Pangenomic Genotyping with the Marker Array

Taher Mun 24
Johns Hopkins University, Baltimore MD, USA
Illumina, San Diego, USA

Naga Sai Kavya Vaddadi &
Johns Hopkins University, Baltimore MD, USA

Ben Langmead! =4
Johns Hopkins University, USA

—— Abstract

We present a new method and software tool called rowbowt that applies a pangenome index to the
problem of inferring genotypes from short-read sequencing data. The method uses a novel indexing
structure called the marker array. Using the marker array, we can genotype variants with respect
from large panels like the 1000 Genomes Project while avoiding the reference bias that results when
aligning to a single linear reference. rowbowt can infer accurate genotypes in less time and memory
compared to existing graph-based methods.

2012 ACM Subject Classification Applied computing — Computational genomics
Keywords and phrases Sequence alignment indexing genotyping
Digital Object Identifier 10.4230/LIPIcs.WABI.2022.19

Supplementary Material Open source software tool rowbowt available at:
Software (Source Code): https://github.com/alshai/rowbowt
archived at swh:1:dir:b9c7b9590a6fela7faal05d263bad240f5acd683

Funding Taher Mun: ROIHG011392 and R35GM139602 to BL. Also, NSF-135491
Naga Sai Kavya Vaddadi: ROIHG011392 and R35GM 139602 to BL
Ben Langmead: RO1IHG011392 and R35GM139602 to BL. Also, NSF-135491

Acknowledgements We thank Massimiliano Rossi and Travis Gagie for many helpful discussions.
We thank Margaret Gagie for her careful editing. Part of this research project was conducted using
computational resources at the Maryland Advanced Research Computing Center (MARCC).

1 Introduction

Given DNA sequencing reads from a donor individual, genotyping is the task of determining
which alleles the individual has at polymorphic sites. Genotyping from sequencing data,
sometimes using low-coverage sequencing data together with genotype imputation, is a
common task in human genetics [10] and agriculture [18]. In contrast to variant calling,
genotyping is performed with respect to a catalog of known polymorphic sites. For instance,
genotyping of a human can be performed with respect to the 1000 Genomes Project call set,
which catalogs positions, alleles and allele frequencies for tens of millions of sites [2].

Many existing genotypers start by aligning reads to a single linear reference genome,
e.g. the human GRCh38 reference [26]. Because this reference is simply one example of an
individual’s genome, genotyping is subject to reference bias, the tendency to make mistakes
in places where the donor differs genetically from the reference. This was shown in studies of
archaic hominids [17], HLA genotypes [4] and structural variants [28]. A similar bias exists

1 Corresponding author

© Taher Mun, Naga Sai Kavya Vaddadi, and Ben Langmead;

oY licensed under Creative Commons License CC-BY 4.0
22nd International Workshop on Algorithms in Bioinformatics (WABI 2022).
Editors: Christina Boucher and Sven Rahmann; Article No. 19; pp. 19:1-19:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:tmun1@jhu.edu
https://alshai.github.io/
https://orcid.org/0000-0002-3588-0883
mailto:kvaddad1@jhu.edu
mailto:langmea@cs.jhu.edu
http://www.langmead-lab.org
https://orcid.org/0000-0003-2437-1976
https://doi.org/10.4230/LIPIcs.WABI.2022.19
https://github.com/alshai/rowbowt
https://archive.softwareheritage.org/swh:1:dir:b9c7b9590a6fe1a7faa105d263ba4240f5acd683;origin=https://github.com/alshai/rowbowt;visit=swh:1:snp:0ba93a236d80119f1d18882abc6343e5614e05c3;anchor=swh:1:rev:b158428751006ca22b2c1282bb6b92b1bcb58f76
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2

Pangenomic Genotyping with the Marker Array

for methods that extract polymorphic sites along with genomic context, and search for these
sequences in the reads [11, 27]. In particular, the bias remains if the flanking sequences are
extracted from the reference and so contain only reference alleles.

Reference bias can be avoided by using a pangenome reference instead of a single linear
reference. A pangenome can take various forms; it can be (a) a generating graph for
combinations of alleles, (b) a small collection of linear references indexed separately, or (c) a
larger collection of linear reference indexed together in a compressed way. Pangenome graphs
(option a) and small collections of linear references (option b) have been studied in recent
literature [23, 8, 15, 7]. Variant graphs are effective for genotyping, but have drawbacks
in this context. First, haplotype information might be removed when adding variants to
the graph, or might be included in the graph but not considered during the read mapping
process. This can cause tools like Bayestyper [29] to consider many extraneous haplotype
paths through the graph during genotyping, increasing running time. Second, variant graphs
can grow exponentially — in terms of the number of paths through the graph — as variants are
added, leading to a rapid increase in resource usage and likelihood of ambiguous alignments.

We sought a way to avoid reference bias by indexing and querying many linear references
at once while keeping index size and query time low. Such an approach can take full advantage
of linkage disequilibrium information in the panel, allowing no recombination events except
those occurring in the panel. This avoids mapping ambiguity from spurious recombination
events between polymorphic sites [23].

We propose a new structure called the marker array that replaces the suffix-array-sample
component of the r-index with a structure tailored to the problem of collecting genotype
evidence. Here we describe the marker array structure in detail. We compare its space usage
and query time to those of the standard r-index and explore how accurately both structures
are able to capture markers from a sequencing dataset. Finally, we benchmark it using real
whole-genome human sequencing data and compare it to existing genotyping tools in terms
of both genotyping accuracy and computational efficiency.

2 Background

r-index

The r-index [14] is a compressed repeat-aware text index that scales with the non-redundant
content of a sequence collection. It uses O(r) space where r is the number of same-character
runs in the Burrows-Wheeler Transform (BWT) of the input text. Past work shows that the
r-index can efficiently index collections of long-read-derived human genome assemblies [19]
as well as large collections of bacterial genomes [1].

While the main contribution of the r-index was its strategy for storing and using a
sample of the suffix array [14], even this sample is large in practice. We propose a new
marker array structure that replaces the suffix array while retaining its ability to deduce
when a read-to-pangenome match provides evidence for a particular allele at a polymorphic
site. The design of the marker array flows from three observations. First, we can save
space by storing auxiliary information about polymorphic sites (“markers”) only at the sites
themselves. There are often far fewer sites harboring polymorphism than there are BWT
runs. Second, pangenome suffixes starting with the same allele tend to group together in the
suffix array, which can be exploited to compress the marker array structure. Third, while a
suffix array entry is an offset into the pangenome requiring O(log n) bits, a marker need only
distinguish markers and alleles, and so requires just O(log M) bits where M is the number of
polymorphic sites.

