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Abstract
We consider a weighted counting problem on matchings, denoted PrMatchingpGq, on an arbitrary
fixed graph family G. The input consists of a graph G P G and of rational probabilities of existence
on every edge of G, assuming independence. The output is the probability of obtaining a matching
of G in the resulting distribution, i.e., a set of edges that are pairwise disjoint. It is known that,
if G has bounded treewidth, then PrMatchingpGq can be solved in polynomial time. In this paper we
show that, under some assumptions, bounded treewidth in fact characterizes the tractable graph
families for this problem. More precisely, we show intractability for all graph families G satisfying
the following treewidth-constructibility requirement: given an integer k in unary, we can construct in
polynomial time a graph G P G with treewidth at least k. Our hardness result is then the following:
for any treewidth-constructible graph family G, the problem PrMatchingpGq is intractable. This
generalizes known hardness results for weighted matching counting under some restrictions that do
not bound treewidth, e.g., being planar, 3-regular, or bipartite; it also answers a question left open
in [1]. We also obtain a similar lower bound for the weighted counting of edge covers.
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1 Introduction

Many complexity results on computational problems rely on a study of fundamental graph
patterns such as independent sets, vertex covers, edge covers, matchings, cliques, etc. In
this paper we specifically study counting problems for such patterns, and for the most part
focus on counting the matchings: given an input graph G, we wish to count how many edge
subsets of G are a matching, i.e., each vertex has at most one incident edge.

Our goal is to address an apparent gap between the existing intractability and tractability
results for counting matchings and similar patterns. On the one hand, counting the matchings
is known to be #P-hard, and hardness is known even when the input graph is restricted
in certain ways, e.g., being planar, being 3-regular, or being bipartite [18, 14, 27, 26]. On
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9:2 Weighted Counting of Matchings in Unbounded-Treewidth Graph Families

the other hand, some restrictions can make the problem tractable, e.g., imposing that the
input graphs have bounded treewidth [5, 1], because matchings can be described in monadic
second-order logic. But this does not settle the complexity of the problem; could there be
other restrictions on graphs that makes it tractable to count matchings or other patterns?

This paper answers this question in the negative, for a weighted version of counting
problems: we show that, at least for matchings and edge covers, and under a technical
assumption on the graph family, the weighted counting problem is intractable if we do not
bound the treewidth of the input graphs. Thus, treewidth is the right parameter to ensure
tractability. Our weighted counting problems are of the following form: we fix a graph
family G (e.g., 3-regular graphs, graphs of treewidth ď 2), we are given as input a graph G

of G along with an independent probability of existence for each edge, and the goal is to
compute the probability in this distribution of the subsets of edges of G which have a certain
property, e.g., they are a matching, they are an edge cover. Note that the class G restricts the
shape of the graphs, but the edge probabilities are arbitrary – and indeed there are known
tractability results when we restrict the graphs and probabilities to be symmetric [6]. Our
paper shows the hardness of these problems when G is not of bounded treewidth; the specific
technical assumption on G is that one can effectively construct graphs of G having arbitrarily
high treewidth, i.e., the treewidth-constructible requirement from [1] (cf. Definition 2.2):

▶ Result 1. Let G be an arbitrary family of graphs which is treewidth-constructible. Then
the problem, given a graph G “ pV,Eq of G and rational probability values πpeq for every
edge of G, of computing the probability of a matching in G under π, is #P-hard under ZPP
reductions.

We obtain an analogous result for edge covers. Thus, as bounded-treewidth makes the
problems tractable, our results imply that treewidth characterizes the tractable graph families
for these problems – for weighted counting, and assuming treewidth-constructibility. We leave
open the complexity of unweighted counting, and of weighted counting on graph families that
have unbounded treewidth but satisfy weaker requirements than treewidth-constructibility,
e.g., being strongly unbounded poly-logarithmically [16, 13].

The paper is devoted to showing Result 1. Because of the page limit, the full proofs are
deferred to the full version [4]. At a high level, we use the standard technique of reducing
from the #P-hard problem of counting matchings on a 3-regular planar graph G [26], using
the randomized polynomial-time grid minor extraction result of [10] as in [1]. However,
the big technical challenge is to reduce the counting of matchings of G to the problem of
computing the probability of a matching on the arbitrary subdivision G1 of G that we extract.
For this, we use the classical interpolation method, where we design a linear equation system
relating the matchings to the result of polynomially many oracle calls on G1, with different
probability assignments; and we argue that the matrix is invertible. After the preliminaries
(Section 2), we present this proof, first in the case where G1 is a 6-subdivision of G (Section 3),
and then when it is a n-subdivision, i.e., when all edges are subdivided to the same length n
(Section 4). These special cases already pose some difficulties, most of which are solved by
adapting techniques by Dalvi and Suciu [12]; e.g., to show invertibility, we study the Jacobian
determinant of the mapping associating edge probabilities to the probability of matchings
on paths with fixed endpoints, and we borrow a technique from [12] to effectively construct
suitable rational edge probabilities.

The main novelties of this work are in Section 5, where we extend the proof to the
general case: G1 is a subdivision of G, and different edges of G may be subdivided in G1 to
different lengths. To obtain the equation system, we show that we can assign probabilities on
short paths so that they “behave” like long paths. Proving this stand-alone emulation result
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(Proposition 5.2) was the main technical obstacle; the proof is by solving a system of equations
involving the Fibonacci sequence. It also introduces further complications, e.g., dealing
with numerical error (because the resulting probabilities are irrational), and distinguishing
even-length and odd-length subdivisions. After concluding the proof of Result 1 in Section 5,
we adapt it in Section 6 to edge covers.

Related work. Our work follows a line of results that show the intractability of some
problems on any “sufficiently constructible” unbounded-treewidth graph family. Kreutzer
and Tazari [16] (see also [13]) show that there are formulas in an expressive formalism (MSO2)
that are intractable to check on any subgraph-closed unbounded treewidth graph family that
is closed under taking subgraphs and satisfies a requirement of being strongly unbounded
poly-logarithmically. This was extended in [1] to the weighted counting problem, this time for
a query in first-order logic, with a different hardness notion (#P-hardness under randomized
reductions), and under the stronger requirement of treewidth-constructibility. Our focus here
is to show that the hardness of weighted counting already holds for natural and well-studied
graph properties, e.g., “being a matching”; this was left as an open problem in [1].

