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—— Abstract

Many bioinformatics applications involve bucketing a set of sequences where each sequence is allowed

to be assigned into multiple buckets. To achieve both high sensitivity and precision, bucketing
methods are desired to assign similar sequences into the same bucket while assigning dissimilar
sequences into distinct buckets. Existing k-mer-based bucketing methods have been efficient in
processing sequencing data with low error rate, but encounter much reduced sensitivity on data with
high error rate. Locality-sensitive hashing (LSH) schemes are able to mitigate this issue through
tolerating the edits in similar sequences, but state-of-the-art methods still have large gaps. Here we
generalize the LSH function by allowing it to hash one sequence into multiple buckets. Formally, a
bucketing function, which maps a sequence (of fixed length) into a subset of buckets, is defined to
be (d1, d2)-sensitive if any two sequences within an edit distance of di are mapped into at least one
shared bucket, and any two sequences with distance at least d2 are mapped into disjoint subsets
of buckets. We construct locality-sensitive bucketing (LSB) functions with a variety of values of
(d1,d2) and analyze their efficiency with respect to the total number of buckets needed as well as the
number of buckets that a specific sequence is mapped to. We also prove lower bounds of these two
parameters in different settings and show that some of our constructed LSB functions are optimal.
These results provide theoretical foundations for their practical use in analyzing sequences with high
error rate while also providing insights for the hardness of designing ungapped LSH functions.
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1 Introduction

Comparing a set of given sequences is a common task involved in many bioinformatics
applications, such as homology detection [6], overlap detection and the construction of
overlap graphs [10, 4, 24], phylogenetic tree reconstruction, and isoform detection from
circular consensus sequence (CCS) reads [22], to name a few. The naive all-vs-all comparison
gives the most comprehensive information but does not scale well. An efficient and widely-
used approach that avoids unnecessary comparisons is bucketing: a linear scan is employed to
assign each sequence into one or multiple buckets, followed by pairwise comparisons within
each bucket. The procedure of assigning sequences into buckets, which we refer to as a
© Ke Chen and Mingfu Shao;
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bucketing function, is desired to be both “sensitive”, i.e., two similar sequences ideally appear
in at least one shared bucket so that they can be compared, and “specific”, i.e., two dissimilar
sequences ideally appear in disjoint buckets so that they can be exempt from comparison.
The criteria of similar/dissimilar sequences are application-dependent; in this work we study
bucketing functions for the edit distance (Levenshtein distance).

A simple yet popular bucketing function is to put a sequence into buckets labeled with
its own k-mers. The popular seed-and-extend strategy [1, 2] implicitly uses this approach.
Various sketching methods such as minimizer [19, 23, 20, 13] and universal hitting set [16, 7]
reduce the number of buckets a sequence is assigned to by only considering a subset of
representative k-mers. These bucketing methods based on exact k-mer matching enjoyed
tremendous success in analyzing next-generation sequencing (NGS) data, but are challenged
by the third-generation long-reads sequencing data represented by PacBio [18] and Oxford
Nanopore [8] technologies; due to the high error rate, sequences that should be assigned to
the same buckets hardly share any identical k-mers (for a reasonably large k such as k = 21
with 15% error rate), and therefore results in poor sensitivity.

To address this issue, it is required to be able to recognize similar but not necessarily
identical sequences. A general solution is locality-sensitive hashing (LSH) [14, 15] where
with high probability, similar sequences are sent into the same bucket (i.e., there is a hash
collision), and with high probability dissimilar sequences are sent into different buckets.
However, designing locality-sensitive hashing functions for the edit distance is hard; the
state-of-the-art method Order Min Hash (OMH) is proved to be a gapped LSH but admits a
large gap [14]. Another related approach is embedding the metric space induced by the edit
distance into more well-studied normed spaces [3, 17, 24]. However, such an embedding is
also hard; for example, it is known that the embedding into L; cannot be distortion-free [9].
In addition, there are seeding/sketching methods such as spaced k-mer [5, 11], indel seeds [12],
and the more recent strobemer [21] that allow gaps in the extracted seeds to accommodate
some edits, but an edit that happens within the chosen seed can still cause mismatches.

