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Abstract
A fundamental operation in computational genomics is to reduce the input sequences to their
constituent k-mers. For maximum performance of downstream applications it is important to store
the k-mers in small space, while keeping the representation easy and efficient to use (i.e. without
k-mer repetitions and in plain text). Recently, heuristics were presented to compute a near-minimum
such representation. We present an algorithm to compute a minimum representation in optimal
(linear) time and use it to evaluate the existing heuristics. For that, we present a formalisation
of arc-centric bidirected de Bruijn graphs and carefully prove that it accurately models the k-mer
spectrum of the input. Our algorithm first constructs the de Bruijn graph in linear time in the
length of the input strings (for a fixed-size alphabet). Then it uses a Eulerian-cycle-based algorithm
to compute the minimum representation, in time linear in the size of the output.
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1 Introduction

Motivation

A k-mer is a DNA string of length k that is considered equal to itself and its reverse
complement. A common pattern in bioinformatics is to reduce a set of input strings to their
constituent k-mers. Such representations are at the core of many bioinformatics pipelines –
see e.g. Schmidt et al. [23] or Brinda et al. [6] for an overview of applications. The wide-spread
use of k-mer sets has prompted the question of what is the smallest plain text representation
for a set of k-mers. Here, a plain text representation means a set of strings that have the
same set of k-mers as the input strings, i.e. the spectrum is preserved. Such representations
are also called spectrum preserving string sets (SPSS) [22], or simplitigs [6]. This has the
following advantages over encoded representations:
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When storing k-mer sets to disk, plain text may remove the need of decompression before
usage, as some tools that usually take unitigs as input can take any other plain text
representation without modification (e.g. Bifrost [13]).
Within an application, an encoded representation would require decoding whenever a
k-mer is accessed, which may slow down the application a lot compared to when each
k-mer is in RAM in plain text.

Further, in applications, it might be useful if the representation contains each k-mer exactly
once. This is because some applications, like e.g. SSHash [21], are able to take any set of
k-mers as input, but cannot easily deal with duplicate k-mers in the input.

Related work

There are two heuristic approaches to the construction of a small SPSS without repeti-
tions, namely prophasm [6] and UST [22]. While neither of these computes a minimum
representation, Rahman et al. [22] also present a lower bound to the minimum size of any
representation without repetition, and they show that they are within 3% of this lower bound
in practice. They also present a counter-example showing that their lower bound is not tight.
Small SPSSs without repetitions are used e.g. in SSHash [21] and are also computed by
state-of-the-art de Bruijn graph compactors like Cuttlefish 2 [15].

When k-mer repetitions are allowed in an SPSS, there is a known polynomially computable
minimum representation, namely matchtigs [23]. While matchtigs are expensive to compute,
the authors also present a more efficient greedy heuristic that is able to compute a near-
minimum representation on a modern server with no significant penalty in runtime (when
compared to computing just unitigs), but a significant increase in RAM usage.

In [6, 23] the authors also showed that decreasing the size of an SPSS results in signi-
ficantly better performance in downstream applications, i.e. when further compressing the
representation with general purpose compressors, or when performing k-mer-based queries.

The authors of both [6] and [22] consider whether computing a minimum representation
without repetitions may be NP-hard, as it is equivalent to computing a minimum path cover
in a de Bruijn graph, which is NP-hard in general graphs by reduction from Hamiltonian cycle.
However, computing a Hamiltonian cycle in a de Bruijn graph is actually polynomial [14].
The authors of [14] argue that de Bruijn graphs are a subclass of adjoint graphs, in which
solving the Hamiltonian cycle problem is equivalent to solving the Eulerian cycle problem
in the original of the adjoint graph, which can be computed in linear time2. However, the
argument is only made for normal directed (and not bidirected) graphs, and thus is not
applicable to our setup, where a k-mer is also considered equal to its reverse complement.

Our contributions

Our first technical contribution is to carefully define the notion of a bidirected de Bruijn
graph such that the spectrum of the input is accurately modelled in the allowed walks of the
graph. Our definition also takes into account k-mers that are their own reverse complement.
This technicality is often neglected in the literature, and sidestepped by requiring that the

2 The original of an adjoint graph can be computed by splitting each node v into two nodes v′ and v′′

such that v′ keeps the incoming arcs, and v′′ the outgoing arcs as in [5, Figure 4]. Then, the graph is
a collection of complete bipartite graphs [5]. These graphs can be contracted into single nodes, and
then we add an arc between the contracted representations of each v′ and v′′. This can be computed in
linear time and is the original graph, since all nodes have become arcs again, and the arcs have the
correct predecessors and successors.
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value of k is odd, in which case this special case does not occur. We give a suffix-tree-
based deterministic linear-time algorithm to construct such a graph, filling a theory gap
in the literature, as existing approaches [8, 15, 13, 1] depend on the value of k and/or
are probabilistic due to the of use hashing, minimizers or Bloom filters, or do not use the
reverse-complement-aware definition of k-mers [7].

Given the bidirected de Bruijn graph, we present an algorithm that computes a minimum
plain text representation of k-mer sets without repetitions, which runs in output sensitive
linear time. Steps 1 to 3 run in linear time in the number of nodes and arcs in the graph. In
short, it works as follows:
1. Add breaking arcs into this graph to make it Eulerian.
2. Compute a Eulerian cycle in the resulting graph.
3. Break that cycle at the breaking arcs.
4. Output the strings spelled by the resulting walks.
The algorithm is essentially an adaption of the matchtigs algorithm [23], removing the
possibility of joining walks by repeating k-mers. We give detailed descriptions for all these
steps and prove their correctess in our bidirected de Bruijn graph model. Together with our
linear-time de Bruijn graph construction algorithm, we obtain the main result of our paper:

▶ Theorem 1. Let k be a positive integer and let I be a set of strings of length at least k

over some alphabet Σ. Then we can compute a set of strings I ′ of length at least k with
minimum cumulative length and CSk(I) = CSk(I ′) in O(||I|| log |Σ|) time.

where CSk(I) = CSk(I ′) means that I ′ is an SPSS of I, and ||I|| is the cumulative length of
I (see Section 2 for accurate definitions). This gives a positive answer to the open question
if a minimum SPSS without repetitions can be computed in polynomial time. Additionally,
we give an easily computable tight lower bound on the size of a minimum SPSS without
repetitions.

For our experiments, we have implemented steps 1 to 4 in Rust, taking the de Bruijn
graph as given. The implementation is available on github: https://github.com/algbio/
matchtigs. Our experimental evaluation shows that our algorithm does not result in
significant practical improvements, but for the first time allows to benchmark the quality the
heuristics prophasm and UST against an optimal solution. It turns out that both produce
close-to-optimal results, but with a different distribution of computational resources.

Our work also shows that using arc-centric de Bruijn graphs can aid the intuition for
certain problems, as in this case, the node-centric variant hides the relationship between
Eulerian cycles and minimum SPSS without repetition.

Organisation of the paper

In Section 2 we give preliminary definitions of well-known concepts. In Section 3 we define
de Bruijn graphs and prove the soundness of the definitions. In Section 4 we show how
to construct de Bruijn graphs by our definitions in linear time. In Section 5 we show how
to construct a minimum SPSS without repetitions in linear time if the de Bruijn graph is
given. In Section 6 we compare our algorithm and Eulertigs against strings computed with
prophasm and UST on practical data sets.

2 Preliminaries

In this section we give the prerequisite knowledge required for this paper.
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2.1 Bidirected graphs
In this section we define our notion of the bidirected graphs and the incidence model.

A multiset is defined as a set M , and an implicit function #M : M → Z+ mapping
elements to their multiplicities. The cardinality is defined as |M | :=

∑
s∈M #M (s).

