
Efficient Reconciliation of Genomic Datasets of
High Similarity
Yoshihiro Shibuya !

LIGM, Université Gustave Eiffel, Marne-la-Vallée, France

Djamal Belazzougui !

CAPA, DTISI, Centre de Recherche sur l’Information Scientifique et Technique, Algiers, Algeria

Gregory Kucherov ! Ï

LIGM, CNRS, Université Gustave Eiffel, Marne-la-Vallée, France

Abstract
We apply Invertible Bloom Lookup Tables (IBLTs) to the comparison of k-mer sets originated from
large DNA sequence datasets. We show that for similar datasets, IBLTs provide a more space-efficient
and, at the same time, more accurate method for estimating Jaccard similarity of underlying k-mer
sets, compared to MinHash which is a go-to sketching technique for efficient pairwise similarity
estimation. This is achieved by combining IBLTs with k-mer sampling based on syncmers, which
constitute a context-independent alternative to minimizers and provide an unbiased estimator of
Jaccard similarity. A key property of our method is that involved data structures require space
proportional to the difference of k-mer sets and are independent of the size of sets themselves. As
another application, we show how our ideas can be applied in order to efficiently compute (an
approximation of) k-mers that differ between two datasets, still using space only proportional to their
number. We experimentally illustrate our results on both simulated and real data (SARS-CoV-2
and Streptococcus Pneumoniae genomes).
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1 Introduction

Alignment-free methods became a prevalent paradigm in computational analysis of modern
genomic datasets. However, despite being faster than their alignment-based counterparts,
algorithms based on k-mer sets are starting to struggle when applied to the large datasets
produced nowadays [20, 13, 16]. To deal with this issue, a considerable effort has been put to
developing optimized data structures, with succinct solutions [25, 23, 16] and approximate
membership data structures [29, 13, 2, 14, 3] being two examples.

In recent years, sketching techniques have been gaining increasing attention thanks to their
capacity of drastically decreasing space usage. MinHash is probably the most well-known
representative of this family of algorithms. Application of MinHash to comparison of DNA
sequence datasets was pioneered in Mash software [24] and subsequently used in several
other tools. With this approach, input datasets are transformed into smaller “sketches” on
which subsequent comparisons are performed. In short, sequences are first fragmented into
their constituent k-mers which are then hashed, with each sketch storing only s minimum
values, with s defined by the user. The fraction of shared hashes between two sketches is an
unbiased estimator of the Jaccard similarity index [4]. A MinHash sketch can thus be viewed
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as a sample of the set of k-mers of the sequence it represents. Given that s is much smaller
than the genome length, working with the sampled hashes leads to fast pairwise comparisons
using small memory. However, when two sequences are close and share most of their k-mers,
MinHash sketches of small size are not able to reliably estimate their degree of similarity
since differences are likely to be missed during sampling.

In this work, we propose an alternative approach to evaluate the difference in k-mer
composition of two related datasets. Our method relies on Invertible Bloom Lookup Table
(IBLT) data structure [12, 10] which is an extension of Bloom filters, supporting deletions
of items and, most importantly, enumeration (with high probability) of stored items. One
of the applications of IBLT is reconciliation of two sets of items: in a scenario considered
in [12], a set A is stored in an IBLT which is then transmitted to the holder of another set B.
By screening B against the IBLT of A it is possible to recover the items A \ B and B \ A,
with high probability. This is done through the so-called peeling procedure [7].

In this paper we make one step further: inspired by ideas of [26], we recover both A \ B

and B \ A from IBLTs of A and B, rather than from an IBLT of one of them and the whole
other set. Furthermore, a crucial property is that the size of these IBLTs is bounded in
terms of the symmetric difference size (A \ B) ∪ (B \ A) rather than the size of the original
sets. This provides a key to the efficiency of our solution when input sets are similar: even
if input sets are very big, their difference can be recovered using a data structure (sketch)
whose size is proportional to the size of the difference of those sets rather than of the sets
themselves. Estimating the symmetric difference allows us to estimate the Jaccard similarity,
using information about the sizes of input sets. Thus, whereas close datasets require larger
MinHash sketches to be properly compared, our method, on the contrary, requires smaller
memory.