T. Mun, N.S. K. Vaddadi, and B. Langmead

3 Methods

Preliminaries

Consider a string S of length n from ordered alphabet 3, with operator < denoting lexico-
graphical order. Assume S’s last character is lexicographically less than the others. Let
F be an array of S’s characters sorted lexicographically by the suffixes starting at those
characters, and let L be an array of S’s characters sorted lexicographically by the suffixes
starting immediately after them. The list L is the Burrows-Wheeler Transform [5] of S,
abbreviated BWT.

The BWT can function as an index of S [13]. Given a pattern P of length m < n, we seek
the number and location of all occurrences of P in S. If we know the range BWT(S)[i..5]
occupied by characters immediately preceding occurrences of a pattern @ in S, we can
compute the range BWT(S)[¢’..j] containing characters immediately preceding occurrences
of c@ in S, for any character ¢ € X, since

i'" = |{h:S[h]<c}+|{h: S[h] =c,h <i}| (1)
J = i sl < e} +1{h s STl =c,h <G} 1. (2)

The FM Index is a collection of data structures for executing such queries efficiently. It
consists of an array C storing |[{h : S[h] < c}| for each character ¢, plus a rank data structure
for BWT(S), e.g. a wavelet tree, that can quickly tally the occurrences of a character ¢ up
to a position of BWT. To locate the offsets of occurrences of P in S, the FM-index can
additionally include some form of S’s suffix array. The suffix array SA is an array parallel to
F containing the offsets of the characters in F'. To save space, the FM-index typically keeps
only a sample of SA, e.g. a subset spaced regularly across SA or across S.

Let T = {Ty,T1,...,Tn} be a collection of n similar texts where Ty is the reference
sequence, and T4,...,T, are alternative sequences. In the scenarios studied here, a T;
represents a human haplotype sequence, with all chromosomes concatenated, and Ty represents
the GRCh38 primary assembly of the human genome. Each 7; with ¢ > 0 is an alternate
haplotype taken either from the 1000 Genomes project call set [2] or from the HGSVC project
[6, 12], each with chromosomes concatenated in the same order as Ty’s. We use the terms
“haplotype” and “genome” interchangeably here.

We assume that all the T;’s are interrelated through a multiple alignment, e.g. as provided
in a Variant Call Format (VCF) file. The multiple alignment is a matrix with genomes in
rows and columns representing genomic offsets. The elements are either bases or gaps. We
call a column consisting of identical bases and lacking any gaps a uniform column. Any
other column is a polymorphic column. Figure 1 illustrates a multiply-aligned collection of
haplotypes and the concatenated text T

Marker Array

Let the “marker array” M be an array parallel to the concatenated sequence T marking
positions that fall in a polymorphic column in the multiple alignment. Each element of M is a
tuple recording the offset ¢ with respect to Ty where the polymorphism begins, as well as the
edit operation describing how the sequence differs from the reference at this locus. Distinct
edit operations are given distinct integer identifiers, which are decoded using a separate table

E. Identifier 0 is the null operation, denoting that the reference allele appears without edits.

For example, say E = {1: X — C}, where X — C denotes a substitution that replaces the

19:3

WABI 2022

19:4

Pangenomic Genotyping with the Marker Array

reference base with C. Then a marker array record m = (500, 0) marks a locus with no edit
with respect to reference position Tp[500]. A record m’ = (500, 1) denotes that a substitution
changes that base at Tp[500] to a C. An example is shown in Figure 1 (bottom left).

Consecutive substitutions are collapsed into a single edit in the F table. Insertions and
deletions (“indels” for short) are treated somewhat differently; the offset carrying the “mark”
is the one just preceding the indel (just to its left) in the multiple alignment. Importantly,
the mark covers exactly one position in the genome, even if the insertion/deletion spans
many bases. The marked position must come to the left of the indel to ensure that suffixes
starting at the marked position include the allele itself. In the multiple alignment in Figure 1
(top left), for example, a deletion with respect to R occurs in the fourth-from-left column,
but the marked position is in the third-from-left column.

The marker array MA is a permutation of M such that marks appear in suffix-rank order:

» Definition 1. The marker array MA is the mapping such that MA[i] = M[SA[i]].

Thanks to suffix-rank order, identical M[i]’s are often grouped into runs in MA, as seen in
Figure 1 (right).

A marker query for pattern string ¢ returns all m € M overlapped by an occurrence of ¢
in T. We can begin to answer this query using backward search (Equation 1) with P = ¢,
giving the maximal SA range [i..j] such that ¢ is a prefix of the suffixes in the range. Having
computed [i..j], we know that {MA[i], ..., MA[j]} contain markers overlapped by ¢’s leftmost
character. To recover the markers overlapped by the rest of ¢’s characters, two approaches
can be considered, detailed in the following subsections. The F'L approach recovers the
overlapped markers in a straightforward way but uses O(|q| - occ) time, where occ is the
number of times ¢ occurs in 7. The heuristic backward-search approach requires only O(|q|)
time but is not fully sensitive, i.e. it can miss some overlaps.

F'L approach

Say [i..j] is the maximal SA range such that all rows have ¢ as a prefix. We can perform a
sequence of FL steps, starting from each row z € [i..j]. An FL step is the inverse of an LF
step. That is, if we write an LF mapping step in terms of a rank query

i = |{h : S[h] < C}| + BWT.rankBWT[i] (Z) (3)

where S.rank.(i) denotes the number of occurrences of ¢ in S up to but not including offset
i, then an FL step inverts this using a select query

i = BWT.selectpy(i' — |{h : S[h] < F[i']}]) (4)

where S.select.(i) returns the offset of the i + 1*" occurrence of ¢ in S, i.e. the ¢ of rank i.
Whereas LF takes a leftward step with respect to T', FL takes a rightward step.