It is worth noting that locality-sensitive hashing functions, when interpreted as bucketing
functions, assign a sequence into exactly one bucket: buckets are labeled with hash values,
and a sequence is put into the single bucket where it is hashed to. In this work, we propose the
concept of locality-sensitive bucketing (LSB) functions as a generalization of LSH functions by
allowing it to assign a sequence into multiple buckets. Formally, a bucketing function, which
maps a sequence (of fixed length) into one or more buckets, is defined to be (d, d2)-sensitive
if any two sequences within an edit distance of d; are mapped into at least one shared
bucket, and any two sequences with an edit distance at least dy are mapped into disjoint
subsets of buckets. While a stochastic definition by introducing a distribution on a family
of bucketing functions can be made in a similar way as the definition of LSH functions,
here we focus on this basic, deterministic definition. We design several LSB functions for a
variety of values of (dj,dz) including both ungapped (ds = dy + 1) and gapped (d2 > dy + 1)
ones. This demonstrates that allowing one sequence to appear in multiple buckets makes
the locality-sensitive properties easier to satisfy. Moreover, our lower bound proof shows
that any (1, 2)-sensitive bucketing function must put each sequence (of length n) into at
least n buckets (see Lemma 2), suggesting that certain ungapped locality-sensitive hashing
functions, where each sequence is sent to a single bucket, may not exist.

The rest of this paper is organized as follows. In Section 2, we give the precise definition
of LSB functions and propose criteria to measure them. In Sections 3 and 4, we design LSB
functions using two different approaches, the results are summarized in Section 5. We show
experimental studies in Section 6, with a focus on demonstrating the performance of gapped
LSB functions. Future directions are discussed in Section 7.
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2 Basics of locality-sensitive bucketing (LSB) functions

Given an alphabet ¥ with [¥| > 1 and a natural number n, let S,, = (X", edit) be the metric
space of all length-n sequences equipped with the Levenshtein (edit) distance. Given a set B
of buckets, a bucketing function f maps S,, to P(B), the power set of B. This can be viewed
as assigning a sequence s of length n to a subset of buckets f(s) C B. Let d; < d3 be two
non-negative integers, we say a bucketing function f is (dy, dz)-sensitive if

edit (s, t) <di = f(s) N f(t)
edit (s,t) > d2 = f(s)Nf(t) =

»

IS

@, (1)
. (2)

We refer to the above two conditions as LSB-properties (1) and (2) respectively. Intuitively,
the LSB-properties state that, if two length-n sequences are within an edit distance of dj,
then the bucketing function f guarantees assigning them to at least one same bucket, and
if two length-n sequences have an edit distance at least do, then the bucketing function
f guarantees not assigning them to any shared bucket. In other words, (d,ds)-sensitive
bucketing functions perfectly distinguish length-n sequences within distance d; from those
with distances at least do. It is easy to show that if f : S, — P(B) is a (di,d2)-sensitive
bucketing function, then f(s) # & for all s € S,,. In fact, since edit (s,s) = 0 < dy, the
LSB-property (1) implies that f(s) = f(s) N f(s) # @. If d; = dy — 1 then we say the
bucketing function is ungapped; otherwise it is called gapped.

We note that the above definition of LSB functions generalize the (deterministic) LSH
functions: if we require that |f(s)| = 1 for every sequence s € S,,, i.e., f maps a sequence
to a single bucket, then f(s) N f(t) # @ implies f(s) = f(¢t) and f(s) N f(t) = @ implies
f(s) # f(2).

Two related parameters can be used to measure an LSB function: |B|, the total number
of buckets, and |f(s)|, the number of different buckets that contain a specific sequence s.
From a practical perspective, it is desirable to keep both parameters small. We therefore aim
to design LSB functions that minimize |B| and |f(s)|. Specifically, in the following sections,
we will construct (dy, ds)-sensitive bucketing functions with a variety of values of (dy,ds2),
and analyze their corresponding |B| and |f(s)|; we will also prove lower bounds of |B| and
| f(s)| in different settings and show that some of our constructed LSB functions are optimal,
in terms of minimizing these two parameters.

The bounds of |B| and |f(s)| are closely related to the structure of the metric space Sy,.
For a sequence s € S,,, its d-neighborhood, denoted by N%(s), is the subspace of all sequences
of length n with edit distance at most d from s; formally N(s) = {t € S,, | edit(s,t) < d}.
The following simple fact demonstrates the connection between the bound of |f(s)| and the
structure of S,,, which will be used later.

» Lemma 1. Let s be a sequence of length n. If N1 (s) contains a subset X with |X| = z such
that every two sequences in X have an edit distance at least do, then for any (di, ds)-sensitive
bucketing function f we must have |f(8)| > =.