Another ingredient of our solution is k-mer sampling. Intuitively, since two adjacent k-
mers share k−1 bases, the information stored in the set of all k-mers appears highly redundant.
One popular method of sampling k-mers from genomic sequences is based on minimizers [28].
Under this technique, consecutive sampled k-mers are within a bounded distance from each
other and therefore no large portion of the sequence can remain unsampled. Another favorable
property is that similar regions are likely to yield similar samples of minimizers. However, it
has recently been shown that estimating Jaccard similarity based on minimizer sampling
leads to a bias [1]. Here we propose to replace minimizers by syncmers [8]. Syncmers provide
another way of k-mer sampling which has certain advantages over minimizers. As opposed
to minimizers, syncmers are not context-dependent: for a k-mer to be a syncmer depends
on the k-mer alone regardless the context where it occurs, and, under standard randomness
assumptions on involved hash functions, all k-mers have equal chance to be a syncmer. As a
consequence, syncmer sampling leads to an unbiased estimate of Jaccard similarity, as the
fraction of syncmers among shared k-mers (intersection) is expected to be the same as that
among all k-mers (union). We experimentally validate that this is indeed the case.

By combining syncmer sampling with IBLTs, we obtain a space-efficient method for
accurately estimating Jaccard similarity for similar datasets. For datasets of high similarity,
the proposed method is superior to the popular MinHash algorithm [24], both in terms of
memory and precision. We also propose an application of this technique to retrieve k-mers
that differ between two given datasets. Our method computes a superset of those k-mers with
a limited number of spurious k-mers. In particular, under the assumption that each k-mer
occurs once, our method computes the exact set differences between involved k-mer sets. We
validate our algorithms on both simulated data and on real datasets made of SARS-CoV-2
and Straphilococcus Pneumoniae genomes.
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2 Technical preliminaries

We consider DNA alphabet Σ = {A, C, G, T} even though our algorithms can be easily
generalized. Given a string S ∈ Σ∗, we use the notation S[i, k] to indicate the substring of
length k starting at position i called a k-mer. The k-mer set KS of S is the set of k-mers
S[i, k] for i ∈ [0, |S| − k + 1].

2.1 Minimizers
Independently introduced in [28] and [30], minimizers are defined by a triplet of parameters
(k, w, h), where k is the k-mer length, w a window size, and h a function defining an order on
k-mers. h is usually chosen to be an appropriately defined hash function, the lexicographical
order is rarely used in practice due to its poor statistical properties.

Each window S[i, w + k − 1] defines a minimizer which is the minimal k-mer among w

k-mers occurring in S[i, w + k − 1] w.r.t. the order given by h. Two neighboring minimizers
are thus separated by at most w positions making it impossible to have large stretches of the
original sequence not covered by any minimizers.

Since two neighboring windows at positions i and i + 1 are likely to share their minimizer,
minimizers provide a way to sample k-mers from a sequence with bounded distance between
consecutive sampled k-mers. An advantage of this sampling strategy is that similar sequences
will likely have similar lists of minimizers, which makes it useful for mapping algorithms
[19, 15]. Under reasonable assumptions, the density of minimizers, i.e. fraction of sampled
k-mers, is 2

w+1 [28, 8]. If minimizer positions in the original sequence are not important,
they can be discarded and the resulting k-mer multiset can be reduced to a simple k-mer set.

2.2 Syncmers
Minimizers are susceptible to mutations of any base of their window [8]. That is, a k-mer
may cease to be a minimizer if a modified base occurs not only inside this k-mer, but also
in its close neighborhood. Sampling with a higher density alleviates this problem but it
reduces the advantages of the methods because more minimizers are selected. Methods to
generate minimizer indices with the best possible density exist [6, 9] but they are usually
offline algorithms, limiting their potential applications outside alignment.

Syncmers are a family of alternative methods to minimizers that does not suffer from this
issue [8]. Similarly to minimizers, syncmers are defined using a triplet of parameters (k, z, h)
where z < k is used to decompose each k-mer into its constituent z-mers and h defines an
order over them. A k-mer q is a syncmer (called closed syncmers in [8]) iff its minimal z-mer
occurs as a prefix (position i = 0) or as a suffix (position i = k − z + 1) of q. Thus, a syncmer
is defined by its sequence alone, regardless the context in which it occurs. For this reason,
syncmer sampling has been shown to be more resistant to mutations and then to improve
the sensitivity of alignment algorithms [8].