For such weak patterns, lower bounds were shown in [1] and [3] on the size of tractable
representations: for any graph G of bounded degree having treewidth k, any so-called
d-SDNNF circuit representing the matchings (or edge covers) of G must have exponential
size in k. However, this does not imply that the problems are intractable, as some tractable
counting algorithms do not work via such circuit representations (e.g., the one in [12]). Thus,
our hardness result does not follow from this size bound, but rather complements it.

The necessity of bounded treewidth has also been studied for graphical models [9] and
Bayesian networks [17]. Specifically, [17] shows the intractability of inference in a Bayesian
network as a function of the treewidth (but without otherwise restricting the class of
network), and [9] restricts the shape of the graphical model but allows arbitrary “potential
functions” (whereas we assume independence across edges). There are also necessity results
on treewidth for the problem of counting the homomorphisms between two structures in the
CSP context [11]; but this has no clear relationship to our problems, where we do (weighted)
counting of the substructures that have a certain form (e.g., are matchings).

Note that, unlike our problem of weighted counting of matchings, the problem of finding
a matching of maximal weight in a weighted graph is tractable on arbitrary graphs, using
Edmond’s blossom algorithm [21].

2 Preliminaries

We write N` for Nzt0u, and for n P N` we write rns the set t0, . . . , n´ 1u. We write R the
real numbers and Q the rational numbers. Recall that decimal fractions are rational numbers
that can be written as a fraction a{10k of an integer a and a power of ten 10k.

Reductions and complexity classes. Recall that #P is the class of counting problems
that count the number of accepting paths of a nondeterministic polynomial-time Turing
machine. A problem P1 is #P-hard if every problem P2 of #P reduces to P1 in polynomial
time; following Valiant [19, 20], we use here the notion of Turing reductions, i.e., P2 can
be solved in polynomial time with an oracle for P1. We specifically study what we call
#P-hardness under zero-error probabilistic polynomial-time (ZPP) reductions. To define
these, we define a randomized algorithm as an algorithm that has access to an additional
random tape. We say that a decision problem is in ZPP if there is a randomized algorithm
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9:4 Weighted Counting of Matchings in Unbounded-Treewidth Graph Families

that (always) runs in polynomial time on the input instance, and returns the correct answer
on the instance (i.e., accepting or rejecting) with some constant probability, and otherwise
returns a special failure value. The probabilities are taken over the draws of the contents of
the random tape. The exact value of the acceptance probability is not important, because we
can make it exponentially small by simply repeating the algorithm polynomially many times.
Going beyond decision problems, a ZPP algorithm is a randomized algorithm that runs
in polynomial time but may return a special failure value with some constant probability.
A ZPP (Turing) reduction from a problem P1 to a problem P2 is then a ZPP algorithm
having access to an oracle for P2 that takes an instance of problem P1, runs in polynomial
time, returns the correct output (for P1) with some constant probability, and returns the
special failure value otherwise. Again, the failure probability can be made arbitrarily small
by invoking the reduction multiple times. A problem P2 is then said to be #P-hard under
ZPP reductions if any #P-hard problem P1 has a ZPP reduction to it. We will implicitly rely
on the fact that we can show #P-hardness under ZPP reductions by reducing in ZPP from
any problem which is #P-hard (under Turing reductions); see the full version [4] for details.

Graphs and problem studied. A finite undirected graph G “ pV,Eq consists of a finite
set V of vertices (or nodes) and of a set E of edges of the form tx, yu for x, y P V with x ‰ y.
A graph family F is a (possibly infinite) set of graphs. For v P V , we write EGpvq for the set
of edges that are incident to v. Recall that a matching of G is a set of edges M Ď E that do
not share any vertices, i.e., for every e, e1 P M with e ‰ e1 we have eXe1 “ H; or equivalently,
we have |tEGpvq XMu| ď 1 for all v P V . For a graph family F , we write #MatchingpFq the
problem of counting the matchings for graphs in F : the input is a graph G P F , and the
output is the number of matchings of G, written #MatchingpGq.

We study a weighted version of #Matching, defined on probabilistic graphs. A probabilistic
graph is a pair pG, πq where G “ pV,Eq is a graph and π : E Ñ r0, 1s maps every edge e of H
to a probability value πpeq. The probabilistic graph pG, πq defines a probability distribution
on the set of subsets E1 of E, where each edge e P E is in E1 with probability πpeq, assuming
independence across edges. Formally, the probability of each subset E1 is:

Pr
G,π

pE1q :“
ź

ePE1

πpeq ˆ
ź

ePEzE1

p1 ´ πpeqq.

Given a probabilistic graph pG, πq, the probability of a matching in G under pi, denoted
PrmatchingpG, πq, is the probability of obtaining a matching in the distribution. Formally:

Pr
matching

pG, πq :“
ÿ

matching M of G

Pr
G,π

pMq. (1)

In particular, if π maps every edge to the probability 1{2, then we have PrmatchingpG, πq “

#MatchingpGq{2|E|. For a graph family F , we will study the problem PrMatchingpFq

of computing the probability of a matching: the input is a probabilistic graph pG, πq

where G P F and π is an arbitrary function with rational probability values, and the output
is PrmatchingpG, πq. Note that F only specifies the graph G and not the probabilities π, in
particular π can give probability 0 to edges, which amounts to removing them.

Treewidth and topological minors. Treewidth is a parameter mapping any graph G to a
number twpGq intuitively describing how far G is from being a tree. We omit the formal
definition of treewidth (see [25]), as we only rely on the following extraction result: given
any planar graph H of maximum degree 3, and a graph G of sufficiently high treewidth, it is
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possible (in randomized polynomial time) to find H as a topological minor of G. We now
define this.