An alphabet Σ is an ordered set, and an Σ-word is a string of characters of that set. String
concatenation is written as ab for two strings a and b. The set Σk is the set of all Σ-words
of length k and the set Σ∗ is the set of all Σ-words, including the empty word ϵ. Given
a positive integer k, the k-suffix sufk(w) (k-prefix prek(w)) of a word w is the substring
of its last (first) k characters. A k-mer is a word of length k. A complement function
over Σ is a function comp : Σ → Σ mapping characters to characters that is self-inverse
(i.e. comp(comp(x)) = x). A reverse complement function for alphabet Σ is a function
rc : Σ∗ → Σ∗ defined as rc((w1, . . . , wℓ)) := (comp(wℓ), . . . , comp(w1)), for some arbitrary
complement function comp. On sets, rc is defined to compute the reverse complement of
each element in the set. Note that rc is self-inverse. A canonical k-mer is a k-mer that is
lexicographically smaller than or equal to its reverse complement.

Given an integer k and an alphabet Σ, the k-spectrum of a set of strings I ⊆
⋃

k′≥k Σk′

is a set of strings Sk(I) := {w ∈ Σk | ∃i ∈ I : w is substring of i or rc(i)}. The canonical
k-spectrum of I is CSk(I) := {w ∈ Sk(I) | w is canonical}. For simplicity, the spectrum and
canonical spectrum are defined for a single string w as if it were a set {w}. A spectrum
preserving string set of a set of strings I is a set of strings I ′ such that CSk(I) = CSk(I ′).
The cumulative length of I is ||I|| :=

∑
w∈I |w|.

Our definition of a bidirected graph is mostly standard like in e.g. [17], however we allow
self-complemental nodes that occur in bidirected de Bruijn graphs. A bidirected graph is a
tuple G = (V, E, c) with a set of normal and self-complemental nodes v ∈ V , a set of arcs
e ∈ E, and a function c : V → {1, 0} marking self-complemental nodes with 1, and normal
nodes with 0. An incidence is a pair vd, where d ∈ {⊕,⊖,⊙} is called its sign (e.g. v⊕). The
negation of a sign is defined as ¬⊕ := ⊖, ¬⊖ := ⊕ and ¬⊙ := ⊙. For self-complemental nodes
v ∈ V , only incidences v⊙ are allowed, and for normal nodes only incidences v⊕ and v⊖ are
allowed. An arc (v1d1, v′

1d′
1, η) ∈ E is a tuple of incidences and a unique identifier η, where η

can be of any type. The reversal of an arc is denoted by (v1d1, v′
1d′

1, η)−1 := (v′
1d′

1, v1d1, η).
If not required, we may drop the identifier (i.e. just write (v1⊖, v′

1⊙) ∈ E). If a node v ∈ V

is present with a ⊕ (⊖) sign in an arc, then the arc is outgoing (incoming) from (to) v.
Note that, other than in standard directed graphs, in bidirected graphs arcs can be

outgoing or incoming on both ends, and the order of the incidences in the arc does not affect
if it is outgoing or incoming to a node. Further, our notation differs from that of standard
bidirected graphs in that arcs have a direction. This is required because we will work with
arc-centric de Bruijn graphs (see Section 3), which have labels on the arcs and not the nodes.
Using the sign of the incidence pairs, it is possible to decide if a node is traversed forwards
or backwards, but not if the arc is traversed forwards or backwards. But to decide which
label (forwards or reverse complement) to use when computing the string spelled by an arc,
the direction is relevant. See Figure 1 (a) for an example of a bigraph, which has labels that
make it a de Bruijn graph as well.

A walk in a bigraph is a sequence of arcs W := ((v1d1, v′
1d′

1, η1), (v2d2, v′
2d′

2, η2), . . . ,

(vℓdℓ, v′
ℓd

′
ℓ, ηℓ)) where for every i it holds that (vidi, v′

id
′
i, ηi) ∈ E or (v′

id
′
i, vidi, ηi) ∈ E (we

can arbitrarily walk over arcs forwards and reverse), and for every i < ℓ it holds that v′
i = vi+1

and d′
i = ¬di+1. The length of a walk is ℓ = |W |. If v1 = v′

ℓ and d1 = ¬d′
ℓ, then W is a cycle.

A bigraph is connected, if for each pair of nodes v1, v2 ∈ V there is a walk from v1 to v2.
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ATG CAAT

GA AG

GCAA ATC CAG

AGA

AAT

GAA

GCA

AGC

(a) Build the de Bruijn graph of the input strings.

ATG CAAT

GA AG

GCAA ATC CAG

AGA

AAT

GAA

GCA

AGC

(b) Eulerise the example graph.
ATG CAAT

GA AG

GCAA ATC CAG

AGA

AAT

GAA

GCA

AGC

(c) Compute a Eulerian cycle.

ATG CAAT

GA AG

GCAA ATC CAG

AGA

AAT

GAA

GCA

AGC

(d) Break the cycle at the arcs inserted in step (b).

Figure 1 Overview of our algorithm executed on the input strings {GAAT G, AT CT GCT} with
k = 3. After step (d), the resulting spelled SPSS is {AT C, AGAAT GCT G}.

For a node v ∈ V , the multiset of incidences is defined as I(v) := {vd | d ∈ {⊕,⊖,⊙}},
with multiplicities #I(v)(vd) :=

∑
e∈E #e(vd) (treating the arcs as multisets such that self-

loops count as two separate incidences). For a node v ∈ V that is not self-complemental, the
outdegree is defined as δ+(v) := #I(v)(v⊕), and the indegree is defined as δ−(v) := #I(v)(v⊖).
For a self-complemental node v ∈ V , the degree is defined as δ(v) := #I(v)(v⊙).

We define the imbalance of a node v ∈ V that is not self-complemental as the difference
of its outdegree and indegree imbalance(v) := δ+(v)− δ−(v). For a self-complemental node
v ∈ V the imbalance is defined as imbalance(v) := 1 if δ(v) is odd, and imbalance(v) := 0
otherwise. A node v ∈ V is called unbalanced, if imbalance(v) ̸= 0, and balanced otherwise.

A labelled graph is a bidirected graph G = (V, E, c) where the identifiers of arcs are strings
over some alphabet Σ (e.g. (v1⊕, v2⊖, ACCTG) ∈ E).

2.2 Suffix arrays and suffix trees
Section 4 requires knowledge of suffix arrays and suffix trees. We assume the reader is familiar
with these data structures, and briefly give the relevant definitions and properties below. We
point the reader to Gusfield [12] and Mäkinen [18] for an in-depth treatment of the topics.

A suffix array SAT for a string T is an array of length |T | such that SAT [i] is the starting
position of the lexicographically i-th suffix of T . The suffix array interval of a string x is the
maximal interval [i..j] such that all the suffixes pointed by SAT [i], . . . , SAT [j] have x as a
prefix, or the empty interval if x is not a substring of T .

A suffix tree of a string T is a compacted version of the trie of all suffixes of T , such that
non-branching paths are merged into single arcs, with arcs pointing away from the root. The
compactification concatenates the labels of the arcs on the compacted path. The nodes that
were compacted away and are now in the middle of an arc are called implicit nodes, and the
rest of the nodes are explicit. A locus (plural loci) is a node that is either explicit or implicit.
A locus v is represented by a pair (u, d), where u is the explicit suffix tree node at the end of
the arc containing v (u is equal to v if v is explicit), and d is the depth of locus v in the trie
of loci. The suffix array interval of a node is the interval of leaves in the subtree of the node.
The suffix array interval of an implicit locus (u, d) is the same as the suffix array interval
of u.

