(I4 ∩ δ(v)) is the weight of all home-edges in I4, and
bw(I3) = w(I3 ∩ δ(v)) is the weight of all home-edges in I3.

Now, we are ready to give some stronger bounds for the optimal itinerary.

▶ Lemma 2. Let C be a minimum weight Hamiltonian cycle in G. Then w(I) ≥ w(C).

Proof. According to the definition of the itinerary, we know that each vertex in I has an
even degree. Then, we can get an Euler tour in I and obtain a Hamiltonian cycle in graph G
by shortcutting I. Hence w(I) ≥ w(C). ◀

We also recall the following result.

▶ Lemma 3 ([7, 23]). For a graph G, let C be a minimum weight Hamiltonian cycle,
and C ′ be a Hamiltonian cycle obtained by the Christofides-Serdyukov algorithm. Then
w(C ′) ≤ MST(G) + 1

2w(C).

For ease of proofs in the rest of the section, we also define V3 and V4 that partition the
vertices in V \ {v}, where V3 consists of all vertices in I3 except v, and V4 consists of all
vertices in I4 except v. Our results are mostly simple counting arguments.

▶ Lemma 4. (1 − 1
2γ + aγ)w(I) ≥ ( 1

2 + a)γw(I) + b(1 − γ)w(I) ≥ deg(v).

Proof. By the definition of b, we have b ≤ 1. So, we have (1− 1
2γ+aγ)w(I) = ( 1

2 +a)γw(I)+
(1 − γ)w(I) ≥ ( 1

2 + a)γw(I) + b(1 − γ)w(I). The left inequality holds. Now we show the
right inequality.

First, one can see deg(v) =
∑

u∈V3
w(u, v) +

∑
u∈V4

w(u, v).
Next, recall that b(1 − γ)w(I) = w(I3 ∩ δ(v)) is the total weight of all home-edges in

3-cycles. Thus, we have
∑

u∈V3
w(u, v) = b(1 − γ)w(I). Similarly aγw(I) = w(I4 ∩ δ(v)).

For any 4-cycle vv1v2v3 in I4, we note that the edges v1v and v3v are home-edges which
can be counted by w(I4 ∩ δ(v)), but the edge v2v is not a home-edge. By the triangle
inequality, we know that w(v, v2) ≤ 1

2 (w(v, v1) +w(v1, v2) +w(v2, v3) +w(v3, v)). Therefore,
the weight of the uncounted edge is at most half that of the 4-cycle.

MFCS 2022
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Thus, we have ( 1
2 +a)γw(I) ≥

∑
u∈V4

w(u, v). Then, we have ( 1
2 +a)γw(I)+b(1−γ)w(I) ≥∑

u∈V3
w(u, v) +

∑
u∈V4

w(u, v) = deg(v). ◀

▶ Lemma 5. (1 − 1
2a)γw(I) + (1 − 1

2b)(1 − γ)w(I) ≥ MST(G).

Proof. In the optimal itinerary of v, we note that the total weight of all home-edges is
aγw(I) + b(1 − γ)w(I). For each cycle, there are exactly two home-edges. We can delete the
longer edge from each cycle from I, and we can get a spanning tree with the total weight
less than (1 − 1

2a)γw(I) + (1 − 1
2b)(1 − γ)w(I). Since the weight of a minimum spanning

tree is MST(G), we have that (1 − 1
2a)γw(I) + (1 − 1

2b)(1 − γ)w(I) ≥ MST(G). ◀

Note that our bounds in Lemmas 4 and 5 are stronger than that in [29]. Next, we will
propose two new lower bounds on minimum weight matching and triangle packing.

▶ Lemma 6. Let M be a minimum weight perfect matching in G. Then 1
2γw(I) + (1 − b)(1 −

γ)w(I) ≥ w(M).

Proof. We note that the number of vertices in V3 is even but odd in V4. Since any pair of
3-cycles only share one common vertex v, after we delete both of home-edges for each 3-cycle,
we can get a perfect matching M1 in graph G[V3] with a total weight of (1 − b)(1 − γ)w(I).

Then, by a similar argument with the proof of Lemma 2, we know that γw(I) = w(I4),
is greater than the weight of the minimum weight Hamiltonian cycle in graph G[V4 ∪ {v}].
Since the number of vertices in this graph is even, any Hamiltonian cycle in this graph can
be decomposed into two perfect matching. Thus, we can get a perfect matching M2 in this
graph with a total weight less than 1

2γw(I). Therefore, M1 ∪M2 is a perfect matching, and
w(M) ≤ w(M1 ∪M2) ≤ 1

2γw(I) + (1 − b)(1 − γ)w(I). ◀

▶ Lemma 7. For a graph G, let P ∗ be a minimum weight P3 packing, and T ∗ be a minimum
weight triangle packing. Then ( 2

3 + 1
3γ − aγ)w(I) = (1 − a)γw(I) + 2

3 (1 − γ)w(I) ≥ w(P ∗) ≥
1
2w(T ∗).