The degree of a node v in H “ pVH , EHq is simply |EGpvq|. We say that H is 3-regular
if every vertex has degree 3, and call H planar if it can be drawn on the plane without
edge crossings, in the usual sense [24]. Given H and η : EH Ñ N`, the η-subdivision of H,
written SubpH, ηq, is the graph obtained from H by replacing every edge e “ tx, yu by a
path of length ηpeq, whose end vertices are identified with x and y, all intermediate vertices
being fresh across all edges. We abuse notation and write SubpH, iq for i P N` to mean
SubpH, ηiq for ηi the constant-i function. Note that SubpH, 1q “ H. A subgraph of a
graph G “ pVG, EGq is a graph pV 1

G, E
1
Gq where E1

G Ď EG and V 1
G Ď VG such that e Ď V 1

G for
each edge e P E1

G. The graph H “ pVH , EHq is a topological minor of the graph G “ pVG, EGq

if there is a function η : EH Ñ N` such that there is an isomorphism f from the subdivision
SubpH, ηq “ pV 1

H , E
1
Hq to some subgraph G1 “ pV 1

G, E
1
Gq of G, i.e., a bijection f : V 1

H Ñ V 1
G

such that for every x, y P V 1
H we have tx, yu P E1

H if and only if tfpxq, fpyqu P E1
G.

We can now state the extraction result that we use, which follows from the work of
Chekuri and Chuzhoy [10]:

▶ Theorem 2.1 (Direct consequence of [10], see, e.g., [1], Lemma 4.4). There exists c P N
and a ZPP algorithm1 that, given as input a planar graph H “ pVH , EHq of maximum
degree 3 and another graph G with twpGq ě |VH |c, computes a subgraph G1 of G, a function
η : VH Ñ N`, and an isomorphism from SubpH, ηq to G1 (witnessing that H is a topological
minor of G).

Our intractability result will apply to graph families where large treewidth graphs can be
efficiently found, which we formalize as treewidth-constructibility like in [1]:

▶ Definition 2.2. A graph family F is treewidth-constructible if there is a polynomial-time
algorithm that, given an integer k written in unary2, outputs a graph G P F with twpGq ě k.

Kronecker products and Vandermonde matrices. To simplify notation, we will work with
matrices indexed with arbitrary finite sets (not necessarily ordered). Given two finite sets I, J
of same cardinality, we write RI, J (resp., QI, J) the set of matrices with real values (resp.,
rational values) whose rows are indexed by I and columns by J . When A P RI, J and
pi, jq P IˆJ , we write ai,j the corresponding entry. We recall that the inverse of an invertible
matrix M with entries in Q also has entries in Q and can be computed in polynomial time
in the encoding size of M .

Given two matrices A P RI, J and B P RK, L, the Kronecker product of A and B, denoted
A b B, is the matrix C P RIˆK, JˆL defined by cpi,kq,pj,lq :“ ai,j ˆ bk,l for pi, j, k, lq P

I ˆ J ˆ K ˆ L. Recall that A b B is invertible if and only if both A and B are. For
n P N` and pp0, . . . , pn´1q P Rn, we denote by Vpp0, . . . , pn´1q the Vandermonde matrix with
coefficients pp0, . . . , pn´1q, i.e., the matrix in Rrns,rns whose pi, jq-th entry is pj

i . Recall that
this matrix is invertible if and only if the p0, . . . , pn´1 are pairwise distinct.

1 The randomized algorithm from [10] is indeed a ZPP algorithm because the output that it returns
(namely, a prospective embedding of a grid as a topological minor of the input graph) can be verified in
(deterministic) polynomial time. Hence, we can always detect when the algorithm has failed, and then
return the special failure value.

2 Note that the existence of such an algorithm for k written in unary would be implied by the same claim
but with k given in binary. In other words, the existence of an algorithm for k given in unary is a
weaker requirement. This is simply because, given an integer in unary, we can convert it in PTIME to
an integer in binary.
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9:6 Weighted Counting of Matchings in Unbounded-Treewidth Graph Families

3 Proof When Every Subdivision Has Length 6

Towards showing our main result (Result 1), we first show in this section a much simpler
result: counting the matchings of a graph G reduces to counting the probability of a matching
on the graph where each edge is subdivided into a path of length 6. We use similar techniques
to previous work, in particular Greenhill [14] and Dalvi and Suciu [12], but present them in
detail because we will adapt them in the rest of the paper. Formally, in this section, we show:

▶ Proposition 3.1. For any graph family F , the problem #MatchingpFq reduces in polynomial
time to PrMatchingpGq where G “ tSubpH, 6q | H P Fu.

Let H “ pV,Eq be a graph in F for which we wish to count the number of matchings, with
m :“ |E|. Let us start by fixing for the remainder of this section an arbitrary orientation ÝÑ

H

of H obtained by choosing some orientation of the edges, i.e., ÝÑ
H “ pV,

ÝÑ
E q is a directed graph

where for every edge tx, yu P E we add exactly one of px, yq or py, xq in ÝÑ
E . The high-level

idea of the reduction is then the following. First, using ÝÑ
H , we define some sets Sτ , based on

4-tuples τ P rm` 1s4, such that the number of matchings of H can be computed from the
cardinalities |Sτ |. Second, we argue that these cardinalities can be connected to the results
of oracle calls for the PrMatching problem by a system of linear equations. Third, we argue
that the matrix of this system can be made invertible. We now detail these three steps.

Step 1: Defining the sets Sτ and linking them to matchings. We define a selection
function of the graph H as a function µ that maps each vertex x P V to at most one incident
edge, i.e., to a subset of EHpxq of size at most one. We will partition the set of selection
functions by counting the number of edges of each type that each selection function has,
as defined next. Given a selection function µ, consider each edge e “ px, yq of ÝÑ

H . The
edge e can have one of four types: letting b be 1 if µpxq selects e (i.e., µpxq “ ttx, yuu) and 0
otherwise (i.e., tx, yu R µpxq), and letting b1 be 1 if µpyq selects e and 0 otherwise, we say
that e has type bb1 with respect to (w.r.t.) µ. We now define the sets Sτ as follows.

▶ Definition 3.2. For a 4-tuple τ P rm` 1s4, indexed in binary, let Sτ Ď S be the set of the
selection functions µ such that, for all b, b1 P t0, 1u, precisely τbb1 edges have type bb1 w.r.t. µ.