Similar to minimizers, consecutive syncmers occur at a bounded distance. More precisely,
consecutive syncmers must overlap by at least z characters and therefore “pave” the sequence
without gaps. The fraction of syncmers among all k-mers is estimated to be 2

k−z+1 [8].

2.3 Invertible Bloom Lookup Tables
Invertible Bloom Lookup Tables (IBLT) [10, 12] are a generalization of Bloom filters for
storing a set of elements (keys), drawn from a large universe, possibly associated with
attribute values. In contrast to Bloom filters, in addition to insertions, IBLTs also support
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deletion of keys as well as listing. The latter operation succeeds with high probability (w.h.p.)
depending on the number of stored keys relative to the size of the data structure. An
important property is that this probability depends only on the number of keys stored at the
moment of listing, and not across the entire lifespan of the data structure. Thus, at a given
time, an IBLT can store a number of keys greatly exceeding the threshold for which it was
built, returning to be fully functional whenever a sufficient number of deletions has taken
place. Note also that IBLTs, in their basic version, don’t support multiple insertions of the
same key.

An IBLT is an array T of m buckets together with r hash functions h1, . . . , hr mapping
a key universe U (in our case, k-mers or strings) to [0..m − 1] and an additional global hash
function he on U . Each bucket T [i], i ∈ [0..m − 1], contains three fields: a counter T [i].C,
a key field T [i].P and a hash field T [i].H, where C counts the number of keys hashed to
bucket i, P stores the XOR-sum of the keys (in binary representation) hashed to bucket i,
and H contains the XOR-sum of hashes produced by he on keys.

Adding a key p to the IBLT is done as follows. For each j ∈ {1, . . . , r}, we perform
T [hj(p)].C = T [hj(p)].C + 1, T [hj(p)].P = T [hj(p)].P ⊕ p, and T [hj(p)].H = T [hj(p)].H ⊕
he(p), where ⊕ stands for XOR. Given that XOR is the inverse operation of itself, deletion
of p is done similarly except that T [hj(p)].C = T [hj(p)].C − 1.

Listing the keys held in an IBLT is done through the process of peeling working recursively
as follows. If for some i we have T [i].C = 1, payload field T [i].P is supposed to contain
a single key p. Field H is not strictly necessary, it acts as a “checksum” to verify that p

is indeed a valid key by checking if he(T [hj(p)].P ) = T [hj(p)].H. This check is used to
avoid the case when T [i].C = 1 whereas T [i].P is not a valid key, which can result from
extraneous deletions of keys not present in the data structure. In Section 3.2 we will elaborate
on the role of this field in our framework. If the check holds, key p can be reported and
deleted (peeled) from the IBLT. Updating hash sums and counters is done in a similar way:
T [hj(p)].H = T [hj(p)].H ⊕ he(p) and T [hj(p)].C = T [hj(p)].C − 1. The procedure continues
until all counters T [i].C are equal to zero.

At each moment, an IBLT is associated to a r-hypergraph where nodes are buckets and
edges correspond to stored keys with each edge including the buckets a key is hashed to.
Listing the keys contained in an IBLT then relies on the peelability property of random
hypergraphs [7, 22]. Assume our hash functions are fully random. Then it is known that for
r ≥ 3, a random r-hypergraph with m nodes and n edges is peelable w.h.p. iff m ≥ crn where
cr is a constant peelability threshold. The first values of cr are c3 ≈ 1.222, c4 ≈ 1.295, c5 ≈
1.425, · · · [12]. Thus, allocating

m = n(cr + ε), (1)

buckets, for ε > 0, for storing n keys guarantees successful peeling with high probability.

2.4 MinHash sketching

MinHash sketching was introduced in [4] as a method to estimate Jaccard similarity between
two sets, applied to document comparison. In bioinformatics, MinHash was first applied in
Mash software [24] and then successfully used in a number of other tools. Assume we are
given a universe U and an order on U defined via a hash function h. For a set A ⊂ U , the
bottom-s MinHash sketch of A, denoted S(A), is the set of s minimal elements of A (or their
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hashes), where s is a user-defined parameter. The Jaccard similarity index between two sets
A and B, J(A, B) = |A ∩ B|/|A ∪ B|, can then be estimated from the sketches of A and B,
namely

|S(A ∩ B) ∩ S(A) ∩ S(B)|/|S(A ∪ B)| (2)

is an unbiased estimator of J(A, B).
The Jaccard similarity between the k-mer sets of two dataset constitutes a biologically

relevant measure of their similarity. In particular, if involved datasets are genomic sequences,
this measure allows one to estimate the mutation rate between the sequences [11, 24].