Proof. First, we show w(P ∗) ≥ 1
2w(T ∗). Let T ′ be the triangle packing obtained by

completing the P3 packing. For any P3 path in P ∗, saying uvw, we obtain w(u, v)+w(v, w) ≥
w(u,w) by the triangle inequality. This shows 2w(P ∗) ≥ w(T ′) ≥ w(T ∗), and we are done.

We note that the number of vertices is divisible by 3 in V4 but not in V3. Since any pair
of 4-cycles only share one common vertex v, after we delete both of home-edges for each
4-cycle, we can get a P3 path packing P ′ in graph G[V4] such that w(P ′) = (1 − a)γw(I).

Then, by a similar argument with the proof of Lemma 2, we know that (1 − γ)w(I) =
w(I3) ≥ w(C) where C is the minimum weight Hamiltonian cycle in graph G[V3 ∪ {v}].
Since the number of vertices in this graph equals n minus the number of vertices in V4,
which is divisible by 3, we can delete some edges in C to get a vertex disjoint P3 path
packing P ′′ such that w(P ′′) ≤ 2

3w(C). P ′ ∪P ′′ is a P3 packing in G[V ]. Thus, we have that
(1 − a)γw(I) + 2

3 (1 − γ)w(I) ≥ w(P ′ ∪ P ′′) ≥ w(P ∗). ◀

3.1.2 Independent lower bounds
Now, we are ready for the independent lower bounds, which are found by summing the
individual optimal itineraries. Note that the notations I, I3, I4, V3, V4, γ, a and b in the
previous subsection refer to Iv, Iv,3, Iv,4, Vv,3, Vv,4, γv, av and bv. We omitted the subscripts
for the simplification.

For each team v, Iv is the optimal itinerary of v. Recall that ψ =
∑

v∈V w(Iv). Iv,3 and
Iv,4 consist of all 3-cycles and all 4-cycles of Iv, respectively.
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Define γ, a and b so that γψ =
∑

v∈V w(Iv,4) =
∑

v∈V γvw(Iv), aγψ =
∑

v∈V w(δ(v) ∩
Iv,4) =

∑
v∈V avγvw(Iv), and b(1 − γ)ψ =

∑
v∈V w(δ(v) ∩ Iv,3) =

∑
v∈V bv(1 − γv)w(Iv)

hold. Then, we have 0 ≤ γ, a, b ≤ 1.
The lemmas we proved previously can be summed together to obtain different independent

lower bounds.

▶ Lemma 8. Let C be a minimum weight Hamiltonian cycle in G. Then ψ ≥ nw(C).

Proof. Recall that ψ =
∑

v∈V ψv. By Lemma 2, we have that ψ =
∑

v∈V w(Iv) ≥ nw(C). ◀

▶ Lemma 9. (1 − 1
2γ + aγ)ψ ≥ ( 1

2 + a)γψ + b(1 − γ)ψ ≥ ∆.

Proof. By the definitions of γ, a and b, we know that (1 − 1
2γ + aγ)ψ =

∑
v∈V (1 − 1

2γv +
avγv)w(Iv) and ( 1

2 + a)γψ + b(1 − γ)ψ =
∑

v∈V (( 1
2 + av)γvw(Iv) + bv(1 − γv)w(Iv)).

Recall that ∆ =
∑

v∈V deg(v). By Lemma 4, it holds that
∑

v∈V (1 − 1
2γv +avγv)w(Iv) ≥∑

v∈V (( 1
2 + av)γvw(Iv) + bv(1 − γv)w(Iv)) ≥

∑
v∈V deg(v) = ∆. Therefore, we have that

(1 − 1
2γ + aγ)ψ ≥ ( 1

2 + a)γψ + b(1 − γ)ψ ≥ ∆. ◀

We note that (1 − 1
2γ + aγ) ≤ 3

2 . Thus, we have that ∆ = O(1)ψ.

▶ Lemma 10. (1 − 1
2a)γψ + (1 − 1

2b)(1 − γ)ψ ≥ nMST(G).

Proof. Note that (1 − 1
2a)γψ + (1 − 1

2b)(1 − γ)ψ =
∑

v∈V ((1 − 1
2av)γvw(Iv) + (1 − 1

2bv)(1 −
γv)w(Iv)).