Observe that Sτ is empty unless τ00 ` τ01 ` τ10 ` τ11 “ m. We can then easily connect the
cardinalities |Sτ | to the number of matchings of H as follows (see the full version [4]):

▶ Fact 3.3. We have that #MatchingpHq “
ř

τPrm`1s
4

τ01“τ10“0
|Sτ |.

Step 2: Recovering the |Sτ | from oracle calls. We now explain how to use the oracle for
PrMatchingpGq to compute in polynomial time all the values |Sτ |, allowing us to conclude
via Fact 3.3. We will invoke the oracle on pm ` 1q4 probabilistic graphs, denoted H6pκq

for κ P rm` 1s4, as defined next. To this end, let us consider pm` 1q4 4-tuples of probability
values, written ρκ “ pρκ,00, ρκ,01, ρκ,10, ρκ,11q P r0, 1s4 for κ P rm ` 1s4; the precise choice
of these values will be explained in Step 3. For κ P rm ` 1s4, we then define H6pκq to be
the probabilistic graph pH6, πκq where H6 :“ SubpH, 6q is the 6-subdivision of H and the
probabilities πκ are defined as follows. For every directed edge px, yq of ÝÑ

H , the subdivision H6
contains an (undirected) path between x and y, and we define πκ on this path as follows:

x
1{2—— v1

ρκ,00—— v2
ρκ,01—— v3

ρκ,10—— v4
ρκ,11—— v5

1{2—— y
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We now introduce some notation for the probability of matchings in paths of length 4.
We write Π4pρκq the probability of having a matching in the 4-edge path with successive
probabilities ρκ,00, ρκ,01, ρκ,10, ρκ,11. The value can be explicitly computed as a polynomial
in the values ρκ,bb1 , e.g., using Equation (1). Accordingly, we will also use Π4 as a polynomial
with real variables, i.e., Π4pχq for a 4-tuple χ of real values (which may not be in r0, 1s). We
also define variants of these definitions that account for the two surrounding edges, i.e., those
with probability 1{2: for b, b1 P t0, 1u, write Πbb1

4 pρκq to denote the probability of having
a matching in the same 4-edge path but when adding an edge incident to the first vertex
with probability 1 if b “ 1, and adding an edge incident to the last vertex with probability 1
if b1 “ 1. Equivalently, Πbb1

4 pρκq is the probability of obtaining a matching where we further
require if b “ 1 that the edge with probability ρκ,00 is not taken, and if b1 “ 1 that the edge
with probability ρκ,11 is not taken. The values Πbb1

4 pρκq are also explicitly computable as
polynomials, and again we also see Πbb1

4 as a polynomial with real variables. To simplify
notation, for b, b1 P t0, 1u and κ P rm` 1s4 let us write Λκ,bb1 :“ Πbb1

4 pρκq.
We then show that the probability of a matching in the subdivided graph H6 can be

obtained by first summing over the possible edge type cardinalities τ , and then regrouping the
edges of the same type by noticing that the matchings corresponding to the selection functions
in the set Sτ all have the same probability. Namely, we show (see the full version [4]):

▶ Fact 3.4. For each κ P rm` 1s4, we have:

22m ˆ Pr
matching

pH6pκqq “
ÿ

τPrm`1s4

|Sτ | ˆ pΛκ,00qτ00 ˆ pΛκ,01qτ01 ˆ pΛκ,10qτ10 ˆ pΛκ,11qτ11 .

Now, let us write cκ :“ PrmatchingpH6pκqq the value returned by the oracle call on H6pκq,
and let C be the vector of these oracle answers. Let S be the vector |Sτ | of the values that
we wish to compute. Both these vectors are indexed by rm` 1s4. Observe that the equation
above defines a system of linear equations V S “ C with V P Rrm`1s

4,rm`1s
4 defined by

vκ,τ :“ 2´2m ˆ pΛκ,00qτ00 ˆ pΛκ,01qτ01 ˆ pΛκ,10qτ10 ˆ pΛκ,11qτ11 .

Therefore, if we can choose 4-tuples of probability values ρκ that make V invertible, we
would be able to recover all |Sτ | values from the oracle answers C, from which we could
compute the number of matchings of H using Fact 3.3. This is what we do next.

Step 3: Making V invertible. We now explain how to choose in polynomial time pm` 1q4

4-tuples ρκ of rational probability values, for κ P rm ` 1s4, such that V is invertible. To
this end, consider the matrix U defined like V except that each 4-tuple ρκ is replaced by a
4-tuple of variables χκ “ pχκ,00, χκ,01, χκ,10, χκ,11q. Each cell mκ,τ of U is then a polynomial
Pτ in the 4 variables χκ,bb1 for b, b1 P t0, 1u; in particular, note that the polynomial only
depends on the column τ , whereas the variables χκ,bb1 only depend on the row κ. We can
then find suitable values ρκ using a technique introduced by Dalvi and Suciu [12] (see the
full version [4]):

▶ Proposition 3.5 (From Proposition 8.44 of [12]). Fix k P N, let pxiqiPI be k-tuples of real
variables indexed by a finite set I, let pPjqjPJ be polynomials in k variables indexed by a
finite set J , and consider the matrix M indexed by I ˆ J such that mi,j “ Pjpxiq for all
pi, jq P I ˆ J . Assume that detpMq is not the null polynomial. There is an algorithm that
runs in polynomial time in M and finds |I| k-tuples of decimal fractions paiqiPI with values
in r0, 1s such that the matrix obtained by substituting each xi by ai in M is invertible.

MFCS 2022



9:8 Weighted Counting of Matchings in Unbounded-Treewidth Graph Families

If detpUq is not the null polynomial, we can invoke this result with k “ 4 and I “ J “

rm` 1s4 on the matrix U , which gives us in polynomial time the desired rational probability
values ρκ (namely, the ai from the proposition) and concludes the proof of Proposition 3.1.

Hence, the only remaining point is to argue that detpUq is not the null polynomial (in
the χκ). To this end, let us study the mapping ξ : R4 Ñ R4, defined as follows, with χ

denoting a 4-tuple of real variables: ξpχq :“
`

Π00
4 pχq, Π01

4 pχq, Π10
4 pχq, Π11

4 pχq
˘

. For a 4-tuple
of reals ρ, we call the mapping ξ invertible around point ρ if there is ϵ ą 0 such that the
ϵ-neighborhood around ξpρq, i.e., the set tα P R4 | |αbb1 ´ ξpρqbb1 | ď ϵ for each b, b1 P t0, 1uu,
is included in the image of ξ. We conclude by showing two claims:

▶ Fact 3.6. The mapping ξ is invertible around some point.