By starting in each row z € [i..j] and performing a sequence of |q| — 1 FL steps for each,
we can visit each offset of T overlapped by an occurrence of q. Checking MA[k] at each
step, where k is the current row, tells us which marker is overlapped, if any. This is slow in
practice, both because it requires O(|q|(j — ¢+ 1)) FL steps in total, and because each step
requires a select query, which is more costly in practice than a rank query.

Heuristic backward-search approach with smearing

Say we perform a backward search starting with the rightmost character of q. At each step
we are considering a range [i..j] of SA having a suffix of ¢ as a prefix. Using ¢ and j, we
can query MA[i..j]. However, this tells us instances where a suffiz of ¢ overlaps a marker,

T. Mun, N.S. K. Vaddadi, and B. Langmead

Multiple alignment of Prefix of
reference (R) & haplotypes (H*) SA[i] T[SA[]...] BWT[i] MALI]

~.

R: GCTGATCGA--CTCGA) 143 $GCTGATC A Offset w//tR
H1: GCT-ATCGG--CTCGA 1 142 A$GCTGAT T J
H2: GCT-ATCGA--CTCTA 2 93 AAACTCGA G (8, 4)
H3: GCTGATCGAAACTCGA 3 122 AAACTCGA G (8, 4)
H4: GCTGATCGG--CTCTA 2 77 AAACTCGA G (8, 4)
H5: GCT-ATCGAAACTCGA c 48 AAACTCGA G (8. 4)
H6: GCTGATCGAAACTCGA
H7: GCT-ATCGA--CTCTA 6 24 AACTCGAG A :
7 123 AACTCGAG A [ndexinEtable
H8: GCTGATCGAAACTCGA Insertion with
H9: GCT-ATCGG--CTCTA
respect to R
Text (T) 98 130 GCTATCGG A
GCTGATCGACTCGAGCTATCGGCTC 99 21 GCTCGAGC G (8, 2)
GAGCTATCGACTCTAGCTGATCGAA 100 137 GCTCTA$G G (8, 2)
ACTCGAGCTGATCGGCTCTAGCTAT 101 64 GCTCTAGC G (8, 2)
CGAAACTCGAGCTGATCGAAACTCG 102 85 GCTGATCG A Substitution
AGCTATCGACTCTAGCTGATCGAAA .
CTCGAGCTATCGGCTCTA :
114 72 TATCGAAA C (2, 1)
Edit Table (E) 115 103 TATCGACT C (2, 1)
2 (null edit) 116 29 TATCGACT C (2, 1)
1 (XY -> X-) 117 16 TATCGGCT C (2, 1)
) (X -> G) 118 132 TATCGGCT C (2, 1)
3 (X -> T) 119 90 TCGAAACT A Deletion with
2 (X -> AAA) 120 119 TCGAAACT A ropectioR

Figure 1 Top left: A multiple alignment for a collection of alternate haplotypes (H1-H9), and
a reference sequence (R). Marked bases are in bold and alternate alleles are colored. Middle left:
The text T, formed by concatenating rows of the multiple alignment (eliding gaps). Bottom left:
The edit table E, with alternate-allele coloring. Right: A partial illustration of the marker array in
relation to SA, the relevant suffixes themselves (truncated to fit), and the BWT. Colors and bolding
highlight where marked bases and alternate alleles end up in the suffixes.

whereas our goal is to find where the whole query ¢ overlaps a marker. If we report overlaps
involving trivially short suffixes of ¢, many would be false positives. We propose to allow but
reduce the number of such false positives by augmenting MA:

» Definition 2. The augmented marker array MA™ is a multimap such that MA™[i] =
[M[SA[i]], M[SA[i] + 1], ..., M[SA[i] + w]]

That is, MA™[i] is a (possibly empty) list containing markers overlapping any of the positions
Ti..i + w]. We call this a “smeared” marker array, since the marks are extended (smeared)
to the left by w additional positions. Note that a length-w extension can overlap one or more
other marked variants to the left. For this reason, MA® must be a multimap, i.e. it might
associate up to w markers with a given position.

19:5

WABI 2022

19:6

Pangenomic Genotyping with the Marker Array

Using MAY, we adjust the backward-search strategy so that instead of querying MA at
each step, we query MAY every w steps. If w is large enough — e.g. longer than the length at
which we see random-chance matches — we can avoid many false positives. More space is
required to represent MA" compared to MA since it is less sparse. However, we expect MAY
to remain run-length compressible for the same reason that MA is.

Genotyping a read

Given a sequencing read, we would like to extract as much genotype information as possible
while minimizing computational cost and false-positive genotype evidence. Here we give a
heuristic algorithm (Algorithm 1) that handles entire sequencing reads, querying MA" during
the backward-search process as proposed in the previous section. The algorithm proceeds
right to left through the read, growing the match by one character if possible. When we can
no longer grow the match (i.e. the range [i..j] becomes empty), we reset the range to the
all-inclusive range [0..|T'| — 1] and restart the matching process at the next character. We use
the term “extension” to refer to a consecutive sequence of steps that successfully extend a
match. Note that this is a heuristic algorithm that does not exhaustively find all half-MEMs
between the read and the index, as the MONTI algorithm does [25].

As discussed above, the algorithm only checks the marker array every w steps (line 14).
As an additional filter, the algorithm only performs a marker-array query when the current
suffix-array range size no larger than the number of haplotypes in the index (N). A range
exceeding that size indicates that we are seeing more than one distinct match in at least one
haplotype, meaning that the evidence is ambiguous.

The algorithm tallies evidence as it goes (line 18), but might later choose to ignore that
evidence if certain conditions are not satisfied (lines 10 and 27). For example, if the evidence
has a conflict — i.e. one match indicates a reference allele at a site but another match found
during the same extension finds an alternate allele at that site — then all the evidence is
discarded for that extension. Similarly, evidence from an extension is discarded if the tallied
sites span multiple chromosomes. Finally, evidence from extensions failing to match at least
80 bp of the read (adjustable with --min-seed-length option) is discarded.

We employ other heuristics to minimize mapping time not shown in Algorithm 1. For
instance, we avoid wasted effort spent querying the wrong read strand. Specifically: rowbowt
randomly selects an initial strand of the read to investigate: forward or reverse complement.
If an extension from this strand meets the minimum seed-length threshold (80 by default),
then the other strand is not considered and analysis of the read is complete. Otherwise,
rowbowt then goes on to examine the opposite strand of the read.

