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Abstract
Contiguous strings of length k, called k-mers, are a fundamental element in many bioinformatics
tasks. The number of occurrences of a k-mer in a given set of DNA sequencing reads, its k-mer
count, has often been used to roughly estimate the copy number of a k-mer in the genome from
which the reads were sampled. The problem of estimating copy numbers, called here the k-mer
classification problem, has been based on simply analyzing the histogram of counts of all the k-mers
in a data set, thus ignoring the positional context and dependency between multiple k-mers that
appear nearby in the underlying genome. Here we present an efficient and significantly more accurate
method for classifying k-mers by analyzing the sequence of k-mer counts along each sequencing
read, called a read profile. By analyzing read profiles, we explicitly incorporate into the model the
dependencies between the positionally adjacent k-mers and the sequence context-dependent error
rates estimated from the given dataset. For long sequencing reads produced with the accurate
high-fidelity (HiFi) sequencing technology, an implementation of our method, ClassPro, outperforms
the conventional, histogram-based method in every simulation dataset of fruit fly and human with
various realistic values of sequencing coverage and heterozygosity. Within only a few minutes,
ClassPro achieves an average accuracy of > 99.99% across reads without repetitive k-mers and
> 99.5% across all reads, in a typical fruit fly simulation data set with a 40× coverage. The resulting,
more accurate k-mer classifications by ClassPro are in principle expected to improve any k-mer-based
downstream analyses for sequenced reads such as read mapping and overlap, spectral alignment and
error correction, haplotype phasing, and trio binning to name but a few. ClassPro is available at
https://github.com/yoshihikosuzuki/ClassPro.
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1 Introduction

Long read DNA sequencing technologies are enabling the de novo reconstruction of reference
quality genomes providing the impetus for projects such as the Vertebrate Genome Project [26],
the Darwin Tree of Life Project [30] and the Human Pangenome Project [33], whose goals
are to build reference atlases of entire phyla, eco-systems of living creatures, or worldwide
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10:2 Accurate k-mer Classification Using Read Profiles

human populations. In addition to dramatic gains in read length, the most recent arrival
of long reads with an error rate of only 0.2%, as for example realized by PacBio’s HiFi
protocol [34], permits haplotype phasing and the resolution of many complex repetitive
regions [4, 5, 7, 8, 21] because there is almost always a modest level of heterogeneity between
the haplotypes or repeat elements in wild-type animals. However, the goal of a perfect
telomere to telomere, phased reconstruction of a multiploid genome is as yet unrealized [11],
requiring either better or more data, or better assembly algorithms. In this paper, an initial
analysis of a high fidelity shotgun data set delivers precise information about phasing and
repetitiveness, that should in principle improve the performance of any downstream assembly
method.

In a typical high fidelity data set of a genome G, a collection of reads R is collected so
that the genome is covered c =

∑
S∈R |S|/|G| times where c is typically 10-30 and the read

length |S| averages from 10Kbp to 25Kbp (with current technologies). Note carefully, that c

is the haploid coverage and G is the phased genome, i.e. it is not a consensus haplotype but
the set of all distinct haplotype sequences. For example, for a human genome, G is 6Gbp in
length and consists of 46 sequences corresponding to the full diploid set of chromosomes. In
the treatment that follows, only R is known, and G is a hypothetical used for definitional
purposes.

A k-mer is a string of length k defined over the DNA nucleotides. For any set of DNA
sequences X, a k-mer counter such as Meryl [32], Jellyfish [17], KMC [13], or FastK [19],
calculates the number of occurrences of each distinct k-mer in X. For a k-mer, α, let #X(α)
denote the number of times α occurs in X. Reference to “the count of α” implicitly refers
to #R(α), the count in the read data set R. A naive expectation for a shotgun data set R

and implied genome G is that #R(α) ∼ c ·#G(α) subject to stochastic fluctuations in the
arrival of sequencing errors and the read sampling process. This in turn implies that the
histogram, HR, of #R (often called the k-mer spectrum of R) will typically have discernible
peaks at 0, c, 2c, · · · (Fig. 1a) where the k-mers about 0 are considered to be due to errors
in the reads as it is most likely that #G = 0 for said; i.e. they are not in G. This basic
observation has lead to a number of k-mer-based analysis tools. For example, GenomeScope
[25] estimates the size, ploidy, heterozygosity, and repeat fraction of G and the error rate of
R by fitting a negative binomial mixture model to the histogram HR. As another example,
KAT [16], Merqury [27], and Merfin [6] evaluate the completeness of an assembly of R using
a complete table of #R and the histogram HR.

In this paper, we consider the k-mer classification problem to be that of inferring
#G(α) for every k-mer α in R. In all previous work of which we are aware, this classification
is based solely on the count of α in the context of the histogram HR; e.g. a k-mer α is deemed
an error (i.e. #G(α) = 0) if the count of α is less than some fixed threshold based on an
examination of HR. Let HR|v be the histogram or distribution of { #R(α) : #G(α) = v },
that is, the counts of the k-mers with classification v. Then because of sequencing error and
the stochasticity of the Poisson sampling process, the distributions HR|0, HR|1, HR|2, · · · can
and typically do overlap significantly, increasingly so as a function of v and the sequencing
error rate. This inseparability implies that the many assemblers (e.g [23, 2, 12, 29, 14, 3, 1])
using k-mers for tasks such as seeding alignments, spectral error correction, or haplotype
phasing, are working with classifications (or probabilities of classifications) that are often
incorrect as much as 5–10% of the time. So clearly, having highly accurate classifications
would improve the performance of all of these systems.