Proof. Let f be an arbitrary (di, ds)-sensitive bucketing function. By the LSB-property (2),
these = sequences must be assigned to distinct buckets by f. On the other hand, since
they are all in Nd1(s), the LSB-property (1) requires that f(s) overlaps with f(¢) for each
sequence t € X. Combined, we have |f(s)| > . <
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3 An optimal (1, 2)-sensitive bucketing function

In the most general setting of LSB functions, the labels of buckets in B are just symbols that
are irrelevant to the construction of the bucketing function. Hence we can let B = {1,...,|B|}.
The remaining of this section studies (1, 2)-sensitive bucketing functions in this general case.
We first prove lower bounds of |B| and |f(s)| in this setting; we then give an algorithm to
construct an optimal (1, 2)-sensitive bucketing function f that matches these bounds.

» Lemma 2. If f:S,, — P(B) is (1,2)-sensitive, then for each s € S,,, |f(8)| > n.

Proof. According to Lemma 1 with d; = 1 and dy = 2, we only need to show that N} (s)
contains n different sequences with pairwise edit distances at least 2. For i =1,...,n, let t*
be a sequence obtained from s by a single substitution at position i. If i # j, then t' differs
from ¥/ at two positions, namely i and j. Then we must have edit (ti, t/ ) > 2 as t' cannot
be transformed into ¢/ with a single substitution or a single insertion or deletion. Hence,
{tl, . ,t”} forms the required set. <

» Lemma 3. If f: S, — P(B) is (1,2)-sensitive, then |B| > n|%|" 1.

Proof. Consider the collection of pairs H = {(s,b)|s € S,, and b € f(s)}. We bound the
size of H from above and below. For an arbitrary sequence s, let b € f(s) be a bucket that
contains s. According to the LSB-property (2), any other sequence in b has edit distance 1
from s, i.e., a substitution. Suppose that the bucket b contains two sequences u and v that
are obtained from s by a single substitution at different positions. Then edit (u, v) = 2 and
f(uw) N f(v) # @, which contradicts the LSB-property (2). Therefore, all the sequences in b
can only differ from s at some fixed position i. There are |X| such sequences (including s
itself). So each bucket b € B can appear in at most |3| pairs in H. Thus |H| < |Z]| - |B].
On the other hand, for a length-n sequence s, its 1-neighborhood N} (s) contains n(|X|—1)
other length-n sequences, corresponding to the |X| — 1 possible substitutions at each of the n
positions. The LSB-property (1) requires that s shares at least one bucket with each of them.
As argued above, each bucket b € f(s) can contain at most |3| — 1 sequences other than
s. Therefore, s needs to appear in at least n(|X| — 1)/(|2] — 1) = n different buckets, and
hence at least n pairs in H. So |H| > n|S,,| = n|Z|". Together, we have |X| - |B| > n|X|", or
|B| > n|z| L. <

We now construct a bucketing function f : S, — P(B) that is (1, 2)-sensitive using the
algorithm given below. It has exponential running time with respect to n but primarily
serves as a constructive proof that (1, 2)-sensitive bucketing functions exist. Assign to the
alphabet ¥ an arbitrary order o : {1,...,|X|} = X. The following algorithm defines the
function f:

foreach s € S,, do f(s) =@
m <1 // index of the smallest unused bucket
foreach s = sys9--+s, € S, do // in an arbitrary order
for i =1 ton do
if s, ==0(1) then // s; is the smallest character in X
for j =1 to |X| do
t<51--51-10(J)Siy1" " Sn
f(t) < f(t)u{m} // add t to bucket m

m<+ m-—+1
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A toy example of the bucketing function f with n = 2 and ¥ = {o(1) = A,0(2) =
C,0(3) = G,0(4) = T} constructed using the above algorithm (where the sequences are
processed in the lexicographical order induced by o) is given below, followed by the contained
sequences in the resulting buckets.

f(AA) = {17 2}7 f(AC) = {27 3}7 f(AG) = {2’4}7 f(AT) = {27 5}7
f(CA) = {17 6}7 f(CC) = {37 6}7 f(CG) = {47 6}7 f(CT) = {5»6}7
f(GA) = {17 7}7 f(GC) = {37 7}7 f(GG) = {47 7}7 f(GT) = {57 7}7
f(TA) = {17 8}7 f(TC) = {37 8}7 f(TG) = {47 8}7 f(TT) = {578}
bucket # sequences bucket # sequences

1 AA, CA, GA, TA 2 AA, AC, AG, AT

3 AC, CC, GC, TC 4 AG, CG, GG, TG

5 AT, CT, GT, TT 6 CA, CC, CG, CT

7 GA, GC, GG, GT 8 TA, TC, TG, TT

» Lemma 4. The constructed bucketing function f : S, — P(B) satisfies: (i) each bucket
contains |X| sequences, (ii) |f(s)| =n for each s € S,,, and (iii) |B| = n|X|" 1.