Sparse marker encoding

We encode the sparse arrays M, MA and MA" in the following way. Say that array A consists
of empty and non-empty elements. We consider A’s non-empty elements as falling into one of
2 maximal runs of identical (and non-empty) elements. Our sparse encoding for A consists of
three structures. S is a length-| A| bit vector with 1s at the positions where a run of identical
entries in A begins, and Os elsewhere. E is a similar bit vector marking the last position of
each of the z runs. (This variable E is distinct from the E table defined above in “Marker
Array”) To find whether an element A[i] is non-empty, we can ask whether we are between
two such marks; that is, A[i] is non-empty if and only if S.rank; (i + 1) > E.rank; (4).

X is a length-z array containing the element that is repeated in each of A’s non-empty
runs, in the order they appear in A. If A[i] is not empty, the element appearing there is
given by X[E.rank; (7)].

T. Mun, N.S. K. Vaddadi, and B. Langmead

Algorithm 1 Simplified version of rowbowt algorithm for matching query string ¢ and compiling

genotype evidence. C' is an array such that C[c] equals [{h : T[h] < c}|, where T is the original text.

Ny, is the number of haplotypes in the index. Pseudocode for TallyEvidence and FinalizeEvidence
are not given, but the heuristics they use to further filter genotype evidence is described in the text.

1: procedure SIMPLEGENOTYPE(q, w, MAY, BWT, C, Ny)

2 i=0,j=|BWT|

3 £=0,k=0 > start new extension

4: o=|q|—1

5: while 0 > 0 do

6 ¢ = q[o]

7 i = C[c] + BWT.rank.(4) > backward search, like equations 1 and 2

8 j = C[c] + BWT.rank.(j)

9 if i = j then > no matching substrings
10 FinalizeEvidence(¢) > ignore tallied evidence if ¢ is small or evidence conflicts
11: i=0,j=|BWT|,k=0,{=0 > start new extension
12: else
13: k=k+1, (=0+1
14: if k = w then
15: if (j —i+1) < Np then
16: forze[i..j)do
17: for site € MA"[z] do
18: TallyEvidence(site) > increment evidence for allele at site
19: end for
20: end for
21: end if
22: k=0 > check every w steps
23: end if
24: end if
25: o=o0-1
26: end while
27: FinalizeEvidence({) > ignore tallied evidence if ¢ is small or evidence conflicts

28: end procedure

When encoding M or MA, the elements of X are simply tuples. A complication exists for
MAY, since elements are lists of up to w tuples. In this case, we keep an additional bit-vector
B of size | X| where 1s denote left-hand boundaries in X that correspond to runs in A. E
and B can be used together to access an element in A (Algorithm 2).

Extracting markers from VCF

A Variant Calling Format (VCF) [9] file is used to encode a collection of haplotypes with the
variants arranged in order according to a reference genome. In the case of human and other
diploid genomes, haplotypes are grouped as pairs. We refer to such a collection of haplotypes
as a “panel” and a single haplotype as a “panelist.” An VCF entry encodes a variant as a
tuple consisting of a chromosome, offset, the allele found in the reference, the alternate allele
found in one or more panelists, and a sequence of flags indicating whether each panelist has
the reference or alternate version. We start from a VCF file to determine how to populate
the marker arrays M, MA and/or MAY | as well as the edit array FE.

19:7

WABI 2022

19:8

Pangenomic Genotyping with the Marker Array

Algorithm 2 Access the contents of A[i] in the case where entries of A can be lists.

procedure SPARSEACCESS(S, F, X, B, i)
if Srrank;(i + 1) = E.rank; (¢) then
return ()
end if
e = E.rank; (4)
Jj = B.selecty (e)
k = B.selecty(e + 1)
return {X[j],..., X[k — 1]}
end procedure

A single element of M is a tuple (r, e), where r is an offset in Ty and e is the edit operation
describing how the sequence differs from the reference. As a practical matter, we represent
these tuples in a different way that more closely resembles the corresponding VCF records.
Specifically, a marker is encoded in a 64-bit word divided into three fields. First, a 12 bit
field identifies the chromosome containing the marker. The chromosome ordering is given
at the beginning of the VCF file in the “header” section. For example, if “chrl” is the first
chromosome in the header, then this chromosome is encoded as 0x000 (using hexadecimal),
and if “chr2” is the second chromosome, it is encoded as 0x001. Second is a 54 bit field
encoding the marker’s offset within the chromosome. Third is a 4-bit field storing which
version of the variant is present, with 0 indicating the reference allele, 1 indicating the
1st alternate allele, 2 the second alternate allele, etc. This 64-bit representation allows for
compact storage of markers and easier random access to the marker array.

Diploid genotyping

In a diploid genome, it is possible for both alleles to occur, i.e. for the genotype to be
heterozygous. We use an existing approach [21] to compute genotype likelihoods considering
all possible diploid genotypes: homozygous reference (2 reference alleles), homozygous
alternate (2 alternate alleles), or heterozygous (1 reference, 1 alternate). Let g € {0, 1,2}
denote the number of reference-allele copies at the marked site; e.g. g = 1 corresponds to a
heterozygous site and g = 2 to a homozygous reference site. Let [be the number of times the
reference allele was observed in the reads overlapping a particular marked site and let k be
the count of all alleles (reference or alternate) observed. Let € be the sequencing error rate.
We calculate the genotype likelihood as follows, adopting equation 2 of [21] while setting the
ploidy to 2 and adopting a global rather than a per-base error rate:

k
£(g) = 5 12~ ge+ 901~ (2~ 9)(1 —) + gl

To choose the most likely genotype ¢mas, We compute:
Imax = argmaxge{o,lﬂ}‘c(g)

By default, rowbowt uses € = 0.01.

T. Mun, N.S. K. Vaddadi, and B. Langmead

Implementation details

The code for constructing the marker array is implemented in the pfbwt-£ spoftware package,
with repository at https://github.com/alshai/pfbwt-£f. This repository also contains
an efficient implementation of the prefix-free-parse BWT construction algorithm [19]. This
software is written in C++417, uses the open-source MIT license, and builds on the Succinct
Data Structure Library (SDSL) v3.0 [16].