Proof. By the inverse function theorem [23], if the Jacobian determinant of ξ at a point is
not null, then ξ is invertible around that point. Recall that the Jacobian determinant of ξ is
the determinant of the Jacobian matrix of ξ, which is the 4 ˆ 4 matrix Jξ whose entry at
cell ppb1, b2q, pb1

1, b
1
2qq is BΛχ,b1b2

Bχb1
1b1

2
. We explicitly compute detpJq with the help of SageMath,

showing that it is not the null polynomial (see the full version [4]). ◀

▶ Fact 3.7. If ξ is invertible around some point ρ, then detpUq is not the null polynomial.

Proof. The invertibility of ξ around ρ implies that there exist, for each b, b1 P t0, 1u, a
set of m ` 1 distinct values Ψbb1 :“ tψbb1,0, . . . , ψbb1,m´1u such that the Cartesian product
Ψ :“

Ś

b,b1Pt0,1u Ψbb1 is included in the ϵ-neighborhood of ξpρq. Let us index the pm ` 1q4

4-tuples of Ψ as ψκ for κ P rm ` 1s4, i.e., ψκ “ pψ00,κ00 , ψ01,κ01 , ψ10,κ10 , ψ11,κ11 q. Using
invertibility, let ακ be a preimage of each ψκ, i.e., ξpακq “ ψκ for all κ P rm` 1s4. But then
observe that, for this choice of χκ (i.e., substituting the χκ by the ακ), each cell uκ,τ of the
matrix U becomes:

uκ,τ “ 2´2m ˆ pψ00,κ00 qτ00 ˆ pψ01,κ01 qτ01 ˆ pψ10,κ10 qτ10 ˆ pψ11,κ11 qτ11 .

Thus, U is the Kronecker product of four Vandermonde matrices Ubb1 for b, b1 P t0, 1u,
where Ubb1 is Vpψbb1,0, . . . , ψbb1,m´1q. As the Ψbb1 consist of pairwise distinct values, these
Vandermonde matrices are invertible, and their Kronecker product U also is. ◀

4 Proof When All Subdivisions Have the Same Length ě 7

We now prove a variant of Proposition 3.1 where all edges of the initial graph are subdivided
the same number of times (at least 7). Given a graph H and integer K ą 0, we write GK to
mean SubpH,Kq. In this section we show:

▶ Proposition 4.1. Fix an integer K ě 7. Then, for any graph family F , the problem
#MatchingpFq reduces in polynomial time to PrMatchingpGq, where G “ tHK | H P Fu.

To prove this, we follow the same strategy as for Proposition 3.1. The first step – the
definition of the Sτ – is strictly identical; for m the number of edges of H, we fix again
an orientation ÝÑ

H of H, and denote Sτ for τ P rm ` 1s4 the pm ` 1q4 sets of selection
functions defined from ÝÑ

H as in Definition 3.2. In particular, Fact 3.3 still holds. Now, we will
again construct pm` 1q4 probabilistic graphs, denoted HKpκq for κ P rm` 1s4, such that,
letting cκ :“ PrmatchingpHKpκqq, the |Sτ | and the cκ form a linear system of equations V S “

C. We will then again use the Jacobian technique to argue that the determinant of this
matrix is not the null polynomial, and complete the proof using Proposition 3.5 to compute



A. Amarilli and M. Monet 9:9

in polynomial time rational values that make V have rational entries and be invertible. The
difference with Section 3 is in the construction of the probabilistic graphs HKpκq, and in the
Jacobian determinant. Before we start, we need to extend the notation from Section 3.

Probabilistic path graphs. For n P N` we denote by Pn the path of length n, i.e., Pn “

ptv0, . . . , vnu, Eq where E “ ttvi, vi`1u | 0 ď i ď n´ 1u. For ρ P r0, 1sn, we let Pnpρq be the
probabilistic graph where each edge tvi, vi`1u of Pn has probability ρi. We write Πnpρq the
probability of a matching in Pnpρq. For b, b1 P t0, 1u, we write Πbb1

n pρq to denote Πn`2pb, ρ, b1q,
i.e., the probability of a matching in Pnpρq where we add an edge to the left if b “ 1 and
add an edge to the right if b1 “ 1. In particular Π00

n pρq “ Πnpρq. We call the quadruple of
values Πbb1

n pρq for b, b1 P t0, 1u the behavior of the path Pnpρq. Each Πbb1

n pρq is a polynomial
in the probabilities ρ, and thus we also see Πbb1

n as a polynomial with real variables as in
Section 3. We will use the following two lemmas. The first one expresses the behavior of the
concatenation of two paths as a function of the behavior of each path (see the full version [4]):

▶ Lemma 4.2. Let n, n1 P N` and ρ P r0, 1sn, ρ1 P r0, 1sn1 be tuples of probability values.
Then, for every b, b1 P t0, 1u, we have:

Πbb1

n`n1 pρ, ρ1q “ pΠb0
n pρq ˆ Π1b1

n1 pρ1qq ` pΠb1
n pρq ˆ Π0b1

n1 pρ1qq ´ pΠb1
n pρq ˆ Π1b1

n1 pρ1qq.

The second lemma expresses the values Πbb1

n p1{2, . . . , 1{2q in terms of the Fibonacci
sequence. Recall that this is the integer sequence defined by f0 :“ 0, f1 :“ 1, and fn :“
fn´1 ` fn´2 for all n P N`, and that this sequence satisfies Cassini’s identity [22], which
says that f2

n “ fn`1fn´1 ` p´1qn`1 for every n P N`. We have (see the full version [4]):

▶ Lemma 4.3. For all n P N`, b, b1 P t0, 1u, we have Πbb1

n p1{2, . . . , 1{2q “
fn`2´b´b1

2n .