Proof. Claim (i) follows directly from the construction (the most inner for-loop). In the
algorithm, each sequence s € S, is added to n different buckets, one for each position.
Specifically, let s = s182 - - - s, then s is added to a new bucket when we process the sequence
st =s189-++8;_10(1)8i41 - 8n, 1 <i < n. Hence, |f(s)| = n. To calculate | B|, observe that
a new bucket is used whenever we encounter the smallest character o(1) in some sequence
s. So |B| is the same as the number of occurrences of o(1) among all sequences in S,,. The
total number of characters in S, is n|%|". By symmetry, o(1) appears n|X|"~! times. <

» Lemma 5. The constructed bucketing function f is (1,2)-sensitive.

Proof. We show that for s,t € S, edit (s,t) < 1 if and only if f(s) N f(¢) # @. For the
forward direction, edit (s,t) < 1 implies that s and ¢ can differ by at most one substitution
at some position i. Let r be the sequence that is identical to s except at the i-th position
where it is substituted by o(1) (it is possible that r = s). According to the algorithm, when
processing r, both s and t are added to a same bucket m. Therefore, m € f(s) N f(¢).

For the backward direction, let m be an integer from f(s) N f(¢). By construction, all
the |X| sequences in the bucket m differ by a single substitution. Hence, edit (s,t) < 1. <=

Combining Lemmas 2-5, we have shown that the above (1, 2)-sensitive bucketing function
is optimal in the sense of minimizing |B| and |f(s)|. This is summarized below.

» Theorem 1. Let B = {1,...,n|X|""1}, there is a (1,2)-sensitive bucketing function
f:8n = P(B) with |f(s)| =n for each s € S,,. No (1,2)-sensitive bucketing function exists
if |B| is smaller or |f(s)| < n for some sequence s € Sy,.

4 Mapping to sequences of length n

We continue to explore LSB functions with different values of di; and do. Here we focus on a
special case where B C S, namely, each bucket in B is labeled by a length-n sequence. The
idea of designing such LSB functions is to map a sequence s to its neighboring sequences
that are in B. Formally, given a subset B C S,, and an integer r > 1, we define the bucketing
function f} : S, — P(B) by

fB(s) =N, (s)N B ={v € Bledit (s,v) <r} for each s € S,.
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We now derive the conditions for fj to be an LSB function. For any sequence s, all
the buckets in f}(s) are labeled by its neighboring sequences within radius . Therefore, if
two sequences s and t share a bucket labeled by v, then edit (s,v) < r and edit (¢,v) < r.
Recall that S, is a metric space, in particular, the triangle inequality holds. So edit (s,t) <
edit (s, v) + edit (¢,v) < 2r. In other words, if s and ¢ are 2r 4+ 1 edits apart, then they will
be mapped to disjoint buckets. Formally, if edit (s,t) > 2r+ 1, then f5(s)N f5(t) = @. This
implies that fJ; satisfies the LSB-property (2) with do = 2r 4+ 1. We note that this statement
holds regardless of the choice of B.

Hence, to make f5 a (di,2r + 1)-sensitive bucketing function for some integer d;, we
only need to determine a subset B so that f}; satisfies the LSB-property (1). Specifically, B
should be picked such that for any two length-n sequences s and ¢t within an edit distance of
dy, we always have

f5(8) N [p(t) = (Ny(s) N B) N (N, (¢) N B) = Ny (s) N Ny (8) N B # 2.

For the sake of simplicity, we say a set of buckets B C S,, is (d1, r)-guaranteed if and only if
N (s)NN](t)N B # & for every pair of sequences s and t with edit (s,t) < d;. Equivalently,
following the above arguments, B is (di,r)-guaranteed if and only if the corresponding
bucketing function f} is (di,2r 4 1)-sensitive. Note that the (dq,r)-guaranteed set is not a
new concept, but rather an abbreviation to avoid repeating the long phrase “a set whose
corresponding bucketing function is (dy, 2r + 1)-sensitive”. In the following sections, we show
several (dy,r)-guaranteed subsets B C S, for different values of d;.