For querying the marker array, we use the rowbowt implementation at https://github.

com/alshai/rowbowt. This repository contains the open source C++17 implementation of
rowbowt, distributed under the MIT license. It is also a library, containing algorithms for
building and querying indexes containing various structures discussed here, including the
run-sampled suffix array, marker array, and others.

4 Results

We evaluated the efficiency and accuracy of our marker-array method for compiling genotype
evidence. We first generated multiple series of rowbowt indexes covering various settings
for three parameters: the window size w for the smeared marker array MA", the number
of haplotypes indexed, and the minimum allele frequency for marked alleles. The rowbowt
index consisted of three components: the run-length encoded BWT, the run-sampled suffix
array, and the marker array. While we built the sampled suffix array for these experiments,
the standard marker-array-based method in rowbowt does not require this array.

We generated indexes for collections of 200,400,800, or 1000 human chromosome-21

haplotypes from the 1000 Genomes Phase 3 reference panel [2] based on the GRCh37 reference.

We generated two sets of indexes: one where the marker array marks all polymorphic sites
regardless of frequency (denoted “AF > 0”), and another where the marker array marks only
those sites where the less common allele occurs in greater than 1% of haplotypes, i.e. has
allele frequency over 1% (denoted “AF > 0.01”). In all cases, the marker array window size w
was set to 19. Each haplotype collection was drawn from a random subset of 500 individuals
from the 1000 Genomes Phase 3 panel. The AF > 0 panel of 500 haplotypes contained
1,097, 388 polymorphic sites. The AF' > 0.01 panel of the same haplotypes contained 193, 438
polymorphic sites with allele frequency over 1%. We also included the GRCh37 reference
sequence, consisting of all reference alleles, in each collection, corresponding to the reference
sequence called Ty above.

We generated a series of indexes with window size w € {13,15,17,19,21,23,25}. We
generated two such series: one with no minimum allele frequency (AF > 0) and another with

a 1% minimum frequency (AF > 0.01). Each index was over the same set of 100 haplotypes.

Index size

We measured the size of the three main components of the rowbowt index: the augmented
marker array, the run-length encoded BWT (RLE BWT) [3] and the run-sampled suffix
array (“r-index SA”) [14]. Figure 2 plots this measurement for collections of 200, 400, 800
and 1,000 haplotypes for both AF > 0 and AF > 0.01. All grow linearly with the number
haplotypes grows, as expected. For AF > 0, the augmented marker array is consistently
larger than the run-sampled suffix array (“r-index SA”). For AF > 0.01, the augmented
marker array is much smaller, approaching the size of the RLE BWT. The AF > 0 array
is larger because it contains polymorphic sites with infrequent alleles; about 85% of the

19:9

WABI 2022

https://github.com/alshai/pfbwt-f
https://github.com/alshai/rowbowt
https://github.com/alshai/rowbowt

19:10

Pangenomic Genotyping with the Marker Array

marked sites in the AF > 0 array have allele frequency under 1%. Further, rare alleles are
less likely to form long runs in the augmented marker array, negatively affecting run-length
compression.

In the right portion of Figure 2, the RLE BWT and r-index SA have constant size because
the w parameter does not affect those data structures. In the left portion of Figure 2, showing
size as a function of number of haplotypes, the augmented marker array is almost always
larger than the r-index SA for AF > 0 as opposed to AF > 0.01, except at w = 13. The
slope of the array size is smaller for AF' > 0.01 than for AF > 0.

Overall, both the value of w and the number of haplotypes in the index cause the
augmented marker array to increase in size, but the inclusion of rare alleles (< 1% allele
frequency) has the largest effect on its size.

AF>0 AF>0.01 AF>0 AF>0.01
400 400
marker array marker array
300 - RLEBWT 300+ - RLEBWT
r-index SA r-index SA
o o
= =
~ 200 ~ 200
[0} [0)
N N
[(7]
100 - 100 -
/ /‘/__‘
0 T T T T T T T T 0 T T T T T T
0 250 500 750 10000 250 500 750 1000 10 15 20 25 3010 15 20 25 30
haplotypes window size

Figure 2 Left: Size of rowbowt data structures as a function of the number of haplotypes indexed,
and with w = 19. “Marker array” refers to the augmented marker array, MA"™. Right: Size of
rowbowt data structures as a function of the “smearing” window size w, with number of haplotypes
fixed at 100. Separate results are shown for when there is no minimum allowed allele frequency
(AF > 0) and when the minimum frequency is 1% (AF > 0.01).

Query time

We next measured query time for the augmented marker array strategy versus the locate-query
strategy which uses the run-sampled suffix array. 150bp simulated reads of 25x coverage were
generated for one haplotype of HG01498, an individual that is part of the 1000-Genomes
panel, but which we excluded from all our indexes. We simulated reads using Mason 2
mason_simulator [24] with default options.

In the case of the marker-array strategy, we measured the time required to analyze the
reads using the algorithm described above in “Genotyping a read.” In the case of the locate-
query strategy, the MA" query was replaced with a two-step process that first performed a
locate query with respect to the run-sampled suffix array, then performed a lookup in the M
array. To enable this mode, we further augmented the r-index with a representation of M
using the sparse encoding described above. To emphasize: the rowbowt strategy does not
require the run-sampled suffix array or the M array; the MA" effectively replaces them both.

We repeatedly sampled 10,000 simulated reads and recorded the mean query time over
10 trials. As seen in Figure 3 the augmented marker-array method (labeled “marker”) was
consistently faster than locate method. This was true for all allele frequencies and window
sizes tested. We found that the effect of w and allele-frequency cutoff was more pronounced
with the larger reference panel AF > 0. For the smaller panel (AF > 0.01), query time was
mostly invariant to both window size and allele frequency.

T. Mun, N.S. K. Vaddadi, and B. Langmead

AF>0 AF>0.01 AF>0 AF>0.01
5

@ 44 locate = 157 locate

; —o= marker ; —o= marker

iS E

F - [

£ £ 104

9] [0}

® @

> >

» 2 /’/“/)

+ +

o o000 o 51

12} w

D 1 -]

oo o—
oo o oo
0 T T T T 0 T T T T T T T T
0 10 20 300 10 20 30 0 250 500 750 10000 250 500 750 1000
window size # haplotypes

Figure 3 Mean time over 10 trials of aligning 10,000 simulated reads from HG01498 against the
augmented marker array (marker) and the r-index suffix array (locate). Experiments are repeated
for marker collections including all alleles (AF > 0) and for alleles having frequency at least 1%
(AF > 0.01). Left: The experiment is repeated for various window sizes w, and for 100 haplotypes.
Right: The experiment is repeated for different numbers of indexed haplotypes, with w = 19.