By Lemma 5, we know that (1 − 1
2a)γψ + (1 − 1

2b)(1 − γ)ψ =
∑

v∈V ((1 − 1
2av)γvw(Iv) +

(1 − 1
2bv)(1 − γv)w(Iv)) ≥ nMST(G). ◀

By Lemmas 9 and 10, we have that

(1 + 1
4γ)ψ ≥ 1

2∆+ nMST(G). (2)

▶ Lemma 11. Let M be a minimum weight perfect matching in G. Then 1
2γψ + (1 − b)(1 −

γ)ψ ≥ nw(M).

Proof. Note that 1
2γψ + (1 − b)(1 − γ)ψ =

∑
v∈V ( 1

2γvw(Iv) + (1 − bv)(1 − γv)w(Iv)).
By Lemma 6, we know that 1

2γψ + (1 − b)(1 − γ)ψ =
∑

v∈V ( 1
2γvw(Iv) + (1 − bv)(1 −

γv)w(Iv)) ≥ nw(M). ◀

By Lemmas 9 and 11, we have that

(1 + aγ)ψ ≥ ∆+ nw(M) (3)

for a minimum weight matching M .

▶ Lemma 12. For a graph G, let P ∗ be a minimum weight P3 packing, and T ∗ be a minimum
weight triangle packing. Then ( 2

3 + 1
3γ−aγ)ψ = (1−a)γψ+ 2

3 (1−γ)ψ ≥ nw(P ∗) ≥ 1
2nw(T ∗).

Proof. Note that ( 2
3 + 1

3γ−aγ)ψ =
∑

v∈V ( 2
3 + 1

3γv −avγv)w(Iv) and (1−a)γψ+ 2
3 (1−γ)ψ =∑

v∈V ((1 − av)γvw(Iv) + 2
3 (1 − γv)w(Iv)).

By Lemma 7, it holds that
∑

v∈V ( 2
3 + 1

3γv − avγv)w(Iv) ≥
∑

v∈V ((1 − av)γvw(Iv) +
2
3 (1 − γv)w(Iv)) ≥ nw(P ∗) ≥ 1

2nw(T ∗). Therefore, we have that ( 2
3 + 1

3γ − aγ)ψ =
(1 − a)γψ + 2

3 (1 − γ)ψ ≥ nw(P ∗) ≥ 1
2nw(T ∗). ◀

Next, we will describe our algorithm. Our algorithm consists of two constructions, where
the first is based on the Hamiltonian cycle and the second is based on the triangle packing.
The approximation quality of each will be analyzed after showing the construction. Finally,
we will make a trade-off between them and get the final approximation ratio.

MFCS 2022
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3.2 The Hamiltonian Cycle Construction
In our algorithm, the idea of Hamiltonian cycle construction is to make use of the canonical
schedule [19, 8] and a Hamiltonian cycle. For TTP-k, there are many approximation
algorithms using this method [29, 27, 18], and hence we will directly use the well-analyzed
schedule in [29]. However, we will give a tighter analysis. Next, we give a brief introduction
to this construction.

Roughly speaking, this schedule is generated by a rotation scheme that can make sure
that almost all road trips of each team ti are 4-cycles and in each road trip, team ti visits a
set of consecutive teams along the Hamiltonian cycle.

▶ Lemma 13 ([29]). Let C be a Hamiltonian cycle in graph G. For TTP-3, there is
a polynomial-time algorithm that can generate a solution with a total weight of at most
2
3nw(C) + 2

3∆+O( 1
n )ψ.

Note that the Hamiltonian cycle used in [29] is generated by the Christofides-Serdyukov
algorithm. In our algorithm, we also consider another Hamiltonian cycle that uses the
minimum weight perfect matching. We will select the better one between these two cycles.

▶ Lemma 14 (*). Let M be a perfect matching in graph G. Then there is a polynomial-time
algorithm that can generate a Hamiltonian cycle C such that w(C) = w(M) + 1

nw(E) +
O( 1

n2 )w(E).

Note that Lemma 14 holds for any perfect matching. We will consider the Hamiltonian
cycle that uses a minimum weight perfect matching.

▶ Theorem 15. For any ε > 0, there is a polynomial-time algorithm that can generate a
feasible schedule for TTP-3 with an approximation ratio of min{ 4

3 + 1
3aγ, 1 − 1

6γ + aγ} + ε.

Proof. Here we use C to denote a minimum weight Hamiltonian cycle in G. If we use the
Hamiltonian cycle C ′ obtained by the Christofides-Serdyukov algorithm, we can construct
a feasible schedule with a total weight of at most 2

3nw(C ′) + 2
3∆ + O( 1

n )ψ by Lemma 13.
Then, we have that

2
3nw(C ′) + 2

3∆+O( 1
n

)ψ ≤ 2
3n

(
MST(G) + 1

2w(C)
)

+ 2
3∆+O( 1

n
)ψ

= 2
3nMST(G) + 1

3nw(C) + 2
3∆+O( 1

n
)ψ

≤ (4
3 + 1

3aγ)ψ +O( 1
n

)ψ,

where the first inequality follows from Lemma 3 and the second follows from Lemmas 8 and
9, and (2).