4.1 (2r,r)-guaranteed and (2r — 1, r)-guaranteed subsets
We first consider an extreme case where B = S,,.

» Lemma 6. Let B =S,,. Then B is (2r,r)-guaranteed if r is even, and B is (2r — 1,r)-
guaranteed if r is odd.

Proof. First consider the case that r is even. Let s and ¢ be two length-n sequences with
edit (s,t) < 2r. Then there are 2r edits that transforms s to t. (If edit (s,t) < 2r, we can
add in trivial edits that substitute a character with itself.) Because s and ¢t have the same
length, these 2r edits must contain the same number of insertions and deletions. Reorder
the edits so that each insertion is followed immediately by a deletion (i.e., a pair of indels)
and all the indels come before substitutions. Because r is even, in this new order, the first
r edits contain an equal number of insertions and deletions. Namely, applying the first r
edits on s produces a length-n sequence v. Clearly, edit (s,v) < r and edit (¢,v) < r, i.e.,
v e N/ (s)NNJ(t)=N!(s)NN(t)N B.

For the case that r is odd. Let s and ¢ be two length-n sequences with edit (s,t) < 2r —1.
By the same argument as above, s can be transformed to ¢ by 2r — 1 edits and we can assume
that all the indels appear in pairs and they come before all the substitutions. Because r
is odd, » — 1 is even. So applying the first » — 1 edits on s produces a length-n sequence
v such that edit(s,v) < r—1 < r and edit(¢t,v) < 2r — 1 — (r — 1) = r. Therefore,
v e N](s)NNJ(t)=N(s)NN/(t)N B. |

By definition, setting B = S,, makes f§ (2r, 2r+1)-sensitive if r is even and (2r—1, 2r+41)-
sensitive if r is odd. This provides nearly optimal bucketing performance in the sense that
there is no gap (when r is even) or the gap is just one (when r is odd). It is evident from the
proof that the gap at 2r indeed exists when 7 is odd because if s can only be transformed to
t by r pairs of indels, then there is no length-n sequence v with edit (s, v) = edit (¢, v) = r.
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4.2 Properties of (r,r)-guaranteed subsets

In the above section all sequences in S, are used as buckets. A natural question is, can
we use a proper subset of S, to achieve (gapped) LSB functions? This can be viewed as
down-sampling S,, such that if two length-n sequences s and t are similar, then a length-n
sequence is always sampled from their common neighborhood N7 (s) N N/ ().

Here we focus on the case that d; = r, i.e., we aim to construct B that is (r, r)-guaranteed.
Recall that this means for any s,t € S, with edit (s,t) < r, we have N/, (s)N N} (t)N B # @.
In other words, ff is (r,2r + 1)-sensitive. To prepare the construction, we first investigate
some structural properties of (r,r)-guaranteed subsets. We propose a conjecture that such
sets form a hierarchical structure with decreasing 7:

» Conjecture 1. If B C S, is (r,r)-guaranteed, then B is also (r + 1,7 + 1)-guaranteed.
We prove a weaker statement:
» Lemma 7. If B C S, is (r,r)-guaranteed, then B is (r + 2,r + 2)-guaranteed.

Proof. Let s and t be two length-n sequences with edit (s,t) < r + 2; we want to show that
NI +2(8) N NI +2(¢) N B # @. Consider a list of edits that transforms s to ¢: skipping a
pair of indels or two substitutions gives a length-n sequence m such that edit (s,m) < r
and edit (¢, m) = 2. Because s and m are within a distance of » and B is (r,r)-guaranteed,
we have that N7 (s) N N/ (m) N B # @, i.e., there exists a length-n sequence v € B such
that edit (s,v) < r and edit (m,v) < r. By triangle inequality, edit (¢,v) < edit (¢, m) +
edit (m,v) < r + 2. Hence, we have v € N/*2(t). Clearly, v € N/(s) implies that
v € N'*2(s). Combined, we have v € N/ +2(s) N N/ +2(t) N B. <

The next lemma shows that (1, 1)-guaranteed subsets have the strongest condition.
» Lemma 8. If B C S, is (1, 1)-guaranteed, then B is (r,r)-guaranteed for all r > 1.

Proof. According to the previous lemma, we only need to show that B is (2, 2)-guaranteed.
Given two length-n sequences s and t with edit (s,t) = 2, consider a list @ of two edits that
transforms s to t. There are two possibilities:

If both edits in @ are substitutions, let i be the position of the first substitution.