Here we present a method of k-mer classification over a high-fidelity read data set that
has a typically accuracy of > 99.9%. We do so by exploiting the contextual information
between positionally close k-mer counts along each read S ∈ R. We term the sequence
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counts for consecutive k-mers along a read S, a count profile (Fig. 1a). In a count
profile, neighboring k-mer counts are dependent on each other, providing much stronger
statistical leverage than found in the histogram HR. For example, if a k-mer is an error
(classification 0), then typically O(k) neighbors about this k-mer in the profile are also errors.
An even more significant observation is that if two consecutive k-mers in the profile have the
same classification then their counts will only vary if (a) there has been a read arrival or
departure in the underlying sampling of reads or (b) some number of reads that have an
error in said k-mer changes. In contrast, if they have different classifications, then there will
be a difference on the order of c or more in their counts. As a concrete example, consider
a 20× HiFi data set of 15Kbp reads (40× of a diploid genome). A read arrives on average
every 375bp and an error occurs every 500bp assuming a 0.2% error rate. One thus expects
typically a change of 0, 1 or 2 counts between successive k-mers in the same class and a
change on the order of 20 or so counts if the classification changes.

While the read sampling process for PacBio data is to first order Poisson, the likelihood
of an error at a given point in a sequence is known to vary widely depending on context.
For example, the most common errors that account for ∼ 80% of all the errors in the HiFi
sequencing are homopolymer indels [34, 22], followed by copy number errors in dinucleotide
satellites, and thereafter those of trinucleotide satellites. It is therefore important to account
for this as it can considerably affect the probability of a count transition being due to a
classification change versus due to error and read sampling. In other work, the dominance of
homopolymer errors was effectively by-passed with homopolymer compression of the reads
as in HiCanu [22] and LJA [1]. This approach however does not account for elevated error
rates around di- and tri-nucleotide satellites, so in this work we develop a data-driven model
of sequence-dependent error.

In this paper, we describe an algorithm and software implementation, ClassPro, that for
each read count profile of a diploid genome, classifies every k-mer α in the profile into one
of the four types: error (#G(α) = 0), haploid (#G(α) = 1), diploid (#G(α) = 2), and
repeat (#G(α) ≥ 3). The concept of a count profile has been sporadically seen in previous
work [36, 24, 18, 16], but we leverage both stochastic and deterministic properties of a profile
to improve k-mer classification. We show empirically that the resulting classifications are
highly accurate and so using these in previously studied contexts like error correction, read
overlap detection, haplotype phasing, and trio binning should result in significant performance
improvements.

2 Preliminaries

2.1 Problem definition and terminology
Throughout the paper, we focus on classifying the k-mers of a single read S ∈ R of length
N . Let the sequence of S, Seq(S) = s−k+1s−k+2 · · · s−1s0s1 · · · sN−k, and let the N − k + 1
k-mers of S, Kmer(S) = α0α1 · · ·αN−k, where αi = si−k+1 · · · si. Note that this unusual
definition of Seq(S) prefixed by k − 1 negative indices is for a definitional purpose so that
the first k-mer affected by any change to nucleotide sj is αj , which will be used in Methods.
Lastly, let the k-mer count profile of S, Count(S) = c0c1 · · · cN−k, where ci = #R(αi).

For a k-mer α, we call it a haplo-mer iff #G(α) = 1 and a diplo-mer iff #G(α) = 2. Note
that almost all of the diplo-mers are the homozygous k-mers shared among both alleles, but
a very small fraction of them typically consists of paralogous copies of k-mers, especially
in repetitive regions. Similarly we call α an error-mer iff #G(α) = 0 and a repeat-mer
iff #G(α) > 2. (NB: a sequencing error in a read does not necessarily imply that every
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10:4 Accurate k-mer Classification Using Read Profiles

k-mer spanning it is an error-mer as it may occur elsewhere in the genome, however this
happens rarely, increasingly so as k increases.) Let T be the set of the four k-mer types,
i.e. {E(rror), H(aplo), D(iplo), R(epeat)}. For each k-mer αi in Kmer(S), let τi ∈ T be the
true type of αi, which is unknown, and ti ∈ T be the inferred assignment of a type of αi

by some method. Then, our ultimate objective is to find the best sequence of assignments,
Class(S) = t0 · · · tN−k, such that the number of wrong classifications, i.e. |{ αi | ti ̸= τi }|,
is minimized.
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Figure 1 (a) Examples of a histogram HR and a profile Count(S) of k-mer counts (real HiFi
data, c = 20 and k = 40). In the profile, consecutive k-mer counts are connected with solid lines. (b)
While a count of 30 is hard to classify based only on HR, in this region we can conclude it is likely
to be haploid rather than diploid because we clearly see two “tiers” of haploid (light blue curve) and
diploid (dark blue) segments fluctuating smoothly. The sharp and large count drops (red circles) are
caused by sequencing errors occurring in S. In contrast, errors in other reads result in small drops
from a tier (orange arrows). The bars at the bottom indicate the homopolymer length for count
drop (blue,

−→
l HP

i in Methods) and gain (orange,
←−
l HP

i−k+1) where only ≥ 5bp are depicted. The drop
to count 9 at position ∼5,950 exemplifies an elevated number of co-occurrences of a homopolymer
error. (c) The flow of ClassPro. The second and third subplots show reliable intervals instead of
k-mers, and the background profile is depicted in gray in the third and last subplots for clarity.

2.2 Anatomy of a k-mer count profile
The intuition that read profiles are effective for the k-mer classification problem is based
on two key observations that hold for a typical HiFi dataset: the coherence principle
and the k-knockout principle. In brief, the coherence principle is that “adjacent k-mers
with the same copy number have similar counts.” In other words, the count change between
two consecutive k-mers with the same copy number #G is relatively much smaller than the
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count change due to a copy number change. The k-knockout principle is that a transition
from a higher copy number to a lower copy number in the event of a sequencing error or
allelic variant lasts for roughly k-or-more k-mers, because ∼ k consecutive k-mers share the
nucleotide(s) of the event. These two principles create local dependencies among adjacent
k-mers that cannot be captured with a histogram.