Similarly, if we use a minimum weight perfect matching M to obtain the Hamiltonian
cycle CM in Lemma 14, we can construct a feasible schedule with a total weight of at most

2
3nw(CM ) + 2

3∆+O( 1
n

)ψ ≤ 2
3n

(
w(M) + 1

n
w(E) +O( 1

n2 )w(E)
)

+ 2
3∆+O( 1

n
)ψ

≤ 2
3nw(M) +∆+O( 1

n
)ψ

≤ (1 − 1
6γ + aγ)ψ +O( 1

n
)ψ,

where the first inequality follows from Lemma 14, the second follows from w(E) = 1
2∆ ≤

O(1)ψ, and the last follows from Lemma 9 and (3).
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Since we select the better one between these two Hamiltonian cycles, then the approxima-
tion ratio is min{ 4

3 + 1
3aγ, 1− 1

6γ+aγ}+O( 1
n ). Hence, there exists a constant c such that the

ratio is bounded by min{ 4
3 + 1

3aγ, 1 − 1
6γ+aγ} + c

n . For an arbitrary ε > 0, if n ≤ c
ε = O(1),

we can find an optimal solution by brute force, otherwise we use the approximation algorithm.
This establishes the approximation ratio of min{ 4

3 + 1
3aγ, 1 − 1

6γ + aγ} + ε. ◀

Note that max0≤a,γ≤1 min{ 4
3 + 1

3aγ, 1 − 1
6γ+ aγ} + ε is maximized when a = γ = 1 with

value ( 5
3 + ε). However, this would require 0 = ( 2

3 + 1
3γ − aγ)ψ ≥ nw(P ∗) ≥ 1

2nw(T ∗) by
Lemma 12. If we use any constant ratio approximation algorithm for minimum weight P3
path packing or minimum weight triangle packing, we may get a much better schedule based
on them and therefore, we will show that we can do better than ( 5

3 + ε) by combining the
Hamiltonian cycle construction with the triangle packing construction shown next.

3.3 The Triangle Packing and P3 Path Packing Constructions
In this section, we will construct a feasible schedule based on a triangle packing or a P3
path packing. The idea is similar to the packing schedule based on a minimum weight
perfect matching for TTP-2 [25, 28, 30, 31, 17]. Given a triangle packing (resp., a P3 path
packing), we consider the three normal teams in a triangle (resp., a P3 path) as a super-team.
The packing construction is to first arrange a single round-robin for super-teams and then
extend the single round-robin into a double round-robin for normal teams. Although the
construction is similar for a given triangle packing and a given P3 packing, the analysis and
the approximation ratio may be different.

3.3.1 Construction
First, we will introduce the single round-robin of super-teams.

Given a triangle packing T (resp., P3 path packing P ) of G, recall that we take the three
teams in each triangle (resp., P3 path) as a super-team. There are n normal teams and then
there are m = n

3 super-teams. The set of super-teams is U = {u1, u2, . . . , um−1, um}. We
relabel the n teams such that ui = {t3i−2, t3i−1, t3i} for each i.

In the construction, the case of n = 6 is easy, and hence we assume here that n ≥ 12. Each
super-team will attend m− 1 super-games in m− 1 time slots. Each super-game in the first
m− 2 time slots will be extended to normal games that span six days, and each super-game
in the last time slot will be extended to normal games that span ten days. Therefore, we have
6 × (m− 2) + 10 = 6m− 2 = 2n− 2 days of normal games in total. This is the number of
days in a double round-robin. We will construct the schedule for super-teams from the first
time slot to the last time slot m− 1. In each of the m− 1 time slots, we have m

2 super-games.
The schedule in the last time slot is different from the schedules in the first m− 2 time slots.

For the first time slot, the m
2 super-games are arranged as shown in Figure 1. The

super-game including super-team um is called left super-game and we put a letter ‘L’ on the
edge to indicate it. All other super-games are called normal super-games. Each super-game
is represented by a directed edge, where a directed edge from ui to uj means a super-game
between them at the home of uj . The information of which will be used to extend super-games
to normal games between normal teams.

In Figure 1, we can see that the last super-team um is denoted as a dark node and all
other super-teams u1, . . . , um−1 are denoted as white nodes which form a cycle. In the second
time slot, we keep the position of um and change the positions of white super-teams in the
cycle by moving one position in the clockwise direction, and we also change the direction of
each edge. In the second time slot, there are still m

2 − 1 normal super-games and one left
super-game.
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𝑢𝑢10 𝑢𝑢9

𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4

𝑢𝑢8 𝑢𝑢7 𝑢𝑢6 𝑢𝑢5

𝐿𝐿

Figure 1 The super-game schedule in the first time slot for an instance with m = 10.