If @ consists of one insertion and one deletion, let ¢ be the position of the character that

is going to be deleted from s.
In either case, let m be a length-n sequence obtained by replacing the i-th character of s
with another character in ¥. Then edit (s, m) = 1. Because B is (1, 1)-guaranteed, there is
a length-n sequence v € B such that edit (s, v) < 1 and edit (m,v) < 1. Observe that either
s = v or v is obtained from s by one substitution at position 7. So applying the two edits in
Q on v also produces t, i.e., edit (¢,v) < 2. Therefore, v € N2(s) N N2(t) N B. <

Now we bound the size of a (1, 1)-guaranteed subset from below.

» Lemma 9. If B is (1,1)-guaranteed, then

1 ifseB

, i) |B| > [Sal/|2| = |2
n ifsdB (i) |B] = |S,|/|Z] = [X]

(i) for each s € Sy, |Nﬁ(s) NnB|> {
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Proof. Let B C S, be an arbitrary (1, 1)-guaranteed subset. For part (i), because s € N1(s),
if s is also in B, then s is in their intersection, hence |N711(s) N B| >1. Ifs=5182...5, & B,
then it must have at least n 1-neighbors v* € B, one for each position 1 < i < n, where
vl = 81...8,_10;iSi41...5n, U; # 8;. Suppose conversely that this is not the case for a
particular ¢. Let t = $1...8;_1¢;iSi41 ...y, where t; # s;. We have edit (s,t) = 1. Also,
NYs)NNL(t)={x € ¥ |s1...8_12841---5n}, but none of them is in B (consider the two
cases ¥ = s; and = # 8;), i.e., N} (8) N N} (t) N B = @. This contradicts the assumption that
B is (1, 1)-guaranteed.

For part (ii), consider the collection of pairs H = {(s, v) ‘ s€S,and v € N}(s)N B}.
For all v € B, the number of sequences s € S,, with edit (s,v) <1isn(]X|—-1)+ 1. So
|H| = (n(|2| — 1) + 1) |B]|. On the other hand, part (i) implies that |H| > | B|+n (|X|™ — | B]).
Combined, we have |B| > |Z|"7!, as claimed. <

In Section 4.3, we give an algorithm to construct a (1, 1)-guaranteed subset B that achieves
the size |B| = |S["~1; furthermore, the corresponding (1, 3)-sensitive bucketing function fj
satisfies | f5(s)| = 1if s € B and |f§(s)| = n if s ¢ B. This shows that the lower bounds
proved above in Lemma 9 are tight and that the constructed (1, 1)-guaranteed subset B is
optimal in the sense of minimizing both |B| and | f4(s)|. Notice that this result improves
Lemma 6 with » = 1 where we showed that S,, is a (1, 1)-guaranteed subset of size |Z|".
According to Lemma 8, this constructed B is also (r,r)-guaranteed. So the corresponding
bucketing function f} is (r,2r + 1)-sensitive for all integers r > 1.

4.3 Construction of optimal (1, 1)-guaranteed subsets

Let m = |X| and denote the characters in ¥ by ci,¢,...,¢yn. We describe a recursive
procedure to construct a (1, 1)-guaranteed subset of S,,. In fact, we show that S,, can be
partitioned into m subsets B} LI B2 LI--- I B™ such that each B! is (1, 1)-guaranteed. Here
the notation U denotes disjoint union. The partition of S,, is built from the partition of S,,_1.
The base case is S; = {c1} U--- U{em}-

Suppose that we already have the partition for S,y = BL_,UB2_; U---UB™,. Let

By=(c1oB) 1)U (caoBr ) U--U(cmoB,),

where co B is the set obtained by prepending the character ¢ to each sequence in the set
B. For B2, the construction is similar where the partitions of S,,_; are shifted (rotated) by
one such that ¢; is paired with B2_,, ¢y is paired with B3_ |,

1<t <m,

and so on. In general, for

B = (cl o B! )I_I(02 o B”}l)u- . -I_I(cm,iﬂ o B;{Ll)u(cm,iﬁ o B,llfl)l_l- . -u(cm o Bf;ll) .

n n—1 n

Examples of this partition for ¥ = {A, C, G, T} and n = 2,3 are shown below.