Genotyping accuracy

We next measured the accuracy of the genotype information gathered using the augmented
marker array. We simulated sequencing reads from one haplotype of HG01498 to an average
depth of 25-fold coverage. Individual HG01498 was excluded from the indexes. As our “truth”
set for evaluation, we use the variant calls in the 1000 Genomes project callset for the same
haplotype we simulated from. For simplicity, this experiment treats the genome as haploid.
Experiments in the next section will account for the diploid nature of human genomes.

A single marked site can have conflicting evidence, due, for instance, to mismapped reads
or sequencing errors. For this evaluation, we make calls simply by finding the frequently
observed allele at the site. We ignore any instances of alleles other than the ones noted in
the VCF file as the reference and alternate alleles. If the reference and alternate alleles have
equal evidence, the reference allele is called.

We calculate precision and recall according to the following formulas. Here, the positive
class consists of marked sites that truly have the alternate allele, while the negative class
consists of marked sites that truly have the reference allele. We measure:

Precision — TPs Recall — TPs
eSO = T FPs = TPs + FNs

Where TP stands for True Positive, FN stands for False Negative, etc.

Figure 4 shows precision and recall with respect to the number of haplotypes in the
index and the minimum allele frequency of the haplotype collection. We observed that
the AF > 0.01 indexes generally had better precision compared to the AF > 0 indexes,
though at the expense of recall. Precision and recall generally improve with the addition of
more haplotypes to the index. The augmented marker array has similar recall to the locate
procedure across all haplotype sizes at the loss of precision. When rare variants are removed
from the index (AF > 0.01), the gap in precision between the marker array and the locate
procedure lessens. This mild (less than 0.1%) loss of precision is expected since algorithm
described above in “Genotyping reads” is still prone to some false positives in the earlier
part of the extension process.

19:11

WABI 2022

19:12

Pangenomic Genotyping with the Marker Array

AF>0 AF>0.01 AF>0 AF>0.01
0.99
locates
0.9975 - -e- markers
0.97 1
5
B 0.9950 - T
o g 095
o locates =
e -e- markers
0.9925 -
0.93
0.9900 -
2é0 S(I)O 750 10‘00 250 SEI)O 7&‘30 10‘00 250 560 7é0 10‘00 ZéD 560 750 10‘00
haplotypes # haplotypes

Figure 4 Precision (left) and recall (right) of the calls made when querying 25x simulated reads
from HGO01498 against the augmented marker array (marker) and the r-index (locate). Stratified by
minimum allowed allele frequency (AF) in the index.

Diploid genotyping assessment

To assess diploid genotyping accuracy, we used data from the Human Genome Structural
Variation Consortium (HGSVC) [6, 12]. The HGSVC called both simple and complex genetic
variants across a panel of 64 human genomes. Calls were made with respect to the GRCh38
primary assembly [26]. For input reads, we subsampled reads from a 30-fold average coverage
PCR-free read set provided by the 1000 Genomes Project [2] (accession SRR622457). To
create more challenging scenarios for the genotypers, we randomly subsampled the read sets
to make smaller datasets of 0.01, 0.05, 0.1, 0.5, 1, 2 and 5-fold average coverage.

We assessed three genotyping methods. The first (bowtie2_bcftools) used Bowtie 2 [20]
v2.4.2 to align reads to a standard linear reference genome, then used BCFtools v1.13 to call
variants (i.e. genotypes) at the marked sites [21]. The second method used the graph-based
genotyper bayestyper v1.5. The third was rowbowt.

Prior to applying bayestyper, we built a bayestyper-compatible VCF file containing
all relevant variants from the HGSVC haplotype panel. For rowbowt, we created a rowbowt
index from the genomes in the HGSVC haplotype panel. In both cases we excluded NA12878’s
haplotypes from the panel prior to building the index.

When evaluating, we stratified variants by complexity: the “snp” category includes
single-nucleotide substitutions, “indel” includes indels no more than 50bp long, and “sv”
includes insertion or deletions longer than 50bp, and “all” includes all variant types. More
complex structural variants like inversions and chromosomal rearrangements are ignored.

We analyzed the accuracy of rowbowt’s diploid genotypes in two ways. First we considered
allele-by-allele precision and recall, considering the alternate (ALT) allele calls to be the
positive class. Specifically, every diploid genotype called by a method is considered as a pair
of individual allele calls. If a given allele call is an alternate (ALT) allele and there is at least
one ALT allele present in the true diploid genotype at that site, it counts as a true positive
(TP). If the given allele is a reference allele (REF) and there is at least one REF allele in the
true diploid genotype, this is a true negative (TN). If the given allele is an ALT but the true
genotype is homozygous REF, we count it as a false positive (FP). Finally, if the given allele
is REF but the true genotype is homozygous ALT, this is a a false negative (FN).

Second, we considered precision and recall with respect to sites that were either truly
heterozygous or called heterozygous. If a heterozygous call made by a method is truly
heterozygous, this was counted as a true positive (TP). False positives, false negatives, and
true negatives are defined accordingly.

T. Mun, N.S. K. Vaddadi, and B. Langmead

As seen in Figure 5, rowbowt’s ALT and HET precision were generally the highest of all
the methods across all variant categories, though bayestyper sometimes achieved higher
ALT/HET precision for indels in the higher-coverage datasets. rowbowt’s ALT recall is also
higher than the other methods, except for some of the lower coverage measurements in the
“sv” category, where bayestyper achieved higher ALT recall.

Computational performance

We compared the time and memory usage of each genotyping method, dividing each method
into Alignment and Genotyping phases. For each phase, we measured both the wall-clock
time elapsed and maximum memory (“maximum resident set”) used. Both were measured
with the Snakemake tool’s benchmark directive [22].