To elaborate these principles, we consider what a count profile Count(S) should look like
from a generative perspective (Fig. 1b). First suppose a read has no errors and is sampled
from a region in a diploid genome that is completely homozygous and non-repetitive. Then
all the k-mers are diplo-mers and every change between two consecutive counts, ci−1 and ci,
is fully explained by the read sampling process. That is, ci get +1 compared to ci−1 for every
read starting at i and −1 for every read ending at i− 1. Since the average number of read
arrivals per position is 2c/N when c is the haploid coverage and N is the read length, for long
reads, where 2c/N ≪ 1, the count profile without sequencing errors is very smooth. However,
do note that over a large number of bases the counts can drift up and down significantly
based on the underlying undulation in the Poisson sampling process, i.e. |ci − cj | can be
large when |i− j| is large.

Next suppose the read now comes from a heterozygous region where the haplotype it
was sampled from varies from its mate in a number of places. Then the k-mers spanning
the variant sites will be haplo-mers and those not will be diplo-mers, effectively partitioning
the profile into diplo-mer segments and haplo-mer segments. By coherence these segments
will be smooth with O(c) jumps between segments. Basically the diplo-mer and haplo-mer
segments will create two layers, one roughly twice the height of the other while undulating
under the Poisson sampling process. Furthermore, by the knockout principle the haplotype
segments are O(k) or longer (in the event two variant sites are less than k bases apart).

Finally consider the case where there are errors both in the read S under consideration
and the set O of all the other reads that were sampled from the same region. When the
error is in S, the profile of the k-mers containing the error drops to 1 or nearly so, happens
roughly once every 500bp for a HiFi data set with a 0.2% error rate, and the profile count
stays very low for O(k) counts by the knockout principle. Errors in the other reads O create
−1 drops like a read end event but in this case they last for only O(k) consecutive counts
before popping back up +1 and these fluctuations are much more frequent, occurring every
0.2c bases for haplo segments and 0.4c for diplo segments, e.g. every 25bp and every 12.5bp
when c = 20×.

In summary, if c is not too small and error is not too high, then the transition of counts
in a single profile is caused by a combination of the following four factors in order of their
possible effect size: (a) copy number changes, (b) sequencing errors in S, (c) sequencing
errors in others O, and (d) read sampling fluctuation. The coherence principle implies that
the effect sizes of (c) and (d) are generally much smaller than (a) and (b), and the k-knockout
principle can be applied to (a), (b) and (c). However, we will only use the knockout principle
for the special case of errors, as changes in the underlying repetitiveness of the genome can
negate the length of a haplo-mer, diplo-mer, triplo-mer, · · · run but not so for an error-mer
segment.

2.3 The approach
While we have introduced the fundamental components causing the movements in a count
profile Count(S), a full statistical model, i.e. Pr{Seq(S), Count(S), Class(S)}, that incor-
porates all of these stochastic factors is very complicated and thus impractical. Our solution
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to this challenge is to divide the classification problem into two heuristic parts: we first
resolve local dependencies between k-mer counts due to errors using the k-knockout principle,
and then identify haplo-/diplo-profiles using the coherence principle (Fig. 1c).

In Section 3.1, we describe how the “knockout length” of an error is precisely determined
based on the sequence context and the type of the error, and present how to compute
the probabilities of both errors in S and errors in O for each position. Using these error
probabilities, we identify the change-points of k-mer classes in Class(S) when the coherence
principle breaks. We call these walls and split the profile into a set of contiguous segments
partitioned by the walls wherein all the k-mers in an interval should belong to the same
class. The classification by ClassPro is performed on the intervals (instead of the k-mers),
and the inferred class (∈ T ) of an interval is assigned to all the k-mers in the interval at the
end. In Section 3.2 we introduce a criterion for selecting potential haplo-/diplo-intervals
(called reliable intervals) from all the intervals, and estimate their error-free counts at each
boundary wall, i.e. the counts that would occur if there were no errors in O (Fig. 1c, second
plot). This partition into reliable intervals with corrected wall counts allows us to accurately
approximate the complicated transition among all the k-mer counts in Count(S), by only
analyzing the count changes at the walls and between the walls.

In the latter part of the divided problem, we first classify only the reliable intervals
(Section 3.4; Fig. 1c, third plot) and then do the rest of the intervals while fixing the
classification results of the reliable intervals (Section 3.5; Fig. 1c, forth plot). Since the wall
counts are corrected for the reliable intervals, at this point the transition between the wall
counts of the reliable intervals should be only due to 1) read sampling fluctuation for those
having the same class of H or D (i.e. the coherence principle), or 2) copy number changes for
those having different classes. Although the optimal classifications for the reliable intervals
can be obtained via dynamic programming (D.P.) if all the reliable intervals are haploid or
diploid, repeats and errors cannot be handled in the same manner because of the lack of
the coherence principle for them. Nevertheless, we employ a heuristics that combines two
pseudo-D.P. sweeps in the forward and backward directions and empirically show that it
achieves very accurate classifications over various simulation datasets.

3 Methods

3.1 Wall detection: How errors affect the profile
We term a position i in a profile a wall if and only if there is a “significant” change between
the two counts ci−1 and ci due to a state change (i.e. ti−1 ≠ ti). We also call a segment
[b..e) partitioned by two adjacent walls at b and e an interval. The start of an error state in
either S or O causes a count drop and the end does a count gain, and below we describe how
to determine walls by finding pairs of count drops and gains due to errors while considering
positionally variable sequencing error rates due to low-complexity sequences. Another
objective here is to evaluate how likely each interval is a product of errors in S.