3 Methods

3.1 Set reconciliation from two IBLTs
Invertible Bloom Lookup Tables can be used to achieve set reconciliation between two sets
A and B, that is to recover sets A \ B and B \ A. Under a scenario described in [12], the
holder of A stores it in an IBLT TA which is then transmitted to the holder of B. Elements
of B are then deleted from TA. In the resulting IBLT, P -fields with TA[i].C = 1 correspond
to elements of A \ B and those with TA[i].C = −1 to B \ A. The peeling process is applied
to either of such fields. Whenever TA[i].C = 1, we delete p = TA[i].P from TA on condition
that he(p) = TA[i].H. Similarly, whenever TA[i].C = −1, we add (XOR) p = TA[i].P to TA

on condition that he(p) = TA[i].H . The process lists all elements of both A \ B and B \ A

w.h.p.
Inspired by work [26], we modify the above scheme in order to recover the symmetric

difference between A and B from their respective IBLTs TA and TB, rather than from the
IBLT of one set and the whole other set. To do this, we define TA and TB to be of the same size
and to use the same hash functions. We then compute the difference of TA and TB , denoted
TA−B and defined through TA−B[i].C = TA[i].C − TB[i].C, TA−B[i].P = TA[i].P ⊕ TB[i].P ,
and TA−B [i].H = TA[i].H ⊕ TB [i].H. Information about elements of A ∩ B is “cancelled out”
in TA−B , that is, TA−B holds elements of (A \ B) ∪ (B \ A). Peeling then proceeds as usual,
listing both A \ B and B \ A with the distinction made possible by looking at the sign of C.

A remarkable property of this scheme is that it allows one to recover set differences using
a space proportional to the size of those differences regardless the size of the involved sets.
Indeed, for the peeling process to succeed w.h.p., it is sufficient that the size of TA−B be O(n)
where n = |(A \ B) ∪ (B \ A)| (see (1)). This is particularly suitable for the bioinformatics
framework where we are often dealing with highly similar datasets, such as genomes of
different individuals or closely related species.

3.2 Making buckets lighter
In the above scheme of IBLT difference, the H field becomes important as the case
TA−B[i].C = 1 (or TA−B[i].C = −1) can occur due to a spurious “cancelling out” of
distinct keys. However, to save space, we propose to get rid of the H field and replace the
“checksum” verification by another test: if TA−B [i].C = 1 (resp. TA−B [i].C = −1), we check
whether p = TA−B[i].P is a valid key by checking if hj(p) = i for one of j ∈ [1..r]. This
allows us to save space at the price of additional verification time. This technique works
particularly well for large IBLTs but it becomes less effective for small ones, as the “false
positive” probability is proportional to the size of the table.

WABI 2022
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3.3 Combining sampling and IBLTs for Jaccard similarity estimation
We now turn to our main goal: estimating Jaccard similarity of two k-mer sets using IBLTs.
The common approach uses MinHash sketching as described in [24] (see Section 2.4). However,
MinHash requires larger sketches to measure similarity of close datasets. One possible idea
could be to store MinHash sketches in IBLTs in hope to use them for estimating Jaccard
similarity through the IBLT-difference scheme from the previous section. This, however, runs
into an obstacle due to the fact that applying (2) requires knowledge of k-mers belonging to
the sketch intersection, and not only to sketch differences.

Rather than working with the entire sets of k-mers, we resort to sampling. It is known
that sampling minimizers incurs a bias in estimating Jaccard similarity [1]. Instead, we
propose to use syncmers, which don’t suffer from being context-dependent thus resulting in
an unbiased estimator of Jaccard similarity.

To justify the use of syncmers, we test a standard hash-based sampling, also providing an
unbiased estimate of Jaccard similarity as well. To sample with a given sampling rate 1/ν,
hash-based sampling uses a random hash function h : Σk → [0..ν − 1] with good statistical
properties, and samples a k-mer q iff h(q) = 0.