Since the tools operate somewhat differently, we define the “Alignment” step differently
in each case. For bowtie2_bcftools, we define the Alignment step as the process of using
bowtie2 to align sequencing reads to the linear reference genome. For rowbowt, we defined
the Alignment step as the process of using the rb_markers command to genotype the reads
using the algorithm described in Methods. For bayestyper, we defined the Alignment step
as the typical 3-step process of: (a) using the KMC3 software tool to count k-mers in the
input reads, (b) using the bayestyper makeBloom command to convert k-mer counts to
Bloom filters for each sample, and (c) using the bayestyper cluster command to identify
variant clusters. 16 threads were used during the Alignment phase for bowtie2_bcftools
and rowbowt, while 32 threads were used for bayestyper.

For bowtie2_bcftools, we define the Genotyping step as the process of using bcftools
call to call variants from the BAM file output by bowtie2. For rowbowt We define the
Genotyping phase as the process of running the vc_from_markers.py script on the output
from rb_markers. For bayestyper, we define the genotyping step as the process of running
the bayesTyper genotype command. The Genotype phases for both bowtie2_bcftools and
rowbowt do not support multi-threading, so a single thread was used. For the bayestyper
Genotype phase we used 16 threads.

Figure 6 shows the time taken and peak memory footprint for each method and each phase.

We observed that rowbowt was consistently faster than the other methods, sometimes by a
large margin. We also observed that while rowbowt has a higher memory footprint compared
to the bowtie2_bcftools method, it uses substantially less memory than bayestyper, the
other pangenome-based method.

5 Discussion

We proposed a family of novel marker array structures, M, MA and MA™ that, together with
a pangenome index like the r-index, allow for rapid and memory-efficient genotyping with
respect to large pan-genome references. The augmented marker array is smaller and faster
to query than the run-sampled suffix array — the usual way to establish where matches fall
when querying a run-length compressed index — especially when we limit the set of markers
to just alleles at frequency 1% or higher. We further showed that the augmented marker
array can replace the sampled suffix array in simple genotyping experiments with moderate
sacrifice of precision, and that a marker array based genotyping method outperforms the
graph-based Bayestyper method.

19:13

WABI 2022

19:14 Pangenomic Genotyping with the Marker Array

indel sV

N
o

o
®

ALT precision
o
»

o
~
1

45012345012345
Coverage

N -
QW =
N
o1 -
o -
o
N -
W =

any snp indel sV

ALT recall
o o o o
o o o o~
o [é)] o ()]

4
Coverage
any snp indel 5%
1.00 1
&
‘»n 0.754
©
Q050
aQ
I 0.251
I
0.0()-I T
0 234501234501 234501234¢%5
Coverage
any snp indel 5
0.6

o
~
1

-1

HET recall
o o
o N

N =
W =
g
o1+
oA
-
N
w
N
O -

L T T T T T

0123 4501
Coverage

-5~ bayestyper —©— bowtie2_bcftools - rowbowt

o
o
N =
[SS I
o
o1+

Figure 5 Precision and recall for the three tested genotyping methods, both at the level of indi-
vidual alleles (ALT precision/recall) and at the level of heterozygous variants (HET precision/recall).
Note that the bowtie2_bcftools approach is generally unable to align reads across variants in the
“sv” category, leading to low precision and recall.

T. Mun, N.S. K. Vaddadi, and B. Langmead

Alignment Genotyping
3 2001
]
=
= 1001
= ====Sns sl ===
N ~ ") » © o ~ o o - ©
. Alignment Genotyping
m
g 30-
€
[}
..E_, 20+
C
[}
o =1 ! !
2 10+
o
5 = e
2 0-I T T T T T I-: : T T :
N} ~ v » w o o ~ v o) ™ ©
Coverage

bayestyper -e- bowtie2_bcftools - rowbowt

Figure 6 Time for each phase of the impute-first workflow for three methods of alignment/geno-
typing.

Pan-genome indexes allow for rapid analysis of reads while avoiding reference bias. The
indexes used in our experiments consisted of many (up to 65) haplotypes, with none having a
higher priority over the others, except in the sense that results were expressed in terms of the
standard reference. Our approach preserves all linkage disequilibrium information. This is in
contrast to some graph-indexing approaches, which might consider all possible combinations
of nearby alleles to be “valid,” even if most combinations never co-occur in nature.

While we examined only simple structural variants in the form of insertions and deletions
longer than 50 bp, the genotyping method is readily extensible to more complex differences
as well. Indeed, as long as we can mark the base or bases just to the left of the variant, we
can mark any variant in a way that we can later genotype

The rowbowt method can lead to future methods that use information about genotypes to
build a personalized reference genome, containing exactly the genotyped alleles. Alignment
to a personalized reference have been shown previously to be the best way to avoid reference
bias, even more effective than the best pangenome methods [7, 23].

—— References

1 O. Ahmed, M. Rossi, S. Kovaka, M. C. Schatz, T. Gagie, C. Boucher, and B. Langmead.
Pan-genomic matching statistics for targeted nanopore sequencing. iScience, 24(6):102696,
June 2021.

2 A. Auton, L. D. Brooks, R. M. Durbin, E. P. Garrison, H. M. Kang, J. O. Korbel, J. L.
Marchini, S. McCarthy, G. A. McVean, G. R. Abecasis, et al. A global reference for human
genetic variation. Nature, 526(7571):68-74, October 2015.

19:15

WABI 2022

19:16

Pangenomic Genotyping with the Marker Array

3

10

11

12

13

14

15

16

17

18

19

20

D. Belazzougui, F. Cunial, T. Gagie, N. Prezza, and M. Raffinot. Flexible Indexing of
Repetitive Collections. In Jarkko Kari, Florin Manea, and Ion Petre, editors, Unveiling
Dynamics and Complexity, volume 10307, pages 162—-174. Springer International Publishing,
Cham, 2017. Series Title: Lecture Notes in Computer Science.

D. Y. Brandt, V. R. Aguiar, B. D. Bitarello, K. Nunes, J. Goudet, and D. Meyer. Mapping
Bias Overestimates Reference Allele Frequencies at the HLA Genes in the 1000 Genomes
Project Phase I Data. G3 (Bethesda), 5(5):931-941, March 2015.

M. Burrows and D.J. Wheeler. A block sorting lossless data compression algorithm. Technical
Report 124, Digital Equipment Corporation, 1994.

M. J. P. Chaisson, A. D. Sanders, X. Zhao, A. Malhotra, D. Porubsky, T. Rausch, E. J. Gardner,
O. L. Rodriguez, L. Guo, R. L. Collins, et al. Multi-platform discovery of haplotype-resolved
structural variation in human genomes. Nat Commun, 10(1):1784, April 2019.