Let F be a set of the types of sequence features that alter the sequencing error rate.
For HiFi reads, we consider three types of low-complexity sequences: the homopolymers
(HP; e.g. aaaa), the dinucleotide satellites (DS; ctctct), and the trinucleotide satellites
(TS; ctgctg), denoted by F = {HP, DS, TS}. For each f ∈ F , let

−→
l f

i and
←−
l f

i be the
maximal length of f on Seq(S) up to position i − 1 and that from i, respectively. For
example, if s0 · · · s8 = agggctcta, then

−→
l HP

4 = 3 (ggg) and
←−
l DS

4 = 4 (ctct). For each feature
f , let errf (l) denote the average indel error rate right after f of length l. We estimate
errf (l) directly from a given dataset with HIsim [20], which efficiently and comprehensively



Y. Suzuki and G. Myers 10:7

computes the frequency of each error type using a k-mer count table and a user-specified
count threshold between erroneous k-mers and normal k-mers. Since accurate estimation of
error rates is difficult for large l due to the relatively small number of observations of such
long low-complexity sequences in a dataset, we extrapolate the error rates for l > lmax = 5
by fitting a quadratic function errf (l) = a2l2 + a1l + a0 to the average estimated error rates
for feature lengths up to lmax.

Since the first k-mer affected by the start of a sequencing error in either S or O at position
i is αi (see Section 2.1), a count drop event at i, i.e. ci−1 > ci, due to an error should depend
on the nucleotide sequence up to i − 1. Likewise, a count gain at i, i.e. ci−1 < ci, due to
the end of an error depends on the sequence context from i − k + 1. Therefore, for each
position i the sequence context-dependent error rate εi is represented as follows for each type
of count change, i.e. drop ↘ and gain ↗:

ε↘i (f) = errf
(−→

l f
i

)
ε↗i (f) = errf

(←−
l f

i−k+1

)
In other words, ε↘i and ε↗i represent the potential error rate that causes a count drop and a
gain, respectively, between i − 1 and i due to a low-complexity indel error of type f ∈ F .
Regarding the other “high-complexity” errors other than F , we use ε̄ = errHP(1) as the error
rate of a single event of insertion, deletion, or substitution for both count drop and gain.
We consider up to 5 bases for a single high-complexity error. We denote the set of all the
possible error types above by Ω.

For each position i in S, let ∆i ∈ {↘,↗} denote the direction of the count transition
between i− 1 and i. Given a potential wall at i, let cin and cout be the count just inside and
outside of the wall, respectively. That is, (cin, cout) = (min{ci−1, ci}, max{ci−1, ci}), which
is equal to (ci, ci−1) if ∆i =↘ and (ci−1, ci) if ∆i =↗. We approximate the “error-free”
count (i.e. the count if errors do not exist) of cin by cout for each potential wall. Since the
sequencing errors should occur independently among the error-free count, the count change
between the two consecutive positions, i − 1 and i, due to an error in S is modeled by a
binomial distribution:

cin ∼ Binomial (cout, εi(ω))

where εi(ω) is the error rate given the type of the error ω ∈ Ω. That is, εi(ω) = ε∆i
i (ω) if

ω ∈ F (i.e. low-complexity errors) and otherwise εi(ω) = ε̄ for high-complexity errors. With
this model, we can compute how likely a count change occurred by the sequencing errors, or
how common it is. We define the probability pS

i (ω) that a count change at i is caused due to
an error in S whose type is ω by using the p-value of the one-sided binomial test:

pS
i (ω) = Pr {X ≥ cin | cout, εi(ω)}

= BinomialTest (cin | cout, εi(ω))

We also define the probability pO
i (ω) that a count change at i is caused due to the sequencing

errors occurring in a subset of O as follows:

pO
i (ω) = Pr {X ≥ cout − cin | cout, εi(ω)}

= BinomialTest (cout − cin | cout, εi(ω))

An error event makes a pair of count changes, and thus we wish to define the error
probabilities for a pair of walls instead of a single count change. The length of an error-
interval generated by a single contiguous error event is not always k bp. In HiFi reads, it is

WABI 2022



10:8 Accurate k-mer Classification Using Read Profiles

usually smaller than k bp due to the low-complexity indel errors (Fig. 2a). More precisely,
given the location i and the type of an error, the length of an error-interval is exactly given
by k + n−m− 1 bp where m and n are specified as follows. First, m =

−→
l f

i > 0 holds for
the low-complexity errors of type f and m = 0 for the others, because that the error state in
a profile can quickly return to the normal state due to the arbitrariness of low-complexity
bases in terms of k-mers. Next, n indicates the number of bases in S that are affected by the
error. That is, n = 0 holds if the error is a deletion in S or an insertion in O, and otherwise,
n(> 0) is the number of the bases inserted in S, deleted in O, or substituted in S or O. For
low-complexity errors of type f , n is the maximal length of the low-complexity sequence
from i, i.e.

←−
l f

i . The essential point here is that for a given error type ω, the length of the
error-interval caused by a single error event is uniquely determined. Therefore, for each
position i, we calculate the probability that the count changes at both of the pair of i and
its corresponding position are due to an error in S as the maximum product of probabilities
among all possible error types Ω:

pS
i =

{
maxω∈Ω

{
pS

i (ω) · pS
i+π(ω)

∣∣ ∆i+π =↗
}

if ∆i =↘
maxω∈Ω

{
pS

i−π(ω) · pS
i (ω)

∣∣ ∆i−π =↘
}

if ∆i =↗

where π = k + n−m− 1. There is only one possible combination of m and n for each of the
low-complexity errors and are η + 1 for the high-complexity errors up to η bases (because
m = 0 always holds and n = 0, · · · , η). Since |F | = 3 and η = 5 here, the total number
of cases inspected per position is always a constant of 9. In the same manner, pO

i is also
computed using pO

i (ω).
A set of walls is then determined by finding count changes that i) can be explained by

errors in S or ii) cannot be explained by errors in O, that is, { i : pS
i > θS or pO

i < θO },
where θS and θO are user-defined parameters (the default value is 10−5 for both). In practice,
most of the positions in a HiFi read are not walls, and we do not perform the pairing for any
position that already does not satisfy the condition. Note that the pairing of a count drop
and gain above is applicable only to a single error event. For a long error-interval containing
multiple error events in S, it is generally impossible to determine the exact locations and
types of the errors within it. To handle this case, for every pair of two consecutive walls
at position i and j that cannot be explained by O, as another possible pS

i (= pS
j ) we also

calculate pS
i = maxω

{
pS

i (ω)
}

maxω

{
pS

j (ω)
}

. We do not need to consider the multi-error
cases for pO

i because the same set of multiple errors rarely co-occurs among different reads
in O. We take unions of overlapping error-intervals, and for each interval I we define the
error probability pE

I as the largest pS
i among the overlapping error-intervals. The number of

resulting walls per read is typically on the order of 10–100 (depending on the heterozygosity
and repetitiveness), which is much smaller than N .