WABI 2022
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The suffix tree can be constructed in linear time in |T | using e.g. Ukkonen’s algorithm [24].
The tree comes with a function child that takes an explicit node and a character, and returns
the child at the end of the arc from that node whose label starts with the given character (if
such node exists). This can be implemented in O(log |Σ|) time by binary searching over child
pointers sorted by labels. The child function can also be easily implemented for implicit
loci. Ukkonen’s algorithm also produces suffix links for the explicit nodes, which map from
the suffix tree node of a string cx to the suffix tree node of string x. It is possible to emulate
suffix links on the implicit loci using constant-time weighted level-ancestor queries [4] by
mapping (u, d) 7→ (fd−1(SL(u)), d− 1), where SL(u) is the destination of a suffix link from
u, and fd−1(SL(u)) is the furthest suffix tree ancestor from SL(u) at depth at least d− 1 in
the trie of loci. The inverse pointers of suffix links are called Weiner links, and they can also
be simulated on the implicit loci by mapping (u, d) 7→ (WL(u, c), d + 1), where WL(u, c) is
the destination of a Weiner link from u with character c.

3 De Bruijn graphs

Algorithm 1 DeBruijnGraph.
Input: An integer k and a set of strings I where each string has length at least k.
Output: A de Bruijn graph G = (V, E, c) of order k.

1 V ← CSk−1(I) /* the nodes are the canonical (k − 1)-mers */
2 foreach v ∈ V do
3 if rc(v) = v then c(v)← 1 else c(v)← 0
4 foreach η ∈ CSk(I) do
5 w ← prek−1(η) /* compute v */
6 v ← canonical w

7 w′ ← sufk−1(η) /* compute v′ */
8 v′ ← canonical w′

9 if c(v) = 1 then d← ⊙ /* compute the direction of v */
10 else if v = w then d← ⊕
11 else d← ⊖
12 if c(v′) = 1 then d′ ← ⊙ /* compute the direction of v′ */
13 else if v′ ̸= w′ then d′ ← ⊕ /* note that ̸= differs from = above */
14 else d′ ← ⊖
15 e← (vd, v′d′, η) /* insert the arc into the graph */
16 E ← E ∪ {e}

The de Bruijn graph of order k of a set of input strings I is defined as a labelled graph
constructed by Algorithm 1. See Figure 1 (a) for an example. A de Bruijn graph computed
by this algorithm has the following property (see Appendix B for some of the proofs of this
section).

▶ Lemma 2 (Sound labels). Let k be a positive integer and let I be a set of strings of length
at least k. Let G = (V, E, c) be the de Bruijn graph of order k constructed from I. For all
pairs of arcs e1 := (v1d1, v′

1d′
1, η1), e2 := (v2d2, v′

2d′
2, η2) ∈ E it holds that:

(a) (v′
1 = v2 and d′

1 = ¬d2) if and only if sufk−1(η1) = prek−1(η2),
(b) (v′

1 = v′
2 and d′

1 = ¬d′
2) if and only if sufk−1(η1) = prek−1(rc(η2)),

(c) (v1 = v2 and d1 = ¬d2) if and only if sufk−1(rc(η1)) = prek−1(η2), and
(d) (v1 = v′

2 and d1 = ¬d′
2) if and only if sufk−1(rc(η1)) = prek−1(rc(η2)).
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Algorithm 2 Spell.
Input: A de Bruijn graph G = (V, E, c) of order k and a walk

W = (e1 := (v1d1, v′
1d′

1, η1), . . . , eℓ := (vℓdℓ, v′
ℓd′

ℓ, ηℓ)).
Output: The string s spelled by W , i.e. spell(W ).

1 if W is empty then
2 s← ϵ

3 else /* compute the sequence of kmers from W */
4 foreach i ∈ (1, . . . , ℓ) do /* iterate the sequence in order */
5 if ei ∈ E then κi ← ηi

6 else κi ← rc(ηi) /* e−1
i ∈ E */

7 s← k − 1 prefix of κ1

8 foreach i ∈ (1, . . . , ℓ) do /* iterate the sequence in order */
9 append the last character from κi to s

For a walk W := (e1 = (v1d1, v′
1d′

1, η1), . . . , eℓ = (vℓdℓ, v′
ℓd

′
ℓ, ηℓ)) in a de Bruijn graph, its

sequence of k-mers is K := (κ1, . . . , κℓ), where for each i we define κi as ηi if ei ∈ E, and
as rc(ηi) if e−1

1 ∈ E. The string spell(W ) is the string spelled by W , which is defined as its
collapsed sequence of kmers, i.e. its sequence of k-mers gets concatenated while overlapping
consecutive k-mers by k − 1. This is computed by Algorithm 2. We prove the following
lemmas to show that our definition of the spell(·) function is sound for our purposes, i.e.
correctly spells the string belonging to a walk in a de Bruijn graph.

▶ Lemma 3 (Sound sequence of k-mers). Let k be a positive integer and let I be a set of
strings of length at least k. Let G = (V, E, c) be the de Bruijn graph of order k constructed
from I. Let W := (e1 = (v1d1, v′

1d′
1, η1), . . . , eℓ = (vℓdℓ, v′

ℓd
′
ℓ, ηℓ)) be a walk in G, and

K := (κ1, . . . , κℓ) its sequence of k-mers. Then for each consecutive pair of kmers κi, κi+1 it
holds that sufk−1(κi) = prek−1(κi+1).
We define the sequence of k-mers K = (κ1, . . . , κℓ) of a string w = (a1, . . . , aℓ+k−1) by
κi := (ai, . . . , ai+k−1) for each i.

▶ Lemma 4 (Sound spell). Let k be a positive integer and let I be a set of strings of length
at least k. Let G = (V, E, c) be the de Bruijn graph of order k constructed from I. Let W be
a walk in G, KW its sequence of k-mers and K ′

W the sequence of k-mers of spell(W ). Then
KW = K ′

W .

▶ Lemma 5 (Complete representation). Let k be a positive integer and let I be a set of
strings of length at least k. Let G = (V, E, c) be the de Bruijn graph of order k constructed
from I. Let w be a string with CSk(w) ⊆ CSk(I). Then there exists a walk W in G with
spell(W ) = w.

Proof. Let Kw = (κ1, . . . , κℓ) be the sequence of k-mers of w. We construct W = (e1 =
(v1d1, v′

1d′
1, η1), . . . , eℓ = (vℓdℓ, v′

ℓd
′
ℓ, ηℓ)) as follows: for each i, let ηi be the canonical of κi

and fi ∈ E be the arc whose identifier is ηi. We set ei = fi if κi is canonical, and ei = f−1
i

otherwise.
For W to fulfil the definition of a walk we need that v′

i = vi+1 and d′
i = ¬d′

i+1 for all i.
Using Lemma 2, we get:

If ei, ei+1 ∈ E, then sufk−1(ηi) = sufk−1(κi) = prek−1(κi+1) = prek−1(ηi+1). Therefore,
by Lemma 2 a, it holds that v′

i = vi+1 and d′
i = ¬d′

i+1.

WABI 2022
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If ei, e−1
i+1 ∈ E, then sufk−1(ηi) = sufk−1(κi) = prek−1(κi+1) = prek−1(rc(ηi+1)). There-

fore, by Lemma 2 b, it holds that v′
i = vi+1 and d′

i = ¬d′
i+1.

If e−1
i , ei+1 ∈ E, then sufk−1(rc(ηi)) = sufk−1(κi) = prek−1(κi+1) = prek−1(ηi+1).

Therefore, by Lemma 2 c, it holds that v′
i = vi+1 and d′

i = ¬d′
i+1.

If e−1
i , e−1

i+1 ∈ E, then sufk−1(rc(ηi)) = sufk−1(κi) = prek−1(κi+1) = prek−1(rc(ηi+1)).
Therefore, by Lemma 2 d, it holds that v′

i = vi+1 and d′
i = ¬d′

i+1.

To complete the proof we need to show that spell(W ) = w. By definition, the sequence
of k-mers KW of W is equivalent to Kw. And since W is a walk, by Lemma 4 we get that
the sequence of k-mers of spell(W ) is equivalent to KW , and therefore spell(W ) = w. ◀

A walk cover W of a bigraph G is a set of walks such that for each arc e ∈ E it holds that e

is part of some walk W ∈ W, or e−1 is part of some walk W ∈ W.