Bl = {AA, CC, GG, TT}
BZ = {AC, CG, GT, TA}
B3 = {AG, CT, GA, TC}
B; = {AT, CA, GC, TG}
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Bl = {AAA, ACC, AGG, ATT, CAC, CCG, CGT, CTA,
GAG, GCT, GGA, GTC, TAT, TCA, TGC, TTG}
B2 = {AAC, ACG, AGT, ATA, CAG, CCT, CGA, CTC,
GAT, GCA, GGC, GTG, TAA, TCC, TGG, TTT}
B% = {AAG, ACT, AGA, ATC, CAT, CCA, CGC, CTG,
GAA, GCC, GGG, GTT, TAC, TCG, TGT, TTA}
B} = {AAT, ACA, AGC, ATG, CAA, CCC, CGG, CTT,
GAC, GCG, GGT, GTA, TAG, TCT, TGA, TTC}

Note that each sequence in S,, appears in exactly one of the subsets B!, justifying the
use of the disjoint union notation. (The induction proof of this claim has identical structure
as the following proofs of Lemma 10 and 11, so we leave it out for conciseness.) Now we
prove the correctness of this construction.

» Lemma 10. Each constructed B, is a minimum (1,1)-guaranteed subset of S, .

Proof. By Lemma 9, we only need to show that each B! is (1,1)-guaranteed and has size
|X|"~1 = m"~1. The proof is by induction on n. The base case S; = {c1} U+ U {cp} is
easy to verify.

|, where each B] | is (1,1)-
guaranteed and has size m™~2. Consider an arbitrary index 1 < i < m. By construction,

we have |B}| = E;" 1 ‘Bfl_l‘ =m"~!. To show that B! is (1,1)-guaranteed, consider two

As the induction hypothesis, suppose that S,,_1 = |_|;n:1 B

sequences s,t € S, with edit (s,t) = 1. If the single substitution happens on the first
character, let ¢ € S,,—1 be the common (n — 1)-suffix of s and ¢. Since | [I", B |isa
partition of S,,_1, & must appear in one of the subsets B/ ;. In B!, it is paired with one of
the characters c. Let y = cxox, then y € BY. Furthermore, s and ¢ can each be transformed
to y by at most one substitution on the first character. Thus, y € N,;}(s) N N} (¢) N BY.

If the single substitution between s and ¢ does not happen on the first position, then
they share the common first character cx. In BY, ¢ is paired with one of the subsets BY_;.
Let s’ and ' be (n — 1)-suffixes of s and ¢, respectively. It is clear that edit (s’,¢’) = 1. By
the induction hypothesis, BY_; is (1,1)-guaranteed. So there is a sequence x € BY_; of
length n — 1 such that edit (s, ) < 1 and edit (¢/,x) < 1. Let y = ¢ o x, then y € B!, by
the construction. Furthermore, edit (s, y) = edit (s’,z) < 1 and edit (¢,y) = edit (¢',x) < 1.
Thus, y € NX(s) N N} (t) N B:. Therefore, B is (1,1)-guaranteed. Since the index i is
arbitrary, this completes the proof. <

It remains to show that for each s € S,, |N,1L(s) N B;’ matches the lower bound in
Lemma 9. Together with Lemma 10, this proves that each constructed B}, yields an optimal
(1, 3)-sensitive bucketing function in terms of minimizing both the total number of buckets
and the number of buckets each length-n sequence is sent to.

1 ifseB.

» Lemma 11. For s € S,,, each constructed B, satisfies |N\(s) N Bl| = '
n ifs¢ B}

Proof. We proceed by induction on n. The base case n = 1 is trivially true because |Bi| = 1
and all single-character sequences are within one edit of each other. Suppose that the claim
is true for n — 1. Consider an arbitrary index i. If s € B%, we show that any other length-n

sequence t € B!, has edit distance at least 2 from s, namely N} (s) N B, = {s}. Let s’ and
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t’ be the (n — 1)-suffixes of s and ¢ respectively. According to the construction, if s and ¢
have the same first character, then s’ and ¢’ are in the same B’ _, for some index j. By

the induction hypothesis, edit (s’,#') > 2 (otherwise |N! ; (s’) N B?_,| > 2), and therefore
edit (s,t) = edit (s’,¢') > 2. If s and t are different at the first character, then s’ and ¢’ are
not in the same Bf;_l, so 8" £t (recall that BZL_l and BF_, are disjoint if j # k), namely
edit (s/,t") > 1. Together with the necessary substitution at the first character, we have
edit (s,) = 1 + edit (s',¢) > 2.