3.2 Collecting reliable intervals and correcting the wall counts
We now have a set of non-overlapping intervals split by walls, each of which should be
comprised only of a single type of k-mer class in T . While we no longer need to consider the
dependencies between k-mers due to errors in S across multiple intervals, the dependencies
due to errors in O, i.e. a pair of count drop and gain due to errors in O, still exist across
multiple intervals. We resolve this by canceling out the decrease in counts due to errors in O

at the walls although not all wall counts can be corrected as described below.
From the set of intervals, we extract “reliable” intervals where we can confidently correct

the counts at walls and thus use for the determination of a backbone haplo-profile and
diplo-profile in the next step (Fig. 2b). Specifically, an interval I = [b..e) is called reliable
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Figure 2 (a) An example of a pair of walls induced by a 1-bp homopolymer insertion event
(orange) that occurred in S. Note carefully that the last k-mer, aactcg, has a normal count although
it contains the inserted base, because of the arbitrariness of the insertion location of low-complexity
bases in terms of the k-mer strings. (b) Examples of walls (yellow) and reliable intervals (navy) in a
small region of a read profile (gray). Each reliable interval is represented and shown by a pair of
corrected counts at the walls and a line connecting them.

if and only if i) the error probability pE
I defined above is smaller than the threshold θS , ii)

the counts at walls are not obviously repetitive, i.e. max{cb, ce−1} < θR, where θR is some
(loose) threshold for repetitive count, and iii) the length of the interval e− b is at least k. As
for the repeat count threshold θR, we used the 6σ value of the global diploid coverage while
assuming a Poisson distribution of sequencing coverage; that is, θR = d + 6

√
d where d is

the diploid coverage and
√

d is the standard deviation of Poisson(d). In the last condition
we exclude short intervals that can be fully contained within a pair of count drop and gain
due to errors in O and thus cannot provide sufficient information for count correction. In
contrast, for an interval longer than or equal to k bp, the number of counts decreased at a
wall due to errors in O can be estimated because one of the drop-gain pair (i.e. start or end
position) of the error state in O that exists across the wall is expected to be contained in the
interval in most cases. Another reason for the value of k is because a single SNV results in
an interval of length k and this requirement keeps a haplo-interval caused by an SNV as a
reliable interval, which avoids over-filtering of intervals.

The counts at both ends of each reliable interval, cb and ce, are corrected into ĉb and
ĉe, respectively, using the count changes among ∼ k k-mers from b and ∼ k k-mers up to e,
respectively, based on a logic similar to that in the wall detection:

ĉb ← cb +
b+k−1∑
i=b+1

max {ci − ci−1, 0} −
b+maxf∈F

{←−
l f

b+k−1

}∑
i=b+1

max {ci−1 − ci, 0}

ĉe ← ce +
e−1∑

i=e−k+1
max {ci − ci+1, 0} −

e−1∑
i=e−maxf∈F

{−→
l f

e−k+1

} max {ci+1 − ci, 0}

In both formulae, the first term represents the number of gains/drops within the k bases just
after the start position and just before the end position. The second term is the number
of gains/drops that actually have a corresponding drop/gain within k bases or less (i.e.
drop-gain pairs that are actually contained in the interval) owing to the low-complexity
errors.
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3.3 Modeling count transition due to the read sampling fluctuation

In addition to sequencing errors, we define a probability of the count change between two
positions with some distance due to read sampling fluctuation, i.e. arrivals and exits of the
other reads on S. This represents the degree of coherence between k-mers in the same class
and is crucial in the next step.

Let u and v (u < v) be the locations of two k-mers having the same (non-zero) copy
number, i.e. #G(αu) = #G(αv)(> 0). Let c̃u and c̃v be the error-free counts of αu and αv,
respectively. For the read length N and the sequencing coverage of the class that the k-mers
belong to, i.e. C = #G(αu) · c (c is the global haploid coverage), the distribution of the
number of reads starting within a segment [u..v] asymptotically follows Poisson(λ) where
λ = (v − u)C/N [15]. If we assume that the read departure process is independent from the
arrival process, then the distribution of the number of reads ending within [u..v] also follows
Poisson(λ). Under the independence, the difference between counts c̃u and c̃v is modeled by
the Skellam distribution [10], which represents the distribution of the difference between two
variables independently following a Poisson distribution:

c̃v − c̃u ∼ Skellam (λ, λ)

where the shape of the distribution is symmetrical with the mean of 0 given the two variables
follow the same Poisson distribution. In practice, this probability is defined when the classes
of the two k-mers are deemed identical, i.e. tu = tv. We thus denote the probability of
read sampling fluctuation by psample (c̃u → c̃v | u, v, ct) where ct is the global coverage of the
class t = tu(= tv). Using this, we calculate the probability of the transition between haploid
intervals and that between diploid intervals, although we cannot use it for repeat intervals
because the copy numbers can be different in general between two repeat-mers.

3.4 Classification of the reliable intervals: Finding the backbone haplo-
and diplo-profiles

Given a set of reliable intervals, we classify each reliable interval into one of the states T . The
main purpose of this step is to detect the backbone haplo- and diplo-profiles using only the
corrected counts at the walls for the subsequent classification of the rest of the k-mers (see
Fig. 1c). Let Ii = [bi..ei] and Ti ∈ T denote the i-th interval and its assignment, respectively.
Here assigning a specific class to Ii, i.e. Ti = t′, means that all the k-mers in Ii are classified
as t′ in the original profile. The corrected k-mer counts at the two walls, bi and ei, of Ii are
ĉbi and ĉei , respectively.