▶ Theorem 6 (Dualism between SPSS and walk cover). Let k be a positive integer and let
I and I ′ be sets of strings of length at least k. Let G = (V, E, c) be the de Bruijn graph of
order k constructed from I. Then it holds that CSk(I) = CSk(I ′), if and only if there is a
walk cover W in G that spells the strings in I ′.

Proof. If CSk(I ′) ⊆ CSk(I), then for each string w′ ∈ I ′ it holds that CSk(w′) ⊆ CSk(I).
Therefore, by Lemma 5, there exists a walk w in G with spell(w) = w′. Then, the set of all
such walksW spells I ′. Further, because CSk(I) ⊆ CSk(I ′), the identifier η of each arc e ∈ E

is in CSk(I ′), and therefore in the sequence of kmers Kw′ of some string w′ ∈ I ′ (possibly as
a reverse complement). By Lemma 4 it holds that Kw′ = Kw, where Kw is the sequence of
k-mers of walk w. By the definition of the sequence of k-mers of a walk, this implies that w

visits e (possible in reverse direction). Since this holds for each e ∈ E, it holds that W is a
walk cover of G.

Assume that there is a walk coverW in G that spells the strings in I ′, and let w ∈ W be a
walk, Kw its sequence of k-mers, w′ := spell(w) and Kw′ the sequence of k-mers of w′. Then,
by Lemma 4, Kw = Kw′ , which, by the definition of the sequence of k-mers of a walk implies
that CSk(I) ⊆ CSk(I ′). And since W is a walk cover of G, we get CSk(I) = CSk(I ′). ◀

▶ Corollary 7. By setting I = I ′ in Theorem 6 we can confirm that our definition of a
de Bruijn graph is sound in that there is a set of walks that spells the strings used for its
construction.

A compacted de Bruijn graph is constructed from a de Bruijn graph by contracting all nodes
v ∈ V that are either self-complemental and have exactly two arcs that have exactly one
incidence to v each, or that are not self-complemental and have exactly one incoming and
one outgoing arc. For simplicity, we use uncompacted de Bruijn graphs in our theoretical
sections, however all results equally apply to compacted de Bruijn graphs.

4 Linear-time construction of compacted bidirected de Bruijn graphs

In this section, we fill a gap in the literature by describing on a high level an algorithm to
construct the bidirectional de Bruijn graph of a set of input strings in time linear in the total
length of the input strings, independent of the value of k.
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4.1 Algorithm
Let I = {w1, . . . wm} be the set of input strings. Consider the following concatenation:

T = $w1$w2$ . . . $wm$ rc(w1)$ rc(w2)$ . . . $ rc(wm)$ ,

where $ is a special character outside of the alphabet Σ of the input strings. We require an
index on T that can answer the following queries: extendRight, extendLeft, contractRight
and contractLeft in constant time. The extension operations take as input a character
c ∈ Σ and the interval of a string x in the suffix array of T , and return the suffix array
intervals of xc in the case of extendRight and cx in the case of extendLeft. The contraction
operations are the inverse operations of these, mapping the suffix array intervals of xc to
x in the case of contractRight and cx to x in the case of contractLeft. For efficiency,
we also require operations enumerateRight and enumerateLeft, which take a string x and
give all characters such that extendRight and extendLeft respectively return a non-empty
interval, in time that is linear in the number of such characters. Implementations for all the
six subroutines are given in Section 4.2.

Using these operations, we can simulate the regular non-bidirected de Bruijn graph
of T . Each k-mer of the input strings for a fixed k corresponds to a disjoint interval in the
suffix array of T . The nodes are represented by their suffix array intervals. The outgoing
arcs from a (k − 1)-mer x are those characters c where extendRight(x, c) returns a non-
empty interval. We can enumerate all the characters c with this property in constant time
using enumerateRight(x). The incoming arcs can be enumerated symmetrically with the
enumerateLeft(x). Finally, we can find the destination or origin of an arc labelled with x

by running a contractLeft or contractRight operation respectively on x.
To construct the bidirected de Bruijn graph, we merge together nodes that are the reverse

complement of each other. To find which nodes are complemental, we scan the input strings I

while maintaining the suffix array interval of the current k-mer using extendRight and
contractLeft operations, while at the same time maintaining the suffix array interval of
the reverse complement using extendLeft and contractRight operations. Whenever we
merge two nodes, we combine the incoming and outgoing arcs, assigning the incidences of the
arcs according to the incidence rules in our definition. We are able to tell in constant time
which k-mer of a pair of complemental k-mers is canonical by comparing the suffix array
intervals of the k-mers: the k-mer whose suffix array interval has a smaller starting point is
the canonical k-mer. If the starting points are the same, the k-mer is self-complemental.

Using the enumerateRight and enumerateLeft functions, we can check if a node would
be contracted in a compacted de Bruijn graph. By extending k-mers over such nodes, we
can in linear time also output only the arcs and nodes of a compacted de Bruijn graph. For
storing the labels, we use one pointer into the input strings to store a single k-mer, as well
as a flag that is set whenever the label is not canonical. If a label has multiple k-mers, then
we store the remaining k-mers as explicit strings, however without their overlap with the
“pointer-k-mer”. This way, we can store each label in O(ℓ) space, where ℓ is the number of
k-mers in the label. We additionally store the first and last character of each label, as an
easy way to make the spell function run in output sensitive linear time.

4.2 Implementation of the subroutines
All required the subroutines extendRight, extendLeft, contractRight, contractLeft,
enumerateRight and enumerateLeft can be implemented with the suffix tree of T by
simulating the trie of the suffix tree loci as described in Section 2.2. The suffix array intervals
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of explicit nodes can be stored with the nodes, so that we can operate on loci (u, d) and
retrieve the suffix array intervals on demand. The operation extendRight follows an arc
from a locus to a child, and the operation contractRight is implemented by going to the
parent of the current locus. The operation contractLeft follows a suffix link from the
current locus, and extendLeft follows a Weiner link. The operations enumerateRight and
enumerateLeft are implemented by storing the children and the Weiner links from explicit
suffix tree nodes as neighbor lists. The total number of these links is linear in |T | [18].
With this implementation, the slowest operations are extendRight and extendLeft, taking
O(log |Σ|) time to binary search the neighbor lists. We therefore obtain the following result:

▶ Theorem 8. The compacted arc-centric bidirected de Bruijn graph of order k of a set of
input strings I from the alphabet Σ can be constructed in time O(||I|| log |Σ|).

We note that the same operations can also be implemented on top of the bidirectional BWT
index of Belazzougui and Cunial [2], using the data structures of Belazzougui et al. [3] for
the enumeration operations. This gives an index that supports all the required subroutines
in constant time. The drawback of the bidirectional BWT index is that only randomized
construction algorithms are known, but the expected time is still linear in |T |. We leave as
an open problem the construction of the compacted arc-centric bidirected de Bruijn graph in
deterministic linear time independent of the alphabet size.

5 Linear-time minimum SPSS without repetitions

Let I be a set of strings. To compute an SPSS without repetitions we first build a compacted
de Bruijn graph G from I. Because of Theorem 6, finding an SPSS is equivalent to finding
a walk cover in G. Further, with Lemma 4, we get that an SPSS without repetitions is
equivalent to a walk cover that visits each arc exactly once (either once forwards, or once
reverse, but not both forwards and reverse). We call such a walk cover a unique walk cover.

For minimality, observe that the cumulative length of an SPSS S relates to its equivalent
set of walks W as follows:

||S|| =
∑

W ∈W
(k − 1 + |W |) (1)

This is because in Algorithm 2, in Line 7, k − 1 characters are appended to the result, and
then in the loop in Line 8, one additional character per arc in W is appended. We cannot
alter the sum

∑
W ∈W |W |, since we need to cover all arcs in G. However we can alter the

number of strings, and decreasing or increasing this number by one will decrease or increase
the cumulative length of S by k − 1. Therefore, finding a minimum SPSS of I without
repetitions equals finding a unique walk cover of G that has a minimum number of walks.