Proving Proposition 4.1. Let us now build the graphs HKpκq. As before, consider pm` 1q4

4-tuples of probability values ρκ “ pρκ,00, ρκ,01, ρκ,10, ρκ,11q for κ P rm`1s4, to be chosen later.
Each graph HKpκq has HK as its underlying graph, and for every directed edge px, yq P

ÝÑ
H ,

we set the probabilities on the corresponding undirected path in HK as follows:

x
1{2—— v1

ρκ,00—— v2
ρκ,01—— v3

ρκ,10—— v4
ρκ,11—— v5

1{2—— v6
1{2—— ¨ ¨ ¨

1{2—— vK´1
1{2—— y

Note that this is like in Section 3, but giving probability 1{2 to the N :“ K ´ 6 extra edges
on the path. For b, b1 P t0, 1u we write again Λκ,bb1 :“ Πbb1

4 pρκq the behavior of the 4-path
with probabilities ρκ, and we define the behavior Υκ,bb1 :“ Πbb1

K´2pρκ, 1{2, . . . , 1{2q of the path
depicted above without the first and last edges. Note that with Lemma 4.2 and Lemma 4.3,
we can then express the Υκ,bb1 as a function of the Λκ,bb1 and of the Fibonacci numbers:

▶ Fact 4.4. We have Υκ,bb1 “ 2´N ˆ pΛκ,b0 ˆ fN`1´b1 ` Λκ,b1 ˆ fN´b1 q for b, b1 P t0, 1u.

Studying the graphs HKpκq, by the same reasoning as for Fact 3.4, we can easily show:

22m ˆ Pr
matching

pHKpκqq “
ÿ

τPrm`1s4

|Sτ |ˆpΥκ,00qτ00 ˆpΥκ,01qτ01 ˆpΥκ,10qτ10 ˆpΥκ,11qτ11 . (2)

This is again a system of linear equations V S “ C with V P Rrm`1s
4,rm`1s

4 , where
vκ,τ :“ 2´2m ˆ pΥκ,00qτ00 ˆ pΥκ,01qτ01 ˆ pΥκ,10qτ10 ˆ pΥκ,11qτ11 . To show that we can com-
pute in polynomial time 4-tuples of rational probability values ρκ for κ P rm`1s4 that make V

have rational entries and be invertible, we reason as in Section 3. Specifically, we study the Ja-
cobian determinant of the mapping ξN : χ ÞÑ

`

Π00
K´2pχ, 1{2, . . . , 1{2q, Π01

K´2pχ, 1{2, . . . , 1{2q,

MFCS 2022
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Π10
K´2pχ, 1{2, . . . , 1{2q, Π11

K´2pχ, 1{2, . . . , 1{2q
˘

, where χ is a 4-tuple of real variables. We
show that this determinant is not the null polynomial. To do this, starting from the Ja-
cobian Jξ of Section 3, using Fact 4.4 and Cassini’s identity, and using the fact that the
determinant is multilinear and alternating, we obtain (see the full version [4]):

▶ Fact 4.5. We have: detpJξN
q “ 2´4N ˆ detpJξq .

Hence, detpJξN
q is not the null polynomial and, as in Section 3, we can use Proposition 3.5

to complete the proof of Proposition 4.1 (see the full version [4]).

5 Proof for Arbitrary Subdivisions

In this section we finally prove our main result (Result 1), which we re-state here:

▶ Theorem 5.1. Let G be an arbitrary family of graphs which is treewidth-constructible.
Then PrMatchingpGq is #P-hard under ZPP reductions.

We will reduce from the problem of counting matchings in 3-regular planar graphs of, which
is #P-hard3 by [26]. Our reduction will be similar to that of Section 4, with the major issue
that the various edges of the input graph can now be subdivided to different lengths.

The proof consists of five steps. In step 1, we show a general result allowing us to assign
probabilities to a path of length 4 so as to “emulate” the behavior of any long path of
even length. We then revisit the proof of the previous section. Step 2 extracts the input
graph H from the treewidth-constructible family. Step 3 relates the number of matchings
of H to cardinalities similar to those of the previous section, but taking the parities of the
subdivisions into account. Step 4 then explains how to conclude using emulation. Last, step 5
works around the issue that the probabilities of Step 1 could be irrational, by explaining how
we can conclude with sufficiently precise approximations. We now detail these steps.

Step 1: Emulating long even paths. We start by presenting the main technical tool,
namely, how to emulate long paths of even length by paths of length 4.

▶ Proposition 5.2 (Emulation result). There exist closed-form expressions, denoted ppiq, qpiq,

rpiq, spiq, such that for every even integer i ě 4 the following hold:
(A) the expressions evaluate to well-defined probability values, i.e., we have

0 ď ppiq, qpiq, rpiq, spiq ď 1; and
(B) the path of length 4 with probabilities ppiq, qpiq, rpiq, spiq behaves like a path of length i with

probabilities 1{2, i.e., Πbb1

4 pppiq, qpiq, rpiq, spiqq “ Πbb1

i p1{2, . . . , 1{2q for all b, b1 P t0, 1u.
Further, each of these expressions is of the form P ˘

?
Q

R where P,Q,R are polynomials in the
Fibonacci numbers fi´1 and fi´2 and in 2´i, with rational coefficients.

Proof sketch. The result is simple to state, but we did not find an elegant way to show
it. Our proof consists of four steps: (i) rewriting condition (B) into a simpler equivalent
system of equations (using Lemma 4.3), (ii) proving that any solution of that system must
be in p0, 1q4, (iii) exhibiting closed-form expressions that satisfy the system, found with the
help of SageMath; and (iv) verifying that these expressions are well-defined. See the full
version [4]. ◀

3 Note that, in holographic literature, graphs may be multigraphs (i.e., can have multiple edges between
two nodes) – see [15]. However, inspecting the proof of [26], we see that the graphs are in fact simple.
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▶ Remark 5.3. As Πbb1

i p1{2, . . . , 1{2q is symmetric, one would expect the closed-form expres-
sions to satisfy ppiq “ spiq and qpiq “ rpiq. However, surprisingly, numerical evaluation
(already for i “ 6) shows that our solution does not have this property.
▶ Remark 5.4. It is necessary to require that i is even, as otherwise Proposition 5.2 demonstra-
bly does not hold. In fact, we can prove that, more generally, the behavior of a probabilistic
path inherently depends on the parity of its length (see the full version [4]). This is why we
will distinguish even-length and odd-length subdivisions in the sequel.