First, suppose that every reliable interval is either a haplo-interval or a diplo-interval, i.e.
T = {H,D}. We assume that for an interval Ii we can estimate the local haploid-coverage
and diploid-coverage at ei given the assignment Ti, and let cov[i][s][t] be the estimated
coverage of class t (∈ {H,D}) at ei given Ti = s. We also assume that the transition from
Ti = s to Ti+1 = t is determined only by the count transition from cov[i][s][t] to ĉbi+1 , i.e.
count transition between walls in the sub-profile of class t. Then, (backtracking of) the
following dynamic programming using likelihoods of initial classes and transitions gives the
classifications of reliable intervals with the maximum likelihood:

dp[0][t] = Pr {I0 | T0 = t}
dp[i + 1][t] = max

s∈{H,D}
{dp[i][s] + Pr {Ii+1 | Ti = s, Ti+1 = t}}
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where

Pr {I0 | T0 = t} = Poisson
(
ĉb0

∣∣ ct
)

Pr {Ii+1 | Ti = s, Ti+1 = t} = psample (
cov[i][s][t]→ ĉbi+1

∣∣ ei, bi+1, ct
)

and ct is the global coverage of the class t. In practice, cov[i][s][t] is estimated as follows:
i) for t = s, then ĉei

is directly set to cov[i][s][t], and ii) for t ≠ s, it is estimated using a
linear interpolation using corrected wall counts of the haplo-intervals and diplo-intervals in
the best path up to Ii given Ti = s.

There actually can exist some repeat-intervals and a small number of error-intervals
that are not excluded as unreliable intervals, while the classification categories in the D.P.
above cannot be directly extended to T = {E, H, D, R} because the k-mer counts of different
error-intervals and repeat-intervals are generally independent of each other. We thus employ
heuristic likelihoods for those intervals as follows. While we cannot use psample for repeat-
intervals, we set the diploid coverage at Ii, cov[i][s][D], plus its 2σ (under the assumption of
Poisson distribution) as cov[i][s][R] and define the likelihood of Ti+1 = R given Ti = s as
follows:

Pr {Ii+1 | Ti = s, Ti+1 = R} =
{

1 if ĉbi+1 > cov[i][s][R]
Binomial

(
ĉbi+1

∣∣ cov[i][s][R], 1− ε̄
)

Otherwise

where ε̄ is the average sequencing error rate. For the probability of Ti+1 = E we reuse pE
Ii+1

that was already computed in Section 3.1.
The classification result can be different in the forward direction and backward direction

(where transition from bi+1 to ei is considered instead of transition from ei to bi+1 above)
because of the independency of E and R and the estimation of the local coverages. However,
we practically obtain accurate classifications by combining the classification result of the
pseudo-D.P. in the forward direction and that in the backward direction. Specifically, we
find the combined classifications with the maximum likelihood whose prefix is taken from
the backward result and suffix is from the forward result, because the coverage estimation
tends to become more accurate as the update of the D.P. proceeds.

3.5 Classification of the rest
We finally classify each of the remaining intervals while fixing the assignments of the reliable
intervals that are classified as haploid or diploid. Given a focal interval I = [b..e], let I−I

denote the intervals except I, and let T−I be the assignments of the intervals except TI ,
where assignments are initially given to only the reliable intervals. We assign to TI the class
that gives the maximum likelihood computed using the classification results of the other
intervals:

TI = arg max
t

Pr{I | TI = t, I−I , T−I}

For the case of I = E we reuse the error probability pE
I , and for the other classes we decompose

the probability above into the upstream transition p+
I (in the direction toward b) and the

downstream transition p−I (toward e), i.e. Pr {I | TI = t, I−I , T−I} = p+
I (t) · p−I (t). For both

p+
I and p−I , we consider only the count changes at walls just like the classification of the

reliable intervals. As possible events at walls, we consider both read sampling fluctuation
and errors in O for t ∈ {H,D} and only errors in O for t = R. The probability of transition
by read sampling fluctuation is calculated between I and the nearest interval J satisfying
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TI = TJ (∈ {H,D}) using psample. The probability by errors in O is computed using the
binomial distribution given an estimated coverage and sequencing error rate at a wall of I

just like the wall detection (for t ∈ {H,D}) and the reliable interval classification (for t = R).

3.6 Simulation and real datasets
We adopted two model organisms, fruit fly and human. For the main simulation experiment,
we downloaded the latest reference haploid genome sequence (GenBank accession numbers:
GCF_000001215.4 [9] for fruit fly and GCA_009914755.3 [21] for human) and a publicly
available real HiFi read dataset (BioProject accession numbers: PRJNA573706 for fruit fly
and PRJNA586863 [21] for human). For each species we simulated a ground-truth diploid
genome sequence from the reference haploid genome sequence using HIsim [20] and then
generated synthetic reads using two long-read simulators, Badread [35] and HIsim, both of
which build a sequencing error model from a given dataset using short (∼ 10bp) k-mers.

As a baseline of the k-mer classification compared to ClassPro, we performed a histogram-
based k-mer classification using GenomeScope with the –fitted_hist option [25], where
the global thresholds between the four classes (i.e. E,H,D,R) are determined by finding
change points of the class that gives the maximum probability according to the GenomeScope
inference. We used k = 40 unless the value of k is explicitly stated below.

The average overall accuracy of the classifications for a dataset is defined as the number
of k-mers with correct classifications divided by the total number of k-mers in the dataset
(while regarding multiple k-mers of the same string on different reads or different positions
as different k-mers), i.e. |{ αi | ti = τi }| / |{ αi | αi ∈ S, S ∈ R }|, and for each combination
of parameters we took a harmonic mean of five datasets with different random seeds. In
addition, to examine the detailed behavior of the two classification methods, we calculated
the average local accuracy of the classifications in each 2Kbp non-overlapping window in the
reads as well as the average overall accuracy.