Note that computing a minimum SPSS in a bigraph that is not connected is equivalent to
separately computing an SPSS in each maximal connected subgraph. Therefore we restrict
to connected bigraphs from here on.

5.1 A lower bound for an SPSS without repetitions
Using the imbalance of the nodes of a bigraph, we can derive a lower bound for the number
of walks in a walk cover.

▶ Lemma 9. Let v ∈ V be an unbalanced node in a bigraph G = (V, E, c). Then in a unique
walk cover W of G, either at least | imbalance(v)| walks start in v, or at least | imbalance(v)|
walks end in v.
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Proof. If v is self-complemental, then its imbalance is 1, so by definition v has an odd number
of incident arcs. Each walk that does not start or end in v needs to enter and leave v via
two distinct arcs whenever it visits v. But since the number of incident arcs is odd, there is
at least one arc that cannot be covered this way, implying that a walk needs to start or end
in this arc.

If v is not self-complemental and has a positive imbalance, then it has imbalance(v) more
outgoing arcs then incoming arcs. Since walks need to leave v with the opposite sign than
they entered v, at least imbalance(v) arcs cannot be covered by walks that do not start or
end in v. If v has negative imbalance, the situation is symmetric. ◀

▶ Definition 10 (Imbalance of a bigraph). The imbalance imbalance(G) of a bigraph G =
(V, E, c) is the sum of the absolute imbalance of all nodes

∑
v∈V | imbalance(v)|.

▶ Theorem 11 (Lower bound). Let G be a bigraph. A walk cover W of G has a minimum
string count of imbalance(G)/2.

Proof. Let v ∈ V be an unbalanced node. Then, by Lemma 9 at least | imbalance(v)| walks
start in v or at least | imbalance(v)| walks end in v. Since each walk has exactly one start
node and one end node, W has a minimum string count of imbalance(G)/2. ◀

5.2 Eulerising a bigraph

Algorithm 3 Eulerise.
Input: Bigraph G = (V, E, c).
Output: Eulerised bigraph G′ = (V, E′, c).

1 G′ ← G /* G and G′ share V and c */
2 L← empty list /* collect missing incidences to balance G′ */
3 foreach v ∈ V do
4 i← imbalance(v)
5 if c(v) = 1 then
6 if i ̸= 0 then append v⊙ to L

7 else
8 if i > 0 then append i copies of v⊖ to L

9 if i < 0 then append i copies of v⊕ to L

10 while |L| > 0 do /* insert missing incidences as arcs */
11 vd← remove the first incidence from L

12 v′d′ ← remove the first incidence from L

13 insert 1 arc (vd, v′d′, |L|) into E′ /* use distinct identifiers */

A directed graph is called Eulerian, if all nodes have indegree equal to outdegree, i.e.
are balanced [10]. If the graph is strongly connected3, then this is equivalent to the graph
admitting a Eulerian cycle, i.e. a cycle that visits each arc exactly once. The same notion
can be used with bidirected graphs, using our definition of imbalance.

▶ Definition 12 (Eulerian bigraph). A bigraph is Eulerian, if all nodes have imbalance zero.

A connected bigraph can be transformed into a Eulerian bigraph by adding arcs using
Algorithm 3. See Figure 1 (b) for an example.

3 Strongly connected means that there is a directed path from each node v1 to each node v2.
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▶ Lemma 13. The imbalance of a bigraph is even.

Proof. Adding or removing an arc changes the imbalance of two nodes by 1, or of one node
by two. In both cases, the imbalance of the graph can only change by −2, 0, or 2. Since the
imbalance of a graph without arcs is 0, this implies that there can be no graph with odd
imbalance. ◀

▶ Lemma 14. Given a connected bigraph G = (V, E, c), Algorithm 3 outputs a Eulerian
bigraph G′ = (V, E′, c).

Proof. Algorithm 3 is well-defined, since by Lemma 13, it holds that L has even length
in each iteration of the loop in Line 10, so the removal operation in Line 12 always has
something to remove.

The output of Algorithm 3 is a valid bigraph, since for self-complemental nodes v ∈ V ,
only incidences v⊙ are added to G′, and for not self-complemental nodes v ∈ V , only
incidences v⊕ and v⊖ are added to G′.

Further, the output is a Eulerian bigraph, because for all v ∈ V , it holds that imbalance(v)
is 0, by the following argument:

If c(v) = 1 and v has imbalance zero in G, then its imbalance stays the same in G′. If
it has imbalance 1, then one incident arc is inserted, making its degree even and its
imbalance therefore zero.
If c(v) = 0 and v has positive imbalance i in G, then i incoming arcs are added to v

(counting incoming self-loops twice), and no outgoing arcs are added. Therefore, it has
imbalance zero in G′. By symmetry, if v has negative imbalance in G, it has imbalance
zero in G′. ◀

▶ Lemma 15. Given a bigraph G = (V, E, c), Algorithm 3 terminates after O(|V | + |E|)
steps.

Proof. For the list data structure we choose a doubly linked list, and for the graph an
adjacency list (and array with an entry for each node containing a doubly linked list for the
arcs).

The loop in Line 3 runs |V | times and each iteration runs in O(| imbalance(v)|) for a node
v, because a doubly linked list supports appending in constant time. The sum of absolute
imbalances of all nodes cannot exceed 2|E|, because each arc adds at most 1 to the absolute
imbalance of at most two nodes, or adds at most 2 to the absolute imbalance of at most one
node. Therefore, the length of list L after completing the loop is at most 2|E|, and the loop
runs in O(|V |+ |E|) time.

The loop in Line 10 runs at most |L| ≤ 2|E| times and performs only constant-time
operations, since L is a doubly linked list and we can insert arcs into an adjacency list in
constant time. Therefore, this loop also runs in O(|V |+ |E|) time. ◀

With Lemmas 14 and 15 we get the following.

▶ Theorem 16. Algorithm 3 is correct and runs in O(|V |+ |E|) time.

5.3 Computing a Eulerian cycle in a bigraph
After Eulerising the bigraph, we can compute a Eulerian cycle using Algorithm 4. We do this
similarly to Hierholzer’s classic algorithm for Eulerian cycles [10]. First we find an arbitrary
cycle. Then, as long as there are unused arcs left, we search along the current cycle for
unused arcs, and find additional cycles through such unused arcs. We integrate each of those
additional cycles into the main cycle. See Figure 1 (c) for an example of a Eulerian cycle.
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Algorithm 4 EulerianCycle.
Input: Connected Eulerian bigraph G = (V, E, c).
Output: Eulerian cycle W .

1 while |E| > 0 do
2 if |W | = 0 then
3 (vd, v′d′, η)← remove some arc from E

4 W ′ ← ((vd, v′d′, η)) /* doubly linked list */

5 else /* search a used arc that connects to an unused arc */
6 (vd, v′d′, η)← dereference first_unfinished

7 while E has no arc with incidence v′¬d′ do
8 advance first_unfinished to the next arc in W

9 (vd, v′d′, η)← dereference first_unfinished

// extend W ′ without repeating arcs until it closes a cycle
10 while E contains an arc e = (vede, v′

ed′
e, ηe) with incidence v′¬d′ do

11 remove e from E

12 if vede = v′¬d′ then (vd, v′d′, η)← (vede, v′
ed′

e, ηe)
13 else (vd, v′d′, η)← (v′

ed′
e, vede, ηe) /* v′

ed′
e = v′¬d′ */

14 append (vd, v′d′, η) to W ′

15 if |W | = 0 then
16 W ←W ′

17 first_unfinished← pointer to the first arc in W

18 else
19 insert W ′ after first_unfinished in W

20 W ′ ← () /* empty doubly linked list */

▶ Lemma 17. Given a connected Eulerian bigraph G = (V, E, c), Algorithm 4 terminates
and outputs a Eulerian cycle W .