Step 2: Choosing the graph in G. Let H “ pV,Eq be the input to the reduction, i.e., the 3-
regular planar graph for which we want to compute #MatchingpHq, and let m :“ |E|. We
first build the graph H10 “ SubpH, 10q, writing H10 “ pV10, E10q and we compute k :“ |V10|c

where c is the constant from Theorem 2.1. Notice that H10 is a planar graph of maximum
degree 3, and that the size of k in unary is polynomial in (the encoding size of) H. Intuitively,
this initial subdivision in 10 will ensure that we have enough room for our probabilistic
gadgets. Now, we use the treewidth-constructibility of G to build in polynomial time a
graph G “ pVG, EGq P G such that twpGq ě k, and using Theorem 2.1 we compute in
ZPP a subgraph G1 of G with a subdivision η10 : E10 Ñ N` of H10 and an isomorphism
from SubpH10, η10q to G1. This gives us a subdivision η : E Ñ N` of H and an isomorphism f

from SubpH, ηq to G1, with the initial subdivision ensuring that ηpeq ě 10 for each e P E.

Step 3: Defining the new sets Sτ,τ 1 and linking them to matchings. As before, fix an
orientation ÝÑ

H of H. We call an edge e of H even if ηpeq is even, and odd otherwise. For
τ, τ 1 P rm` 1s4, both indexed in binary, we define Sτ,τ 1 to be the set of selection functions µ
of H such that, for b, b1 P t0, 1u, precisely τbb1 even edges e of H have type bb1 w.r.t. µ, and
precisely τ 1

bb1 odd edges e of H have type bb1 w.r.t. µ. Then, as in Section 3, we have:

#MatchingpHq “
ÿ

τ,τ 1
Prm`1s

4

τ01“τ10“τ 1
01“τ 1

10“0

|Sτ,τ 1 |. (3)

Step 4: Describing the probabilistic graphs and obtaining the system. To complete the
definition of the reduction, let us build the pm` 1q8 probabilistic graphs on which we want
to invoke the oracle, denoted Gpκ, κ1q for κ, κ1 P rm` 1s4. Let K :“ max ePE

ηpeq is even
pηpeqq and

K 1 :“ max ePE
ηpeq is odd

pηpeqq and N :“ K´6 and N 1 :“ K 1´6. The underlying graph of Gpκ, κ1q

is G, every edge e P EG that is not in G1 is assigned probability zero, and we explain next
what is the probability associated to the edges that are in G1. Consider 2 ˆ pm` 1q4 4-tuples
of probability values ρκ “ pρκ,00, ρκ,01, ρκ,10, ρκ,11q and ρ1

κ “ pρ1
κ1,00, ρ

1
κ1,01, ρ

1
κ1,10, ρ

1
κ1,11q for

κ, κ1 P rm`1s4, to be chosen later. For every directed edge px, yq P
ÝÑ
H , let γ :“ ηptx, yuq be the

length to which it is subdivided in G1. Letting fpxq, v1, . . . , vγ´1, fpyq be the corresponding
path in G1, we set the probabilities of the γ edges along that path as follows:

If γ is even (illustrated in Figure 1):
1{2, ρκ,00, ρκ,01, ρκ,10, ρκ,11 for the first 5 edges,
ppN ´ γ ` 10q, qpN ´ γ ` 10q, rpN ´ γ ` 10q, spN ´ γ ` 10q for the next four edges,
1{2 for the remaining γ ´ 9 edges.

If γ is odd:
1{2, ρ1

κ1,00, ρ
1
κ1,01, ρ

1
κ1,10, ρ

1
κ1,11 for the first 5 edges,

ppN 1 ´ γ ` 10q, qpN 1 ´ γ ` 10q, rpN 1 ´ γ ` 10q, spN 1 ´ γ ` 10q for the next four edges,
1{2 for the remaining γ ´ 9 edges.

MFCS 2022
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fpxq fpyq1
2 ρκ,00 ρκ,01 ρκ,10 ρκ,11 ppiq qpiq rpiq spiq 1

2
1
2 on all edges

γ ´ 10 edges

1
2 ρκ,00 ρκ,01 ρκ,10 ρκ,11

1
2

1
2 on all edges

N edges

Figure 1 The upper path depicts how we set the probabilities along a path fpxq, v1, . . . , vγ´1, fpyq

corresponding to an edge px, yq P
ÝÑ
H such that γ :“ ηptx, yuq is even. We write i :“ N ´ γ ` 10. By

Lemma 4.2 and Proposition 5.2, this path has exactly the same behavior as the lower path.

We know that N ´ γ ` 10 (resp., N 1 ´ γ ` 10) is an even integer when γ is even (resp.,
when γ is odd); and it is ě 4 by definition of K (resp., of K 1). Thus, using Proposition 5.2
and then Lemma 4.2, we know that the path that we defined behaves exactly like the
path PKp1{2, ρκ,00, ρκ,01, ρκ,10, ρκ,11, 1{2, . . . , 1{2q if γ is even, and exactly like the path
PK1 p1{2, ρ1

κ1,00, ρ
1
κ1,01, ρ

1
κ1,10, ρ

1
κ1,11, 1{2, . . . , 1{2q if γ is odd (see again Figure 1).