Beyond confirming the expected average behavior, we also explored more practical and
realistic cases. First we prepared a 40× simulation dataset of the human major histocompat-
ibility complex (MHC) region by using a publicly available, high-quality diploid assembly of
the MHC region [5] as the ground-truth diploid genome and mixing 20× synthetic reads gen-
erated from each of the two MHC haplotypes using HIsim. In addition, we downloaded a real
55× HiFi dataset of a diploid human sample HG002/NA24385 (BioProject: PRJNA586863)
[37, 21] where an accurate, trio-based diploid assembly (GenBank: GCA_021950905.1 and
GCA_021951015.1) [11] is available and can be used as a surrogate of the ground-truth dip-
loid genome, although any missing sequences and false duplicated sequences in the assembly
affect the accuracy estimation and thus the “accuracy” should not be perfectly accurate.
To try to minimize the effect of the false positive/negative sequences on the accuracy, we
ignored a read from accuracy calculation if more than 20% of the k-mers in the read are
error-mers or more than 80% are repeat-mers.

4 Results

First we generated HiFi read datasets simulated from a synthetic diploid genome of fruit fly
with a small genome size of ∼ 160Mbp to deeply investigate ClassPro’s performance under
various values of sequencing coverage of the reads and heterozygosity of the genome. We
used 20×, 25×, 30×, 40×, and 50× as the diploid sequencing coverage, i.e. 2c. As for the
heterozygosity, we specified 0.05%, 0.1%, 0.3%, and 0.5% as the value of the -p option of
HIsim, which correspond to GenomeScope’s estimated heterozygosity of ∼ 0.11%, ∼ 0.22%, ∼
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0.66%, and ∼ 1.1%, respectively (Fig. S1). We simulated the HiFi reads using two long-read
simulators, Badread and HIsim. For each dataset we classified the k-mers in the reads using
ClassPro (CP) and GenomeScope (GS; histogram-based method). ClassPro is efficiently
parallelized since each read is handled independently, and for example, the degree of the
speed up was constantly about 6× when using 8 threads, regardless of the coverage (Fig.
S2). Assuming k is sufficiently small compared to the read length N and both |Ω| and |T |
(which are always 9 and 4, respectively) are constants, the classification algorithm itself also
runs fast in O(N), and thus it takes only ∼ 100 seconds wall time to classify a whole 40×
fruit fly dataset using 8 threads on an AMD Epyc 7702 CPU and SSD Lustre system, given
a precomputed k-mer count table.

The average overall accuracy of CP was superior than GS in every combination of
sequencing coverage and heterozygosity for both Badread datasets and HIsim datasets
(Fig. 3, Fig. S3). For example, given a heterozygosity of 0.66% that is close to the estimated
heterozygosity value of a real fruit fly dataset [22], in the Badread datasets the overall
accuracy of CP exceeds 99.9% (GS=95.1%) when the global coverage per haploid c is 15×
(which is typically called a 30× dataset) and does 99.99% (GS=96.8%) when c = 20× (i.e.
a 40× dataset) for normal reads. This indicates that with a typical sequencing coverage
ClassPro achieves almost perfect classifications in the most fundamental case where the
distinguishment between erroneous, haploid, and diploid k-mers is the only problem. The
identification of haploid/diploid k-mers is more difficult for repetitive reads than normal
reads without repetitive k-mers in general because the distribution of haploid/diploid k-mers
becomes sparse in repetitive regions and thus the number of k-mers that follow the coherence
principle decreases. Nevertheless, the overall accuracy of CP for all the reads including
repetitive reads (e.g. 99.7% when c = 20× in the fruit fly dataset above) is still higher than
that of GS for only normal reads in every parameter combination. When we calculate the
accuracy only with highly repetitive reads in each of which more than 80% of the k-mers are
repeat-mers, for example, in a dataset with c = 20× and 0.22% heterozygosity the accuracy
of CP is 98.1% (GS=96.1%), and the false-negative rate of error-mers in such reads is 0.3%
(GS=1.0%). This implies that another advantage of CP especially for highly repetitive
regions such as centromeres is that we can exclude more false error-mers, which should help
singly unique nucleotide k-mers (SUNKs)-based methods (e.g. [3]).

The advantage of CP over GS becomes greater as the heterozygosity gets higher, because
the overlap between the distribution of the haploid k-mers and that of the diploid k-mers in
the k-mer count histogram (i.e. HR|1 and HR|2 in Introduction) becomes larger in a dataset
with a higher genomic diversity. Fig. 3 clearly demonstrates that CP is more robust than
GS against haplotype divergence or genome mutation and captures those signals better. We
confirmed that CP is robust against the choice of the value of k compared to GS and that the
value of k can be either even or odd because we use canonical k-mers in the k-mer counting
(Fig. S4).

We further investigated the detailed behavior of the classification in each dataset by
calculating the local sequencing coverage and accuracy for every 2Kbp window of the reads in
the dataset (Fig. 4). In every parameter combination, the local accuracy of GS drops more
quickly than CP when the window coverage deviates from the “sweet spot” that depends
on the global coverage c. Thus, the local accuracy of GS classifications can be very low
compared to the average overall accuracy not only when the local coverage is considerably
lower than c but also when higher. In contrast, CP classifications are consistently better
and more robust against changes in coverage than GS especially when the local coverage is
higher than c. For example, the window accuracy of CP and GS for normal reads are 99.95%
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Figure 3 Average overall accuracy between ClassPro and GenomeScope across normal reads
without repetitive k-mers and across all reads in the fruit fly simulation datasets by Badread.
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and 25.14%, respectively, when the smaller average haploid coverage is 34× in a dataset
with 2c = 50× and ∼ 1.1% heterozygosity. For both CP and GS, the local accuracy with
a very small coverage such as 3× becomes worse as the heterozygosity increases because a
higher heterozygosity makes the read profile more like a mosaic of haploid k-mers and diploid
k-mers and thus requires a more sensitive discrimination between them, which is challenging
given 3× per haplotype. The average local accuracy for all reads has the same tendency as
normal reads, although there are some fluctuation due to repetitiveness (Fig. S5).