Our approach consists in storing sampled k-mers in IBLTs and apply the IBLT-difference
technique to recover set differences. Then, Jaccard similarity is estimated by

J(A, B) = |A| − |A \ B|
|A| + |B \ A|

= |B| − |B \ A|
|B| + |A \ B|

. (3)

Note that cardinalities |A| and |B| can be easily retrieved from respective IBLTs TA and TB

by summing all counter values and dividing by r.

3.4 IBLT dimensioning with syncmers
Dimensioning an IBLT holding syncmers requires estimating the expected number of dif-
ferences in the set difference of involved k-mer sets. Assuming that input datasets are
close genomic sequences of size L related by a mutation rate bounded by pm and that k is
sufficiently large so that k-mer occurrences are unique, we can estimate the set difference.
Each mutation results in 2k k-mers in the set difference (k k-mers on each side), and therefore
the size of set difference is estimated to be 2kpmL. Taking into account density 2

k−z+1 of
syncmers (Section 2.2), we obtain the estimation

n = 4kLpm

k − z + 1 . (4)

3.5 Approximating k-mer set differences
The method of Section 3.3 allows estimating Jaccard similarity on k-mers by Jaccard similarity
on syncmers. Here we describe how we can extend these ideas in order to recover all k-mers
from K(S1) \ K(S2) and K(S2) \ K(S1), where S1, S2 are input datasets and K(S) denotes
the set of k-mers of a dataset S.

Note first that a straightforward way of doing this, through IBLTs of K(S1) and K(S2),
requires a considerable space because a single mutation generates a difference of k k-mers.
Using syncmers, we can “pack” k-mers into longer strings, compute the differences and then
recover k-mers from them. The set of recovered k-mers, however, will be a superset of exact
differences.
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To achieve this, instead of storing syncmers, we store in IBLTs extended syncmers of
length 2k − z. Extended syncmers are obtained by extending each syncmer to the right by
k − z bases. Since successive syncmers overlap by at least z bases, this ensures that each
k-mer belongs to at least one extended syncmer.

By applying the IBLT-difference technique (Section 3.3), we obtain the extended syncmers
that differ between the two datasets, from which we extract k-mers and discard those shared
between the two obtained sets. It may still happen that the sets we obtain are supersets
of exact differences, due to the fact that an extended syncmer can contain a k-mer which
belongs to another extended syncmer common to both datasets. However, we state that
for a sufficiently large k, the fraction of common k-mers in those sets will be small enough,
which we illustrate experimentally in Section 4.5. In the extreme case where each k-mer
occurs once, our method computes exact k-mer set differences.

4 Results

To validate our ideas, we performed experiments on simulated sequences as well as on two
real-life datasets:

covid: subsample of 50 SARS-CoV-2 genomes1. Sequence names are provided in Table 2.
spneu: subsample of 28 Streptococcus Pneumoniae genomes from [5] whose names are
reported in Table 3. The subsample has been chosen to contain very close strains, with
pairwise mutation rates between them not exceeding 0.0005.

4.1 Comparison of different sampling approaches

Random sampling, minimizers and syncmers have been compared by computing Jaccard
similarities between pairs of synthetic sequences. Each pair is constructed by first generating a
uniform random sequence of length L and then mutating it through independent substitutions.
Points in Figure 1a are averages over T = 500 independent trials. For fairness of comparison,
parameters for uniform sampling, minimizers and syncmers have been chosen to guarantee
the same sampling rate 1/ν. We know that cs ≈ 2/(k − z + 1), cm ≈ 2/(w + 1) and cns ≈ 1/ν

are the densities of syncmers, minimizers and random sampling, respectively. Thus, given
parameters k and z, setting the minimizer window length as w = k − z and choosing a
sampling rate 1/ν = cs ensures about the same number of sampled k-mers for all algorithms.
As Figure 1a shows, syncmers do not have the previously reported biased behaviour of
minimizers [1], but they seem to be comparable to random sampling. However, as shown in
Figure 1b, random sampling is subject to larger errors than syncmers, due to less uniform
distribution along the sequence. For these reasons, we choose syncmer sampling as the mean
to reduce IBLT memory in Section 4.3.