Table 1 Extending normal super-games where home games are marked in bold.

6q − 5 6q − 4 6q − 3 6q − 2 6q − 1 6q

a x z y xxx zzz yyy

b y x z yyy xxx zzz

c z y x zzz yyy xxx

x aaa bbb ccc a b c

y bbb ccc aaa b c a

z ccc aaa bbb c a b

Table 2 Extending left super-games where home games are marked in bold.

6q − 5 6q − 4 6q − 3 6q − 2 6q − 1 6q

a x z yyy xxx zzz y

b y x zzz yyy xxx z

c z y xxx zzz yyy x

x aaa bbb c a b ccc

y bbb ccc a b c aaa

z ccc aaa b c a bbb

The schedules for the other middle slots are derived analogously. Before we introduce
the super-games in the last time slot, we first explain how to extend the super-games in
the first m − 2 time slots to normal games. In these time slots, we have two different
kinds of super-games: normal super-games and left super-games. We first consider normal
super-games.
Case 1. Normal super-games: Each normal super-game will be extended to eighteen normal

games in six days. Assume that in a normal super-game, super-team ui plays against the
super-team uj at the home of uj in time slot q (1 ≤ i, j ≤ m and 1 ≤ q ≤ m−1). For ease
of presentation, we let ui = {t3i−2, t3i−1, t3i} = {a, b, c} and uj = {t3j−2, t3j−1, t3j} =
{x, y, z}. The super-game will be extended to eighteen normal games in six corresponding
days from 6q − 5 to 6q, as shown in Table 1 where home games are marked in bold.

Case 2. Left super-games: Each left super-game will be extended to eighteen normal games
in six days. Assume that in a left super-game, super-team ui = {a, b, c} plays against super-
team uj = {x, y, z} at the home of uj in time slot q (2 ≤ i ≤ m− 1 and 1 ≤ q ≤ m− 2).
The super-game will be extended to normal games in six corresponding days from 6q − 5
to 6q, as shown in Table 2.
The first m− 2 time slots will be extended to 6 × (m− 2) = 2n− 12 days according to
the above rules. Each normal team will have ten remaining games, which correspond to
the super-games in the last time slot. Figure 2 shows the schedule in the last time slot.
All super-games in the last time slot are last super-game where we put a letter ‘Z’ to
indicate it.
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𝑢𝑢10 𝑢𝑢1

𝑢𝑢2 𝑢𝑢3 𝑢𝑢4 𝑢𝑢5

𝑢𝑢9 𝑢𝑢8 𝑢𝑢7 𝑢𝑢6

𝑍𝑍
𝑍𝑍 𝑍𝑍 𝑍𝑍 𝑍𝑍

Figure 2 The super-game schedule in the last time slot for an instance with m = 10.

Table 3 Extending last super-games where home games are marked in bold.

6q − 5 6q − 4 6q − 3 6q − 2 6q − 1 6q 6q + 1 6q + 2 6q + 3 6q + 4
a x z y xxx zzz yyy c b ccc bbb

b y x c yyy xxx ccc z aaa zzz a

c z y bbb zzz yyy b aaa xxx a x

x aaa bbb z a b zzz y c yyy ccc

y bbb ccc aaa b c a xxx z x zzz

z ccc aaa xxx c a x bbb yyy b y

Case 3. Last super-games: Each normal super-game will be extended to thirty normal
games in ten days. Assume that in the last time slot q = m− 1, super-team ui = {a, b, c}
plays against super-team uj = {x, y, z} (1 ≤ i, j ≤ m) at the home of uj . The super-game
will be extended to thirty normal games in ten corresponding days from 6q − 5 to 6q + 4,
as shown in Table 3.

▶ Theorem 16 (*). For TTP-3 with n teams such that n ≡ 0 (mod 6), the above construction
can generate a feasible schedule.

3.3.2 Analyzing the Approximation Quality
Note that all teams play three consecutive away games and three consecutive home games in
a normal super-game. Indeed, all teams are at home before and after each normal super-game
in the schedule, otherwise, it will break the bounded-by-3 property. Using this property, we
can get the total cost of normal super-games by analyzing each normal super-game separately.

▶ Lemma 17 (*). If there is a normal super-game between super-teams ui and uj at the home
of uj, then the cost of all normal teams in ui and uj is at most 4

3c(ui, uj) + 2c(ui) + 2c(uj).