Proof. For W = (e1 = (v1d1, v′
1d′

1, η1), . . . , eℓ = (vℓdℓ, v′
ℓd

′
ℓ, ηℓ)) to be a Eulerian cycle, it

must be a cycle that contains each arc exactly once.
The sequence W ′ constructed by the loop in Line 10 is a walk by construction, and since

G is Eulerian it is a cycle after the loop terminates. After finding the initial cycle in the first
iteration of the outer loop, each additional cycle is started from a node on the initial cycle,
and is a cycle again. Therefore it can be inserted into the original cycle without breaking its
cycle property.

Since each arc is deleted when being added to W ′, there is no duplicate arc in W . And if
the algorithm terminates, then |E| = 0 (Line 1), so W contains all arcs.

For termination, consider that if W is not complete after the first iteration of the outer
loop, then the loop in Line 7 searches for an unused arc using the first_unfinished pointer.
Since the prefix of W up to including first_unfinished is never modified (Line 19), and
first_unfinished is only advanced when its pointee cannot reach any arc anymore, it holds
that no arc in W can reach an arc in E when first_unfinished gets advanced over the end
of W . Since G was initially Eulerian and only Eulerian cycles have been removed from G,
this implies that all nodes visited by W are still balanced and therefore have no incident
arcs anymore. And since G was originally connected, W has visited all nodes, i.e. |E| = 0.
Therefore, first_unfinished cannot be advanced over the end of W , because the outer loop
terminates before that.
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To complete the proof of termination, consider that in each iteration of the outer loop, at
least one arc gets removed from E. In the first iteration, this happens at least in Line 3, and
in all following iterations, this happens in Line 11. ◀

▶ Lemma 18. Given a connected Eulerian bigraph G = (V, E, c), Algorithm 4 terminates
after O(|V |+ |E|) steps.

Proof. We use a doubly linked list for W and W ′, and an adjacency list for G. Then all
lines can be executed in constant time.

The loop in Line 10 removes one arc from E each iteration, so it runs at most |E| times in
total (over all iterations of the outer loop). The loop in Line 7 advances first_unfinished

each iteration. Since the algorithm is correct by Lemma 17, |W | ≤ |E| and first_unfinished

never runs over the end of first_unfinished, so the loop runs at most |E| times in total
(over all iterations of the outer loop).

The condition for the loop in Line 10 is true at least once in each iteration of the outer
loop, since the preceding branch sets up (vd, v′d′, η) such that it has a successor (in the first
iteration because of Eulerianess). So in each iteration of the outer loop, at least one arc gets
removed, so the outer loop runs at most |E| times in total.

As a result, all loops individually run at most |E| times, therefore Algorithm 4 terminates
after O(|V |+ |E|) steps. ◀

With Lemmas 17 and 18 we get the following.

▶ Theorem 19. Algorithm 4 is correct and runs in O(|V |+ |E|) time.

5.4 Computing a minimum SPSS without repetitions
We convert the Eulerian cycle into a walk cover of the original bigraph by breaking it at all
arcs inserted by Algorithm 3, and removing those arcs (see Figure 1 (d) for an example).
This results in a walk cover with either one walk, if Algorithm 3 inserted zero or one
arcs, or imbalance(G)/2 arcs, if Algorithm 3 inserted more arcs. By Theorem 11, this is a
minimum number of walks, and therefore the SPSS spelled by these walks is minimum as
well. Constructing the de Bruijn graph takes O(||I|| log Σ) time, and it has O(||I||) k-mers,
so it holds that |V | ∈ O(||I||) and |E| ∈ O(||I||). Further, spelling the walk cover takes
time linear to the cumulative length of the spelled strings. Since we compute a minimum
representation, it holds that the output is not larger than the total length of the input strings.
Therefore we get:

▶ Theorem 1. Let k be a positive integer and let I be a set of strings of length at least k

over some alphabet Σ. Then we can compute a set of strings I ′ of length at least k with
minimum cumulative length and CSk(I) = CSk(I ′) in O(||I|| log |Σ|) time.

6 Experiments

We ran our experiments on a server running Linux with two 64-core AMD EPYC 7H12
processors with 2 logical cores per physical core, 1.96TiB RAM and an SSD. Our data sets
are the same as in [23], and we also adapted their metrics cumulative length (CL), which is
the total count of characters in all strings, and string count (SC), which is the number of
strings. Our implementation does not use the formalisation of bidirected graphs introduced
in this work, but instead uses the formalisation from [23]. For constructing de Bruijn graphs,
we do not implement our purely theoretical linear time algorithm, since practical de Bruijn
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Table 1 Experiments on references and read sets of single genomes with k = 51 and a min
abundance of 10 for human and 1 for the others. The CL and SC ratios are compared to the
CL-optimal Eulertigs. For time and memory, we report the total time and maximum memory
required to compute the tigs from the respective data set. BCALM2 directly computes unitigs,
while UST- and Eulertigs require a run of BCALM2 first before they can be computed themselves.
Prophasm can only be run for k ≤ 32, which does not make sense for large genomes. The number in
parentheses behind time and memory indicates the slowdown/increase over computing just unitigs
with BCALM2. BCALM2 was run with 28 threads, while all other tools support only one thread.
The lengths of the genomes are 100Mbp for C. elegans, 482Mbp for B. mori and 3.21Gbp for H.
sapiens and the read data sets have a coverage of 64x for C. elegans, 58x for B. mori and 300x for H.
sapiens.

genome algorithm CL ratio SC ratio time [s] memory [GiB]

C. elegans (reads)
unitigs 1.789 2.831 1888 5.97
UST 1.035 1.080 2738 (1.45) 15.2 (2.54)
Eulertigs 1 1 3735 (1.98) 25.0 (4.19)

B. mori (reads)
unitigs 1.912 3.136 7737 9.36
UST 1.050 1.118 10937 (1.41) 52.4 (5.60)
Eulertigs 1 1 13793 (1.78) 79.4 (8.48)

H. sapiens (reads)
unitigs 1.418 2.143 56966 13.0
UST 1.016 1.044 57736 (1.01) 16.4 (1.26)
Eulertigs 1 1 58861 (1.03) 29.2 (2.25)

C. elegans
unitigs 1.060 3.154 54.7 1.22
UST 1.002 1.089 58.0 (1.06) 1.22 (1.00)
Eulertigs 1 1 65.9 (1.21) 1.22 (1.00)

B. mori
unitigs 1.262 3.310 224 3.32
UST 1.018 1.156 258 (1.16) 3.32 (1.00)
Eulertigs 1 1 315 (1.41) 3.32 (1.00)

H. sapiens
unitigs 1.195 3.532 3166 10.0
UST 1.015 1.192 3369 (1.06) 10.0 (1.00)
Eulertigs 1 1 3717 (1.17) 10.0 (1.00)

graph construction is a well-researched field [8, 13, 15, 9, 20, 19], and we want to focus
more on computing the compressed representation from unitigs. UST only supports unitigs
constructed by BCALM2 [8], since it needs certain additional data. BCALM2 is not a linear
time algorithm, but works efficient in practice. Therefore, we use BCALM2 to construct
a node-centric de Bruijn graph, and then convert it to an arc-centric variant using a hash
table.

Our experimental pipeline is constructed with [16] and using the bioconda software
repository [11]. We ran all multithreaded tools with up to 28 threads and never used more
than 128 cores of our machine at once to prevent hyperthreading from affecting our timing.
The code to reproduce our experiments is available at https://doi.org/10.5281/zenodo.
6538261.