N. C. Chen, B. Solomon, T. Mun, S. Iyer, and B. Langmead. Reference flow: reducing reference
bias using multiple population genomes. Genome Biol, 22(1):8, January 2021.

S. Chen, P. Krusche, E. Dolzhenko, R. M. Sherman, R. Petrovski, F. Schlesinger, M. Kirsche,
D. R. Bentley, M. C. Schatz, F. J. Sedlazeck, and M. A. Eberle. Paragraph: a graph-based
structural variant genotyper for short-read sequence data. Genome Biol, 20(1):291, December
2019.

P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E. Hand-
saker, G. Lunter, G. T. Marth, S. T. Sherry, et al. The variant call format and VCFtools.
Bioinformatics, 27(15):2156-2158, August 2011.

R. W. Davies, M. Kucka, D. Su, S. Shi, M. Flanagan, C. M. Cunniff, Y. F. Chan, and S. Myers.
Rapid genotype imputation from sequence with reference panels. Nat Genet, 53(7):1104-1111,
July 2021.

L. Denti, M. Previtali, G. Bernardini, A. Schénhuth, and P. Bonizzoni. MALVA: Genotyping
by Mapping-free ALlele Detection of Known VAriants. #Science, 18:20-27, August 2019.

P. Ebert, P. A. Audano, Q. Zhu, B. Rodriguez-Martin, D. Porubsky, M. J. Bonder, A. Sulovari,
J. Ebler, W. Zhou, R. Serra Mari, et al. Haplotype-resolved diverse human genomes and
integrated analysis of structural variation. Science, 372(6537), April 2021.

P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Proceedings
of the 41st Annual Symposium on Foundations of Computer Science (FOCS), pages 390-398,
2000.

T. Gagie, G. Navarro, and N. Prezza. Optimal-Time Text Indexing in BWT-runs Bounded
Space. In Proceedings of the 29th Annual Symposium on Discrete Algorithms (SODA), pages
1459-1477, 2018.

E. Garrison, J. Sirén, A. M. Novak, G. Hickey, J. M. Eizenga, E. T. Dawson, W. Jones, S. Garg,
C. Markello, M. F. Lin, B. Paten, and R. Durbin. Variation graph toolkit improves read
mapping by representing genetic variation in the reference. Nat Biotechnol, 36(9):875-879,
October 2018.

S. Gog, T. Beller, A. Moffat, and M. Petri. From theory to practice: Plug and play with
succinct data structures. In 13th International Symposium on Ezperimental Algorithms, (SEA
2014), pages 326337, 2014. doi:10.1007/978-3-319-07959-2_28.

T. Giinther and C. Nettelblad. The presence and impact of reference bias on population
genomic studies of prehistoric human populations. PLoS Genet, 15(7):¢1008302, July 2019.
C. Kim, H. Guo, W. Kong, R. Chandnani, L. S. Shuang, and A. H. Paterson. Application
of genotyping by sequencing technology to a variety of crop breeding programs. Plant Sci,
242:14-22, January 2016.

A. Kuhnle, T. Mun, C. Boucher, T. Gagie, B. Langmead, and G. Manzini. Efficient Construction
of a Complete Index for Pan-Genomics Read Alignment. J Comput Biol, 27(4):500-513, April
2020.

B. Langmead and S. L. Salzberg. Fast gapped-read alignment with Bowtie 2. Nat Methods,
9(4):357-359, March 2012.

https://doi.org/10.1007/978-3-319-07959-2_28

T. Mun, N.S. K. Vaddadi, and B. Langmead

21

22

23

24

25

26

27

28

29

H. Li. A statistical framework for SNP calling, mutation discovery, association mapping and
population genetical parameter estimation from sequencing data. Bioinformatics, 27(21):2987—
2993, November 2011.

F. Molder, K. P. Jablonski, B. Letcher, M. B. Hall, C. H. Tomkins-Tinch, V. Sochat, J. Forster,
S. Lee, S. O. Twardziok, A. Kanitz, A. Wilm, M. Holtgrewe, S. Rahmann, S. Nahnsen, and
J. Koéster. Sustainable data analysis with Snakemake. F'1000Res, 10:33, 2021.

J. Pritt, N. C. Chen, and B. Langmead. FORGe: prioritizing variants for graph genomes.
Genome Biol, 19(1):220, December 2018.

K. Reinert, T. H. Dadi, M. Ehrhardt, H. Hauswedell, S. Mehringer, R. Rahn, J. Kim,
C. Pockrandt, J. Winkler, E. Siragusa, G. Urgese, and D. Weese. The SeqAn C++ template
library for efficient sequence analysis: A resource for programmers. J Biotechnol, 261:157-168,
November 2017.

M. Rossi, M. Oliva, B. Langmead, T. Gagie, and C. Boucher. MONI: A Pangenomic Index for
Finding Maximal Exact Matches. J Comput Biol, 29(2):169-187, February 2022.

V. A. Schneider, T. Graves-Lindsay, K. Howe, N. Bouk, H. C. Chen, P. A. Kitts, T. D.
Murphy, K. D. Pruitt, F. Thibaud-Nissen, D. Albracht, et al. Evaluation of GRCh38 and de
novo haploid genome assemblies demonstrates the enduring quality of the reference assembly.
Genome Res, 27(5):849-864, May 2017.

A. Shajii, D. Yorukoglu, Y. William Yu, and B. Berger. Fast genotyping of known SNPs
through approximate k-mer matching. Bioinformatics, 32(17):1538-i544, September 2016.

R. M. Sherman, J. Forman, V. Antonescu, D. Puiu, M. Daya, N. Rafaels, M. P. Boorgula,
S. Chavan, C. Vergara, V. E. Ortega, et al. Assembly of a pan-genome from deep sequencing
of 910 humans of African descent. Nat Genet, 51(1):30-35, January 2019.

J. A. Sibbesen, L. Maretty, and A. Krogh. Accurate genotyping across variant classes and
lengths using variant graphs. Nat Genet, 50(7):1054-1059, July 2018.

19:17

WABI 2022

	1 Introduction
	2 Background
	3 Methods
	4 Results
	5 Discussion