To analyze the total weight of our schedule, we first analyze the total cost of normal
super-games. Recall that there is exactly one super-game between each pair of super-teams in
U and then, there are m(m−1)

2 super-games in total. We define R(ui, uj) = 1 if the super-game
between super-teams ui and uj is a normal super-game, and R(ui, uj) = 0 otherwise. By
Lemma 17 and (1), we know that the total cost of all normal super-games E0 satisfies that

E0 ≤
∑

1≤i<j≤m

( 4
3c(ui, uj) + 2c(ui) + 2c(uj)

)
R(ui, uj)

≤
∑

1≤i<j≤m

( 4
3c(ui, uj) + 2c(ui) + 2c(uj)

)
= 4

3c(F ) + 2(m− 1)w(T )
≤ 2

3∆+ 2
3nw(T ).

(4)

The total cost of all left super-games and all last super-games are denoted by E1 and E2,
respectively.

▶ Lemma 18 (*). By using O(n3) time to reorder all super-teams, we can make

E1 + E2 = O( 1
n )ψ.

MFCS 2022
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Based on Lemma 18 and (4), we can get

▶ Theorem 19. For TTP-3 with the case of n ≡ 0 (mod 6), suppose there exists a triangle
packing T in graph G, then there is a polynomial-time algorithm to generate a feasible schedule
with a total weight of at most 2

3∆+ 2
3nw(T ) +O( 1

n )ψ.

▶ Theorem 20. Suppose there exist ρt and ρp approximation algorithms for minimum weight
triangle packing and P3 path packing problems respectively, then for an arbitrary ε > 0,
there is a polynomial-time algorithm for TTP-3 with the case of n ≡ 0 (mod 6), whose
approximation ratio is 8ρ+6

9 + 4ρ−3
9 γ − 4ρ−2

3 aγ + ε, where ρ = min{ρp, ρt}.

Proof. First, we consider that the schedule uses a triangle packing T of G. By Theorem 19,
we know that the total weight is bounded by 2

3∆+ 2
3nw(T ) +O( 1

n )ψ. Suppose the triangle
packing T is obtained by using a ρt-approximation algorithm, i.e., w(T ) ≤ ρtw(T ∗), then by
Lemmas 9 and 12, we have that

2
3∆+ 2

3nw(T ) +O( 1
n

)ψ ≤ 2
3∆+ 2

3ρtnw(T ∗) +O( 1
n

)ψ

≤ 2
3∆+ 4

3ρtnw(P ∗) +O( 1
n

)ψ

≤ (8ρt + 6
9 + 4ρt − 3

9 γ − 4ρt − 2
3 aγ)ψ +O( 1

n
)ψ.

Then, we consider that the schedule uses a P3 path packing P of G. Suppose the P3
path packing P is obtained by using a ρp-approximation algorithm, i.e., w(P ) ≤ ρpw(P ∗),
then we can get a triangle packing T ′ by completing the P3 path packing P such that
w(T ′) ≤ 2w(P ) ≤ 2ρpw(P ∗) by the triangle inequality. Thus, by Lemmas 9 and 12, the total
weight of our schedule is bounded by

2
3∆+ 2

3nw(T ′) +O( 1
n

)ψ ≤ 2
3∆+ 4

3ρpnw(P ∗) +O( 1
n

)ψ

≤ (8ρp + 6
9 + 4ρp − 3

9 γ − 4ρp − 2
3 aγ)ψ +O( 1

n
)ψ.

By selecting the better schedule, we can get the approximation ratio of 8ρ+6
9 + 4ρ−3

9 γ −
4ρ−2

3 aγ + ε, where ρ = min{ρp, ρt}. Note that the algorithm of our triangle packing
construction runs in polynomial time since it takes O(n3) time to reorder all super-teams
and O(n2) time to construct the schedule. ◀

3.4 Trade-off between Two Constructions
▶ Theorem 21 (*). Suppose there exist ρt and ρp approximation algorithms for minimum
weight triangle packing and P3 path packing problems respectively, for TTP-3 with an arbitrary
ε > 0, there is an approximation algorithm whose ratio is 11

6 − 5
2(4ρ+1) + ε when ρ ≤ 9

4 , and
5
3 − 2

3(4ρ−1) + ε otherwise, where ρ = min{ρt, ρp}. Given ρ = 8
3 , the approximation ratio is

139
87 + ε < 1.598 + ε which improves the previous ratio of 5

3 + ε < 1.667 + ε.

Proof. For the case of n ≡ 0 (mod 6), our algorithm will select the better schedule from
the two constructions. By Theorem 15, the ratio of the Hamiltonian cycle construction
is min{ 4

3 + 1
3aγ, 1 − 1

6γ + aγ} + ε, and by Theorem 20, the ratio of the triangle packing
construction is 8ρ+6

9 + 4ρ−3
9 γ− 4ρ−2

3 aγ+ ε. Therefore, the ratio of our algorithm in the worst
case is

max
0≤a,γ≤1

min
{

4
3 + 1

3aγ, 1 − 1
6γ + aγ,

8ρ+ 6
9 + 4ρ− 3

9 γ − 4ρ− 2
3 aγ

}
+ ε.
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We can transform it into the following linear programming where we let γ̃ = aγ.

max y

s.t. y ≤ 4
3 + 1

3 γ̃,

y ≤ 1 − 1
6γ + γ̃,

y ≤ 8ρ+ 6
9 + 4ρ− 3

9 γ − 4ρ− 2
3 γ̃,

0 ≤ γ̃ ≤ γ ≤ 1.