The performance figures are all very similar, with two exceptions. Prophasm does not
support parallel computation at the moment, therefore its runtime is much higher. Compared
to that, all other algorithms use parallel computation to compute unitigs, but computing
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Table 2 Experiments on (references of) pangenomes with k = 31 and a min abundance of 1.
The CL and SC ratios are compared to the CL-optimal Eulertigs. For time and memory, we report
the total time and maximum memory required to compute the tigs from the respective data set.
BCALM2 directly computes unitigs, while UST- and Eulertigs require a run of BCALM2 first before
they can be computed themselves. Prophasm is run directly on the source data. The number in
parentheses behind time and memory indicates the slowdown/increase over computing just unitigs
with BCALM2. BCALM2 was run with 28 threads, while all other tools support only one thread.
The N. gonorrhoeae pangenome contains 8.36 million unique kmers, the S. pneumoniae pangenome
contains 19.3 million unique kmers and the E. coli pangenome contains 341 million unique kmers.

pangenome tigs CL ratio SC ratio time [s] memory [MiB]

1102x N. gonorrhoeae

unitigs 1.615 3.052 24.2 4328
UST 1.022 1.074 26.1 (1.08) 4328 (1.00)
prophasm 1.00004 1.00013 774 (31.9) 208 (0.05)
Eulertigs 1 1 26.9 (1.11) 4328 (1.00)

616x S. pneumoniae

unitigs 1.679 3.055 21.4 3135
UST 1.027 1.081 25.9 (1.21) 3135 (1.00)
prophasm 1.00004 1.00012 436 (20.3) 434 (0.14)
Eulertigs 1 1 28.5 (1.33) 3135 (1.00)

3682x E. coli

unitigs 1.705 3.092 334 7146
UST 1.031 1.092 416 (1.24) 7146 (1.00)
prophasm 1.00008 1.00023 7456 (22.3) 7221 (1.01)
Eulertigs 1 1 471 (1.41) 7146 (1.00)

the final tigs from unitigs seems to be negligible compared to computing the de Bruijn
topology. Moreover, running UST or Eulertigs on read data sets of larger genomes consumes
significantly more memory than computing just unitigs. This is likely because BCALM2
uses external memory to compute unitigs, while the other tools simply load the whole set of
unitigs into memory.

It is notable that the Eulertigs algorithm is always slower than UST. This may be because
of the Eulertig algorithm being more complex, but also because our loading and storing
routines might not be as efficient. While UST uses node-centric de Bruijn graphs and can
therefore directly make use of the topology output by BCALM2 (which is a fasta file with
arcs stored as custom annotations), we need to convert the graph into arc-centric format.
This is supported by e.g. the B. mori short read data set, on which the computation of
Eulertigs uses only 11% of the runtime for the algorithm itself, while 89% are from loading
the graph (including the conversion to arc-centric) and storing the result.

In terms of CL, we see that the SPSS computed with UST mostly remains within the
expected 3% of the lower bound, but they are up to 5% above the lower bound on more
compressible data sets. The SPSS computed by prophasm is very close to the optimum in
all cases, and we assume that this difference in quality is because prophasm extends paths
both forwards and backwards, while the UST heuristic merely extends them forwards.

Looking at SC, we see that Eulertigs are always the lowest, which is due to the string
count directly being connected to the cumulative length by Equation (1). This also explains
the correlation between CL and SC, which can be observed in all cases.
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7 Conclusions

We have presented a linear and hence optimal algorithm for computing a minimum SPSS
without repetitions for a fixed alphabet size. This closes the open question about its
complexity raised in [6, 22]. Using our optimal algorithm, we were able to accurately evaluate
the existing heuristics and show that they are very close to the optimum in practice. Further,
we have published our algorithm as a command-line tool on github, allowing it to easily be
used in other projects.

Further, we have presented how bidirected de Bruijn graphs can be formalised without
excluding any corner cases. We have also shown how such a graph can be constructed in
linear time for a fixed-size alphabet. The construction of the compacted arc-centric bidirected
de Bruijn graph in linear time independent of the alphabet size stays an open problem.
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B Omitted proofs

▶ Lemma 2 (Sound labels). Let k be a positive integer and let I be a set of strings of length
at least k. Let G = (V, E, c) be the de Bruijn graph of order k constructed from I. For all
pairs of arcs e1 := (v1d1, v′

1d′
1, η1), e2 := (v2d2, v′

2d′
2, η2) ∈ E it holds that:

(a) (v′
1 = v2 and d′

1 = ¬d2) if and only if sufk−1(η1) = prek−1(η2),
(b) (v′

1 = v′
2 and d′

1 = ¬d′
2) if and only if sufk−1(η1) = prek−1(rc(η2)),

(c) (v1 = v2 and d1 = ¬d2) if and only if sufk−1(rc(η1)) = prek−1(η2), and
(d) (v1 = v′

2 and d1 = ¬d′
2) if and only if sufk−1(rc(η1)) = prek−1(rc(η2)).

Proof. Observe that the values of w and w′ computed in Lines 5 and 7 of Algorithm 1
are equal to prek−1(η1) and sufk−1(η1) for e1 and equal to prek−1(η2) and sufk−1(η2) for
e2. Further, observe that the values of v and v′ computed in Lines 6 and 8 are equal to v1
and v′

1 for e1 and equal to v2 and v′
2 for e2. This makes v1, v′

1, v2 and v′
2 the canonicals of

prek−1(η1), sufk−1(η1), prek−1(η2) and sufk−1(η2). Finally, observe that the sign values d

and d′ computed in Lines 9–14 are equal to d1 and d′
1 for e1 and equal to d2 and d′

2 for e2.

(a) If v′
1 = v2 and d′

1 = ¬d2, then w′
1 = w2 for all possible values of d′

1, and therefore
sufk−1(η1) = prek−1(η2).
If sufk−1(η1) = prek−1(η2), then w′

1 = w2, and therefore v′
1 = v2 because v′

1 and v2 are
the canonicals of w′

1 and w2. Additionally, d′
1 = ¬d2 for all possible values of d′

1.
(b) If v′

1 = v′
2 and d′

1 = ¬d′
2, then w′

1 = rc(w′
2) for all possible values of d′

1, and therefore
sufk−1(η1) = rc(sufk−1(η2)) = prek−1(rc(η2)).
If sufk−1(η1) = prek−1(rc(η2)), then w′

1 = rc(w′
2), and therefore v′

1 = v′
2 because v′

1 and
v′

2 are the canonicals of w′
1 and w′

2. Additionally, d′
1 = ¬d′

2 for all possible values of d′
1.
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(c) If v1 = v2 and d1 = ¬d2, then rc(w1) = w2 for all possible values of d1, and therefore
sufk−1(rc(η1)) = rc(prek−1(η1)) = prek−1(η2).
If sufk−1(rc(η1)) = prek−1(η2), then w1 = rc(w2), and therefore v1 = v2 because v1 and
v2 are the canonicals of w1 and w2. Additionally, d1 = ¬d2 for all possible values of d1.

(d) This case is equivalent to the first case when swapping e1 and e2, because sufk−1(η1) =
prek−1(η2) ⇐⇒ sufk−1(rc(η2)) = prek−1(rc(η1)). ◀

▶ Lemma 3 (Sound sequence of k-mers). Let k be a positive integer and let I be a set of
strings of length at least k. Let G = (V, E, c) be the de Bruijn graph of order k constructed
from I. Let W := (e1 = (v1d1, v′

1d′
1, η1), . . . , eℓ = (vℓdℓ, v′

ℓd
′
ℓ, ηℓ)) be a walk in G, and

K := (κ1, . . . , κℓ) its sequence of k-mers. Then for each consecutive pair of kmers κi, κi+1 it
holds that sufk−1(κi) = prek−1(κi+1).