We have now managed to ensure that all paths for even edges (resp., for odd edges)
behave as if they had been subdivided to length K (resp., to length K 1). We continue the
proof as in the previous section, except that we distinguish odd and even edges. Specifically,
for b, b1 P t0, 1u, we write as in the previous section Υκ,bb1 :“ Πbb1

K´2pρκ, 1{2, . . . , 1{2q and
Υ1

κ1,bb1 :“ Πbb1

K1´2pρ1
κ1 , 1{2, . . . , 1{2q. Using the same reasoning as for Equation 2, we obtain:

22m ˆ Pr
matching

pGpκ, κ1qq “
ÿ

τ,τ 1Prm`1s4

|Sτ,τ 1 | ˆ pΥκ,00qτ00 ˆ pΥκ,01qτ01 ˆ pΥκ,10qτ10 ˆ pΥκ,11qτ11

ˆ pΥ1
κ1,00qτ 1

00 ˆ pΥ1
κ1,01qτ 1

01 ˆ pΥ1
κ1,10qτ 1

10 ˆ pΥ1
κ1,11qτ 1

11 , (4)

i.e., we obtain a system of linear equations ΓS “ C with S the vector of the desired
values |Sτ,τ 1 |, with C the vector of the oracle answers PrmatchingpGpκ, κ1qq, and with Γ P

Rrm`1s
8,rm`1s

8 , whose entries are given according to the above equation. But notice that we
have Γ “ V b V 1, with vκ,τ :“ 2´m ˆ pΥκ,00qτ00 ˆ pΥκ,01qτ01 ˆ pΥκ,10qτ10 ˆ pΥκ,11qτ11 and
v1

κ1,τ 1 :“ 2´m ˆ pΥ1
κ1,00qτ 1

00 ˆ pΥ1
κ1,01qτ 1

01 ˆ pΥ1
κ1,10qτ 1

10 ˆ pΥ1
κ1,11qτ 1

11 . Since V and V 1 share
no variables and are identical up to renaming variables, to argue that there exist 4-tuples of
probabilistic values ρκ and ρ1

κ1 for κ, κ1 P rm ` 1s4 that make Γ invertible, it is enough to
know that the Jacobian determinant of the mapping ξN is not identically null, as we showed
in the previous section (Fact 4.5). Thus, we can again use Proposition 3.5 to compute in
polynomial time 2 ˆ pm` 1q4 4-tuples of rational probability values ρκ and ρ1

κ1 such that the
matrices V and V 1, hence Γ, are invertible (see the full version [4]). By Equation 4, Γ has
rational entries, and its inverse Γ´1 also does and is computable in polynomial time.

Step 5: Using decimal fractions approximations. The last issue is that we cannot really
obtain C via oracle calls, because the graphs Gpκ, κ1q may have irrational edge probabilities,
namely, the ppiq, qpiq, rpiq, spiq. We now argue that we can still recover the C, so that we
can compute S “ Γ´1C and conclude. To do this, we first observe that C is in fact a
vector of decimal fractions, as the graphs Gpκ, κ1q emulate a graph where the probabilities
are decimal fractions; further, we can bound the number of decimal places of its values to
rmˆpmaxpN,N 1q`10qsˆz, with z the maximal number of decimal places of a decimal fraction
in ρκ, ρ

1
κ Second, we show how to compute decimal fraction approximations yppiq, yqpiq, yrpiq, yspiq
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of the ppiq, qpiq, rpiq, spiq, in polynomial time in the desired number of places, using the form
that they have according to Proposition 5.2. Third, we argue that when invoking the oracles
on the graphs where we replace ppiq, qpiq, rpiq, spiq by yppiq, yqpiq, yrpiq, yspiq, then the error on
the answer is bounded as a function of that of the approximations, so that we can recover C

exactly if the approximations were sufficiently precise. See the full version [4] for detailed
proofs.

6 Result for Edge Covers

Having shown Result 1, we now explain how to adapt its proof to obtain our analogous
results for edge covers. We only sketch the argument, and refer to the full version [4] for
more details. Recall that an edge cover of a graph G “ pV,Eq is a set of edges S Ď E such
that V “

Ť

ePS e. Given a probabilistic graph pG, πq, we define PredgeCoverpG, πq to be the
sum of the probabilities of all edge covers in the probability distribution induced by π, and
define PrEdgeCoverpFq for a graph family F to be the corresponding computational problem.
We first note that, in this context, the strict analogue of Result 1 does not hold. Indeed,
take some treewidth-constructible graph family G, and consider the graph family G1 obtained
from G as follows: for every graph G P G, we add to G1 the graph that is obtained from G

by attaching a dangling edge with a fresh vertex to every node of G. The family G1 is still
treewidth-constructible, but PrEdgeCoverpG1q is now tractable as it is easy to see that the
edge covers of a graph in G1 are precisely the edge subsets where all dangling edges are kept.

To avoid this, let us assume that G is closed under taking subgraphs, i.e., if G P G and G1

is a subgraph of G, then G1 P G. We then have:

▶ Theorem 6.1. Let G be an arbitrary family of graphs which is treewidth-constructible and
closed under taking subgraphs. Then PrEdgeCoverpGq is #P-hard under ZPP reductions.

This is proved like Result 1, with the following modifications. We reduce from counting
edge covers (instead of matchings) on 3-regular planar graphs: this is hard by [8], even on
simple graphs [2, Appendix D]. We now define a selection function µ to map each vertex x P V

to at least one incident edge, and we define the types and the sets Sτ,τ 1 as before, via an
arbitrary orientation of the graph H. We obtain the number of edge covers of H from the
quantities |Sτ,τ 1 | exactly as in Equation 3. We redefine Πbb1

n pρq to be the probability of
an edge cover in a path of length n with probabilities ρ on the edges and with endpoint
constraints given by b, b1 as before. Lemma 4.3 then becomes Πbb1

n p1{2, . . . , 1{2q “
fn`b`b1

2n ,
i.e., the role of b, b1 is “reversed”. Analogous versions of Lemma 4.2 and of Proposition 5.2
still hold, so the relevant Jacobian determinants are still non-identically null. We take
the graph G P G again via the topological minor extraction result, but this time directly
extracting SubpH, ηq P G as G is subgraph-closed. The rest of the proof is identical.

We point out that the situation is different for perfect matchings. Indeed, using a weighted
variant of the FKT algorithm [7, Chapter 4], the weighted counting of perfect matchings is
polynomial-time over the class of planar graphs, which is treewidth-constructible.

We conclude by leaving open two directions for future work. The first one would be to
obtain the same kind of lower bounds when the probabilities annotate the nodes instead of the
edges, that is, studying the corresponding weighted counting problems for, e.g., independent
sets, vertex covers, or cliques. We believe that the corresponding result should hold and do
not expect any surprises. The second question would be to show our hardness results in the
unweighted case, e.g., unweighted counting of matchings, assuming that the graph family is
subgraph-closed. This appears to be much more challenging, as our current proof crucially
relies on the ability to use arbitrary probability values.

MFCS 2022
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