It shows that the ratio is 11
6 − 5

2(4ρ+1) + ε when ρ ≤ 9
4 , and 5

3 − 2
3(4ρ−1) + ε otherwise.

To our best knowledge, both of the current best-known ratios for minimum weight
triangle packing and minimum weight P3 path packing problems are 8

3 [12]. Therefore, given
ρ = ρp = ρt = 8

3 , the final approximation ratio of our algorithm is 139
87 + ε < 1.598 + ε.

Note that the cases n ≡ 2 (mod 6) and n ≡ 4 (mod 6) have not been analyzed yet. Since
n is not divisible by 3 for these two cases, there is no perfect P3 path packing or triangle
packing in G. However, with some modifications, we can extend the second construction and
its analysis to get the same approximation ratio. ◀

By Theorem 21, we know that the approximation ratio can achieve (4/3 + ε) if ρ = 1.

▶ Corollary 22. If a minimum weight triangle packing or P3 path packing is given, there
exists a (4/3 + ε)-approximation algorithm for TTP-3, for an arbitrary ε > 0.

4 LDTTP-3

When all teams are located on a straight line, this problem is known as Linear Distance
TTP-3 (LDTTP-3) [15]. For this problem, the minimum weight triangle packing and P3
path packing can be found in polynomial time. Thus, for LDTTP-3, our algorithm has
an approximation ratio of (4/3 + ε), which also matches the current best-known ratio of
4/3 (however, note that their construction only works for the case of n ≡ 4 (mod 6)) [15].
Their ratio is based on a stronger lower bound of LDTTP-3. If we use this lower bound, the
approximation ratio of our triangle packing construction can be proved to be (6/5 + ε).

▶ Theorem 23 (*). For LDTTP-3, there is an approximation algorithm whose ratio is
(6/5 + ε), for an arbitrary ε > 0.

5 TTP-4

It is natural to use the same idea to solve TTP-4. For the problem of minimum weight P4
path packing, to our best knowledge, the current best-known ratio is 3/2 [22]. If we use the
construction based on the Hamiltonian cycle and the construction based on P4 path packing,
we can get a (17/10 + ε)-approximation algorithm for TTP-4 which improves the previous
approximation ratio of (7/4 + ε) [29].

▶ Theorem 24 (*). For TTP-4 with any ε > 0, there is an algorithm whose approximation
ratio is (17/10 + ε) which improves the previous approximation ratio of (7/4 + ε).

For TTP-k with k ≥ 5, we note that both of the best-known approximation ratios
for minimum weight k-cycle packing and Pk path packing are 4(1 − 1/k) > 3 [12]. The
approximation ratios are too large and we can not improve TTP-k by using the same idea.

MFCS 2022



83:14 Improved Approximation Algorithms for the Traveling Tournament Problem

References
1 Aris Anagnostopoulos, Laurent Michel, Pascal Van Hentenryck, and Yannis Vergados. A

simulated annealing approach to the traveling tournament problem. Journal of Scheduling,
9(2):177–193, 2006.

2 Rishiraj Bhattacharyya. Complexity of the unconstrained traveling tournament problem.
Operations Research Letters, 44(5):649–654, 2016.

3 David Van Bulck, Dries R. Goossens, Jörn Schönberger, and Mario Guajardo. Robinx: A
three-field classification and unified data format for round-robin sports timetabling. Eur. J.
Oper. Res., 280(2):568–580, 2020.

4 Robert Thomas Campbell and Der-San Chen. A minimum distance basketball scheduling
problem. Management science in sports, 4:15–26, 1976.

5 Diptendu Chatterjee. Complexity of traveling tournament problem with trip length more than
three. CoRR, abs/2110.02300, 2021. arXiv:2110.02300.

6 Diptendu Chatterjee and Bimal Kumar Roy. An improved scheduling algorithm for traveling
tournament problem with maximum trip length two. In ATMOS 2021, volume 96, pages
16:1–16:15, 2021.

7 Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group,
1976.

8 Dominique De Werra. Scheduling in sports. Studies on graphs and discrete programming,
11:381–395, 1981.

9 Luca Di Gaspero and Andrea Schaerf. A composite-neighborhood tabu search approach to
the traveling tournament problem. Journal of Heuristics, 13(2):189–207, 2007.