Proof. Let i ∈ {1, . . . , ℓ−1}. By the definition of walk it holds that v′
i = vi+1 and d′

i = ¬di+1.
We can apply Lemma 2 case by case.
(a) If ei, ei+1 ∈ E, then by Lemma 2 a, it holds that sufk−1(ηi) equals prek−1(ηi+1). By

definition, κi = ηi and κi+1 = ηi+1, so sufk−1(κi) = prek−1(κi+1).
(b) If ei, e−1

i+1 ∈ E, then by Lemma 2 b applied to ei, e−1
i+1, it holds that sufk−1(ηi)

equals prek−1(rc(ηi+1)). By definition, κi = ηi and κi+1 = rc(ηi+1), so sufk−1(κi) =
prek−1(κi+1)

(c) If e−1
i , ei+1 ∈ E, then by Lemma 2 c applied to e−1

i , ei+1, it holds that sufk−1(rc(ηi))
equals prek−1(ηi+1). By definition, κi = rc(ηi) and κi+1 = ηi+1, so sufk−1(κi) =
prek−1(κi+1).

(d) If e−1
i , e−1

i+1 ∈ E, then by Lemma 2 d applied to e−1
i , e−1

i+1, it holds that sufk−1(rc(ηi))
equals prek−1(rc(ηi+1)). By definition, κi = rc(ηi) and κi+1 = rc(ηi+1), so sufk−1(κi) =
prek−1(κi+1). ◀

▶ Lemma 4 (Sound spell). Let k be a positive integer and let I be a set of strings of length
at least k. Let G = (V, E, c) be the de Bruijn graph of order k constructed from I. Let W be
a walk in G, KW its sequence of k-mers and K ′

W the sequence of k-mers of spell(W ). Then
KW = K ′

W .

Proof. Let (κ1, . . . , κℓ) := KW . We use induction over the length of W . For an empty W ,
K is empty, spell(W ) is empty, and therefore K ′ is empty as well. For |W | = 1, Algorithm 2
outputs spell(W ) = κ1 and it holds that K ′

W = (κ1) = KW .
For |W | ≥ 2 we consider that KX = K ′

X holds for a prefix X of W with |X| = |W | − 1.
When i = |W | at the beginning of the loop in Line 8, then s = spell(X). By Lemma 3 it
holds that the last k−1 characters of s are equal to the first k−1 characters of κℓ. Therefore,
by appending the last character from κℓ to s, κℓ is appended to K ′

X forming K ′
W . Therefore,

last k-mer of K ′
W equals the last k-mer of KW , and the first ℓ− 1 k-mers of K ′

W equal those
of KW by induction. ◀

C Pseudocode for linear-time construction of compacted de Bruijn
graphs

The pseudocode for computing a compacted de Bruijn graph in linear time is given by
Algorithm 6 which uses Algorithm 5 as a subroutine. The data structure D used by the
algorithms is that described in Section 4. Note that if we compute the arc labels as plain
strings as in Algorithm 1, we need up to O(k) bits to store a single-k-mer arc. And since arcs
are not substrings of input strings (but potentially combinations of input strings), we would
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need a string set of up to O(k||I||) characters to store all arc labels without referring to the
input strings. This contradicts the algorithm being linear in ||I||. However, we can store the
labels as tuples (p, η, q, r), where pηq is the label where p and q are explicit strings while η is
a pointer to a k-mer in the input. If r is true, then the label must be reverse complemented
to match that defined by Algorithm 1. With this fix, the size of each label is linear in the
number of k-mers it represents, and in total the de Bruijn graph represents O(||I||) k-mers.

The comparison on Line 16 of Algorithm 6 can be done in linear time in |η1|+ |η2| by
finding the suffix array intervals of η1ηη2 and rc(η1ηη2) with extendLeft and extendRight
from η and rc(η) respectively, and comparing the starts of the intervals. This way, the total
time taken by all those comparisons is proportional to the sum of |η1|+ |η2| over all unitigs,
which is linear in ||I|| because each character of η1 and η2 can be mapped to a distinct edge
in the non-compacted de Bruijn graph of ||I||. Therefore, the algorithm can be implemented
to run in O(||I||) time.

Our pseudocode does not compute the first and last character of each arc-label, but this
can be easily computed in constant time using wi, η1 and η2 in Algorithm 6.

Algorithm 5 FindUnitigEnd.

Input: A data structure D, a pair of suffix-intervals [af , bf ], [ar, br], an array SE

mapping from suffix-space to boolean, an array SV mapping from suffix
space to nodes, a set of nodes V . Each node in V contains a parameter c.

Output: A node v at the end of the unitig and a sign d, as well as the updated
SE , SV , V and the label η of the traversed path.

1 [af , bf ]← contractLeft(D, [af , bf ])
2 [ar, br]← contractRight(D, [ar, br])
3 η ← ϵ

// extend over (k − 1)-mers that have indegree and outdegree of 1
4 while |enumerateRight(D, [af , bf ]) ∪ rc(enumerateLeft(D, [ar, br]))| =
|enumerateLeft(D, [af , bf ]) ∪ rc(enumerateRight(D, [ar, br]))| = 1 do

5 {σ} ← enumerateRight(D, [af , bf ]) ∪ rc(enumerateLeft(D, [ar, br]))
6 η ← ησ

7 [af , bf ]← extendRight(D, [af , bf ], σ)
8 [ar, br]← extendLeft(D, [ar, br], rc(σ))
9 foreach h ∈ [af , bf ] ∪ [ar, br] do SE [h]← true

10 [af , bf ]← contractLeft(D, [af , bf ])
11 [ar, br]← contractRight(D, [ar, br])
12 if SV [af ] = ⊥ then
13 insert node v into V

14 foreach h ∈ [af , bf ] ∪ [ar, br] do SV [h]← v

15 else v ← SV [af ]
16 if af = ar then c(v)← 1 ; d← ⊙ /* v self-complemental */
17 else if af < ar then c(v)← 0 ; d← ⊖ /* v canonical */
18 else c(v)← 0 ; d← ⊕ /* v not canonical */
19 return (v, d, SE , SV , V, η)
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Algorithm 6 LinearCompactedDbg.

Input: An integer k and a set of strings I = (w1, . . . , wℓ) where each string has
length at least k.

Output: A de Bruijn graph G = (V, E, c) of order k.
1 V ← ∅; E ← ∅ // c is stored as parameter of each node

// $ is a special character outside of the alphabet
2 T ← $w1$w2$ . . . $wℓ$ rc(w1)$ rc(w2)$ . . . $ rc(wℓ)$
3 SV ← array of length |T | filled with ⊥ mapping from suffix space to nodes in V

4 SE ← array of length |T | filled with false marking used k-mers
5 build data structure D over T // See text in Section 4
6 foreach wi ∈ I do
7 [af , bf ]← find(D, prek(wi)) // Suffix array interval of prek(wi)
8 [ar, br]← find(D, prek(rc(wi))) // Suffix array interval of prek(rc(wi))
9 foreach j ∈ (k + 1, . . . , |wi|) do

10 if SE [af ] = false then // create arc from unused k-mer
11 foreach h ∈ [af , bf ] ∪ [ar, br] do SE [h]← true

12 η ← pointer to prek(wi)
// find unitig start by finding the end on the rev. comp.

13 (v1, d1, SE , SV , V, η1)← FindUnitigEnd(D, [ar, br], [af , bf ], SE , SV , V )
// find unitig end

14 (v2, d2, SE , SV , V, η2)← FindUnitigEnd(D, [af , bf ], [ar, br], SE , SV , V )
// Reverse because finding the start was done in reverse

15 η1 ← rc(η1)
16 if rc(η1ηη2) < η1ηη2 then // arc labels are always canonical
17 swap v1 and v2
18 swap d1 and d2
19 d1 ← ¬d1
20 d2 ← ¬d2
21 r ← true

22 else
23 r ← false

24 insert e = (v1d1, v2d2, (η1, η, η2, r)) into E

25 [af , bf ]← extendRight(D, [af , bf ], wi[j])
26 [ar, br]← extendLeft(D, [ar, br], rc(wi)[j])
27 [af , bf ]← contractLeft(D, [af , bf ])
28 [ar, br]← contractRight(D, [ar, br])
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