4.2 Space performance of IBLTs

In order to demonstrate the space efficiency of IBLTs in our framework, we compare them
against a solution based on KMC k-mer counting software [17]. KMC provides an efficient
way for storing, manipulating and querying sets of k-mers. Unlike other counting tools
(Jellyfish [21] or DSK [27]), KMC allows easy sorting of its output which leads to an efficient
way to compute Jaccard similarity.

1 https://www.ncbi.nlm.nih.gov/datasets/coronavirus/genomes/
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Figure 1 Comparison between random sampling, minimizers and syncmers.
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1000 10000 100000 1000000 10000000
L

0.000

0.005

0.010

0.015

0.020

di
sk

 sp
ac

e 
(G

B)

method
IBLT
kmc

(b) pm = 0.01.

Figure 2 Space taken by IBLTs depends on the similarity between stored sets. For very similar
sequences (mutation rate pm = 0.001, Figure 2a), IBLTs are more space-efficient than KMC. Their
advantage appears reduced for increased pm and large sequences (Figure 2b).

We compared memory taken by IBLTs vs. KMC databases for storing syncmers issued
from two similar sequences. For this, we applied the same procedure as in Section 4.1:
mutating a random sequence of length L with mutation probability pm. Sampled syncmers
from both sequences are stored respectively in IBLTs and KMC databases. Figure 2 reports
average space taken by the two data structures. Each bar is the average over T = 100 trials,
except for case L = 10M for which T = 10. IBLTs were dimensioned (see (1)) to guarantee
peelability of all T sketches with high probability.
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Figure 2a clearly demonstrates the advantage of IBLTs when the mutation rate is small.
For larger pm and long sequences, the number of differences reach a point where exact data
structures become preferable, as illustrated by Figure 2b for pm = 0.01 and sequences of
length 10M.

In our experiments, subtracting one IBLTs from another is dominated by the time taken
to load/save the sketches, and not by performing the actual difference. Even in more complex
scenarios, subtraction remains a very simple operation that can be performed by accessing
one bucket at a time in any given order. On the other hand, the amount of time required by
listing the content of an IBLT varies greatly and depends on the set of items stored in it.

4.3 Accuracy of Jaccard similarity estimation from IBLTs of syncmers
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Figure 3 Comparison between IBLTs and MinHash for computing pairwise Jaccard on the covid
dataset. The x-axis reports the amount of space allocated for each sketch while the y-axis reports
the average absolute error. k = 15 and z = 4 in all tests. Sketch size for MinHash and table size for
IBLTs are chosen to fit the allocated memory.

Figures 3 and 4 report comparisons of both IBLTs and MinHash sketches on covid
and spneu datasets respectively. Both plots show the average absolute error of Jaccard
estimate computed over all pairs of sequences of the respective dataset. Exact Jaccard
similarities computed over the full k-mer sets are used as ground truth. MinHash sketches
(line MinHash in the plots) were implemented using Mash [24]. All sketch sizes (in bytes)
are fixed beforehand with both MinHash sketches and IBLTs dimensioned accordingly in
order to fit the allocated memory. The number of bits allocated for payload field P in our
IBLT implementation is set to be the minimum multiple of 8 larger than or equal to 2k. As
Mash [24] uses 32- or 64-bit hashes, we used k = 15 in our experiments in order to force
both methods to use 32-bit representations.
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Figure 4 Comparison between IBLTs and MinHash for computing pairwise Jaccard on the spneu
dataset with the same setting as Figure 3.

In all experiments, IBLTs storing syncmers (line syncmers + IBLT) showed the best
precision. For covid genomes (Figure 3), full MinHash sketches become competitive for larger
sketch sizes. Unlike MinHash, the average error of IBLTs remains constant across all reported
cases because over-dimensioning only increases the probability of successful listing. For the
spneu dataset (Figure 4), MinHash errors are about twice those of IBLTs across all allocated
sketch sizes confirming that IBLTs are more memory-efficient. The general conclusion is that
if sequences to be compared are highly similar, IBLTs storing syncmers are more efficient
than MinHash sketches, with the latter being better suited to quickly provide an overview
over more diverging datasets.