10 Kelly Easton, George Nemhauser, and Michael Trick. The traveling tournament problem:
description and benchmarks. In 7th International Conference on Principles and Practice of
Constraint Programming, pages 580–584, 2001.

11 Kelly Easton, George Nemhauser, and Michael Trick. Solving the travelling tournament
problem: a combined integer programming and constraint programming approach. In 4th
International Conference of Practice and Theory of Automated Timetabling IV, pages 100–109,
2003.

12 Michel X. Goemans and David P. Williamson. A general approximation technique for con-
strained forest problems. SIAM J. Comput., 24(2):296–317, 1995.

13 Marc Goerigk, Richard Hoshino, Ken Kawarabayashi, and Stephan Westphal. Solving the trav-
eling tournament problem by packing three-vertex paths. In Twenty-Eighth AAAI Conference
on Artificial Intelligence, pages 2271–2277, 2014.

14 Marc Goerigk and Stephan Westphal. A combined local search and integer programming
approach to the traveling tournament problem. Ann. Oper. Res., 239(1):343–354, 2016.

15 Richard Hoshino and Ken-ichi Kawarabayashi. Generating approximate solutions to the TTP
using a linear distance relaxation. J. Artif. Intell. Res., 45:257–286, 2012.

16 Richard Hoshino and Ken-ichi Kawarabayashi. An approximation algorithm for the bipartite
traveling tournament problem. Mathematics of Operations Research, 38(4):720–728, 2013.

17 Shinji Imahori. A 1+O(1/N) approximation algorithm for TTP(2). CoRR, abs/2108.08444,
2021. arXiv:2108.08444.

18 Shinji Imahori, Tomomi Matsui, and Ryuhei Miyashiro. A 2.75-approximation algorithm for the
unconstrained traveling tournament problem. Annals of Operations Research, 218(1):237–247,
2014.

19 Thomas P Kirkman. On a problem in combinations. Cambridge and Dublin Mathematical
Journal, 2:191–204, 1847.

20 Andrew Lim, Brian Rodrigues, and Xingwen Zhang. A simulated annealing and hill-climbing
algorithm for the traveling tournament problem. European Journal of Operational Research,
174(3):1459–1478, 2006.

http://arxiv.org/abs/2110.02300
http://arxiv.org/abs/2108.08444


J. Zhao, M. Xiao, and C. Xu 83:15

21 Ryuhei Miyashiro, Tomomi Matsui, and Shinji Imahori. An approximation algorithm for the
traveling tournament problem. Annals of Operations Research, 194(1):317–324, 2012.

22 Jérôme Monnot and Sophie Toulouse. Approximation results for the weighted p4 partition
problem. J. Discrete Algorithms, 6(2):299–312, 2008.

23 Anatolii Ivanovich Serdyukov. Some extremal bypasses in graphs. Upravlyaemye Sistemy,
17:76–79, 1978.

24 Clemens Thielen and Stephan Westphal. Complexity of the traveling tournament problem.
Theoretical Computer Science, 412(4):345–351, 2011.

25 Clemens Thielen and Stephan Westphal. Approximation algorithms for TTP(2). Mathematical
Methods of Operations Research, 76(1):1–20, 2012.

26 Michael Trick. Challenge traveling tournament instances. Accessed: 2022-4-01, 2022.
27 Stephan Westphal and Karl Noparlik. A 5.875-approximation for the traveling tournament

problem. Annals of Operations Research, 218(1):347–360, 2014.
28 Mingyu Xiao and Shaowei Kou. An improved approximation algorithm for the traveling

tournament problem with maximum trip length two. In MFCS 2016, volume 58, pages
89:1–89:14, 2016.

29 Daisuke Yamaguchi, Shinji Imahori, Ryuhei Miyashiro, and Tomomi Matsui. An improved
approximation algorithm for the traveling tournament problem. Algorithmica, 61(4):1077–1091,
2011.

30 Jingyang Zhao and Mingyu Xiao. A further improvement on approximating TTP-2. In
COCOON 2021, volume 13025 of Lecture Notes in Computer Science, pages 137–149. Springer,
2021.

31 Jingyang Zhao and Mingyu Xiao. The traveling tournament problem with maximum tour
length two: A practical algorithm with an improved approximation bound. In IJCAI 2021,
pages 4206–4212, 2021.

MFCS 2022


	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 Preliminaries
	3 TTP-3
	3.1 The Independent Lower Bounds
	3.1.1 Bounds on optimal itinerary
	3.1.2 Independent lower bounds

	3.2 The Hamiltonian Cycle Construction
	3.3 The Triangle Packing and P_3 Path Packing Constructions
	3.3.1 Construction
	3.3.2 Analyzing the Approximation Quality

	3.4 Trade-off between Two Constructions

	4 LDTTP-3
	5 TTP-4