We also evaluated the performance of CP using both simulated and real human HiFi
read datasets. We first confirmed that it works with human simulation datasets as well
using various sequencing coverages given a typical heterozygosity of ∼ 0.2% (Fig. S6). The
accuracy was largely the same as that of the fruit fly dataset with the same heterozygosity:
e.g. 99.9% by CP and 97.0% by GS for normal reads in 30× datasets. We then inspected
a particular genomic region of interest to researchers. The human MHC region is a highly
divergent and repetitive region and thus known to be difficult to accurately assemble [5]. With
a simulated 40× dataset generated from a pair of real MHC haplotypes, we confirmed that
CP performs well in a difficult-to-assemble region with an accuracy of 99.43% (GS=97.51%).
Lastly we applied CP to a real 55× diploid human HiFi dataset while using a high-quality
diploid assembly of the same sample as a substitute of the ground-truth genome, and the
accuracy of CP was estimated as 99.09% (GS=97.56%). Note carefully that a small amount
of remaining missing sequences and false duplicated sequences in the assembly would affect
and slightly lower the accuracy estimation.

Note that CP can output different classification results for the same k-mer because it
classifies each read independently, while the histogram-based approaches such as GS always
classifies the same k-mer into the same class. Nevertheless, by virtue of the high accuracy of
CP, the overall consistency of the CP classifications was, for example, over 99.9% in a 40×
fruit fly dataset, implying that almost all of the k-mers are consistently classified and the
classification results can be used as they are in most applications.

5 Discussion

We developed a novel approach to the k-mer classification problem using k-mer count
read profiles, and confirmed that its software implementation, ClassPro, outperforms the
conventional, most widely used method based on the k-mer count histogram in every
combination of realistic parameter values of sequencing coverage and heterozygosity for two
model organisms. The k-mer classification is a fundamental task and used in many sequence
analysis programs including error correction, sequence alignment, and genome assembly, and
thus the more accurate and robust k-mer classifications by ClassPro promise to help any of
such applications boost their performance and accuracy.

The read profiles for ClassPro can be computed by the FastK k-mer counter. It uniquely
and very efficiently delivers read profiles as a direct output, whereas with other k-mer counters
one is forced to build each profile via a sequence of (relatively more expensive) k-mer table
look ups. ClassPro outputs a FastQ-like file of the reads where the QV sequence for each read
is replaced with a sequence over the alphabet {E,H,D,R} corresponding to the classification
result of the k-mer at each position.

As a demonstration of the power of the improved k-mer classifications by ClassPro, our
next target is to incorporate the k-mer classifications into sequence alignment and genome
assembly. In the de Bruijn graph approach of genome assembly, ClassPro should offer a better
elimination of error-mers for a higher space efficiency and also a more informative guide
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for a graph touring. On the other hand, the string graph approach requires the sequence
alignments between reads, and the seed selection step is necessary for practical sequence
alignment methods. We are currently working on a better seed selection method using
the k-mer classification result. Besides that, a more accurate detection and removal of the
erroneous k-mers alone would be helpful for trio binning and so on.

Our approach utilizes the positional dependencies between the k-mers. However, it
performs the k-mer classification for each read independently. Therefore, it would be natural
to think of employing a more complicated data structure capable of handling the k-mer
counts of all reads along with their positions simultaneously. The positional de Bruijn graph
[28, 31] is apparently the most plausible one of such a representation, although the practical
algorithm including the cycle handling due to repeats is not trivial.

The current implementation of ClassPro assumes as input only HiFi reads with an average
error rate of ∼ 0.1% (QV30). One direction for future research is to make the method more
robust against noisy reads such as Oxford Nanopore reads. Given a sequencing error rate
of ε%, at most εK% bases are expected to be error-mers in each read profile. Therefore,
even using the recent Q20+ chemistry with a mean alignment accuracy of QV20 (i.e. 1%
error), at most 1%× 40 = 40% of the k-mers can be error-mers for a typical Nanopore read
given k = 40, making a read profile look very erroneous compared to HiFi (0.1%× 40 = 4%
error-mers). Moreover, the fluctuation of the haploid and diploid counts by errors in other
reads increases as well, i.e. the coherence principle is weakened, making the classification
more difficult.

Another possible research target is a utilization of a (not exact but) approximate k-mer
counting method for generation and classification of read profiles. Although FastK and
ClassPro currently handle only the exact k-mer counting, the whole computation process
could be even faster if they can be replaced with an approximate k-mer counting system.
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Figure S1 Relationship between HIsim’s heterozygosity parameter (-pX,X is specified for a
value of the x-axis) and the heterozygosity estimated by GenomeScope from the generated fruit fly
simulation dataset with 50× coverage.
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Figure S2 Average computation time of ClassPro for the fruit fly simulation datasets using 8
threads (-T8 option). Both CPU time (which is the sum of user CPU time and system CPU time) and
wall clock time scale linearly with respect to the coverage of the dataset, i.e. the number of k-mers
in the dataset, with a consistent speed up of about 6× in wall clock time by the parallelization.
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Figure S3 Average overall accuracy between ClassPro and GenomeScope across normal reads
without repetitive k-mers and across all reads in the fruit fly simulation datasets by HIsim.
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Figure S4 Average overall accuracy with various values of k (=20,30,39,40,41,50,60).
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Figure S5 Relationship between local coverage and average accuracy at the resolution of 2Kbp
windows across all reads in the fruit fly simulation datasets by Badread.
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Figure S6 Average overall accuracy between ClassPro and GenomeScope across normal reads
without repetitive k-mers and across all reads in the human simulation datasets generated by HIsim
using a typical heterozygosity of ∼ 0.2%.
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