4.4 Sampling syncmers for further space reductions
Since syncmer sampling rate ( 2

k−z+1 ) cannot be made arbitrarily small for a given k, we
also tested the effect of additional downstream sampling of syncmers, before inserting them
into IBLTs. To this end, Figure 5 reports a comparison of syncmers sampled with different
sampling rates 1/ν. We observe that downstream sampling of syncmers comes at the cost of
decreased precision for both datasets (Figure 5a and 5b), but it might be useful to further
reduce space.

4.5 Experiments on approximating k-mer set differences
We tested the method from Section 3.5 of approximating k-mer set differences on both the
covid dataset and on two random datasets. Each random dataset contains 50 sequences of
length 30000 obtained by first generating a uniform random sequence which is then mutated
49 times using a mutation probability pm.
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(a) covid dataset.
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(b) spneu dataset.

Figure 5 Effect of sampling syncmers before IBLT insertion on the average absolute error. 1/ν

is the compression rate used for sampling syncmer sets before IBLT insertion. ν = 1 means no
sampling (full syncmer sets).

Recall that the method of Section 3.5 allows one to compute a superset of the symmetric
difference (K(S1) \ K(S2)) ∪ (K(S2) \ K(S1)) of sets of k-mers occurring in datasets S1 and
S2. Here we measure the precision of this method, that is the number of spurious k-mers
found by the algorithm. Those are k-mers actually belonging to K(S1) ∩ K(S2) but output
by the algorithm as if they belong to (K(S1) \ K(S2)) ∪ (K(S2) \ K(S1)).

Table 1 summarizes the experiments. Columns “diff” and “err” show the average/max-
imum cardinality of the true set difference and spurious k-mers, respectively, over all pairs
of sequences. In the case of random datasets, sequences were generated with mutation
probabilities pm = 0.01 and pm = 0.001.

Table 1 True size of symmetric difference of k-mer sets and its overestimate. For each experiment,
“diff” is the average/maximum size of the true symmetric difference, and “err” is the average/maximum
number of spurious k-mers reported as being in the symmetric difference. pm is the mutation
probability used to generate sequences from a random one.

covid random
pm = 0.001 pm = 0.01

diff err diff err diff err
average 325.29 11.03 1708.78 60.03 15342.81 357.57
max 661 31 2396 110 17047 486

We observe that the number of spurious k-mers remains small, on average within about
3% of the true set difference size.

5 Conclusions

To the best of our knowledge, our work is the first to apply Invertible Bloom Lookup Tables
to k-mer processing for alignment-free comparison of DNA sequence datasets. We showed
that whenever involved datasets are similar enough and their similarity can be bounded a
priori, IBLTs lead to a more space-efficient and, at the same time, more accurate method
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for estimating Jaccard similarity of underlying k-mer sets. This is achieved by combining
IBLTs with k-mer sampling via syncmers. As opposed to minimizers, syncmers provide
an unbiased estimator of Jaccard index, which was confirmed in our experiments. At the
same time, syncmer sampling is shown to lead to a more concentrated estimator than the
straightforward hash-based sampling. Thus, IBLTs combined with syncmers constitute a
powerful alternative to MinHashing for estimating Jaccard similarity for similar datasets.
Note that in the context of viral/bacterial pan-genomics, dealing with similar datasets is a
predominant situation in bioinformatics. In particular, the number of closely related bacterial
and viral strains is rapidly growing.

As another application of IBLTs, we are able to approximately compute differences of
underlying k-mer sets in small space. This opens new prospects as k-mers proper to a
dataset can be used to infer information about genetic variation, specific mutation, etc.
Note that MinHash is designed to only estimate similarity and is not capable of providing
information about actual differences. We also believe that by using additional space-efficient
data structures this method can be extended to compute exact set differences on more
complex datasets and we plan to explore this in our future work.

Our ideas may have further useful applications, for example to reconciliation of datasets
located on remote computers, in which case IBLTs could avoid transmitting entire datasets
(similar to a scenario described in [12]). Another example is a selection of sufficiently diverse
datasets avoiding redundancy, as e.g. [18]. Note finally that IBLTs may also act as filters
for filtering out dissimilar datasets: in this case, non-peelability of the difference IBLT is an
indicator of dissimilarity.
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A Appendix
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MW820211.1 MW850083.1 MW863243.1 MW868532.1
MW868533.1 MW871079.1

Table 3 Names of S.Pneumoniae genomes used for Figure 4.
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