If s ¢ B!, Lemma 9 and 10 guarantee that s has n 1-neighbors v* in B!, k=1,...,n,
where v* is obtained from s by a single substitution at position k. Let ¢ # s be a 1-neighbor
of s. Since t can only differ from s by a single substitution at some position ¢, we know that
either ¢ = v or the edit distance between t and v* is 1. In the latter case, ¢ cannot be in B!,
otherwise ’N}L (ve) N Bfl| > 2, contradicting the result of the previous paragraph. Therefore,
Ni(s)n B}, = {v',...v"} which has size n. <

We end this section by showing that a membership query can be done in O(n) time on
the (1,1)-guaranteed subset B constructed above (i.e., B = B! for some 7). Thanks to its
regular structure, the query is performed without explicit construction of B. Consequently,
the bucketing functions using B can be computed without computing and storing this subset
of size |X|"~ 1.

Specifically, suppose that we choose B = B! for some fixed 1 < i < m. Let s be
a given length-n sequence; we want to query if s is in B or not. This is equivalent to
determining whether the index of the partition of S, that s falls into is ¢ or not. Write
8 = 8182...5, and let 8’ = s5...5, be the (n — 1)-suffix of s. Suppose that it has been
determined that s’ € Bfkl for some index 1 < j < m, i.e., the sequence s’ of length n — 1
comes from the j-th partition of S,,_;. By construction, the index ¢ for which s € BY is
uniquely determined by the character s; = ¢, € ¥ and the index j according to the formula
¢ =(j+m+1—k) mod m. The base case n = 1 is trivially given by the design that ¢, € B}
for all 1 < p < m. This easily translates into a linear-time algorithm that scans the input
length-n sequence s backwards and compute the index ¢ such that s € BY. To answer the
membership query, we only need to check whether ¢ = i. We provide an implementation of
both the construction and the efficient membership query of a (1, 1)-guaranteed subset at
https://github.com/Shao-Group/lsbucketing.

4.4 A (3,5)-sensitive bucketing function

Let B C S,, be one of the constructed (1, 1)-guaranteed subsets. Recall that the resulting
bucketing function f% is (r,2r + 1)-sensitive for all integers 7 > 1; in particular, f3 is (2,5)-
sensitive. We are able to strengthen this result by showing that f3 is in fact (3, 5)-sensitive.

» Theorem 2. Let B C S, be a (1,1)-guaranteed subset. The bucketing function fz is
(3, 5)-sensitive.

Proof. As f}, is already proved to be (2, 5)-sensitive, to show it is (3, 5)-sensitive, we just need
to prove that, for any two sequences s,t € S,, with edit (s,t) = 3, f3(s) N f2(t) = N2(s) N
NZ2(t) N B # @. If the three edits are all substitutions, then there are length-n sequences
x and y such that edit (s,x) = edit (x,y) = edit (y,t) = 1. Since B is (1, 1)-guaranteed,
there is a length-n sequence z € B with edit (¢,z) < 1 and edit (y,2z) < 1. By triangle
inequality, edit (s, z) < edit (s, x) + edit (x, 2) < 2; edit (¢, z) < edit (¢,y) + edit (y, z) < 2.
So z € N2(s) N N2(t)N B.
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If the three edits are one substitution and a pair of indels, then there is a length-n sequence
@ such that edit (s,x) = 1 and edit (x,t) = 2 where the two edits between x and ¢ can only
be achieved by one insertion and one deletion. Let ¢ be the position in & where the deletion
between « and t takes place. Let y be a length-n sequence obtained from & by a substitution
at position i, so edit (x,y) = 1. Since B is (1, 1)-guaranteed, there is a length-n sequence

z € B with edit (x,z) <1 and edit (y, z) < 1. Then edit (s, z) < edit (s, z) +edit (2, z) < 2.

Observe that & and z differ by at most one substitution at position ¢, which will be deleted
when transforming to t. So the two edits from @ to ¢t can also transform z to ¢, namely,
edit (¢t,z) < 2. Thus, 2z € N2(s) N N2(t) N B. <

5 Summary of proved LSB functions

We proposed two sets of LSB functions and studied the efficiency of them in terms of |B|,
the total number of buckets, and |f(s)|, the number of buckets a specific length-n sequence
s occupies. The results are summarized in Table 1.

Table 1 Results on (d1, d2)-sensitive bucketing functions of length-n sequences. Entries with <
show the best known upper bounds. Entries marked with a single star cannot be reduced under
the specific bucketing method. Entries marked with double stars cannot be reduced in general. In
column B, we use B} to refer to a (1, 1)-guaranteed subset constructed in Section 4.3.

(d1, d2)-sensitive B |B| [f(s)] Ref.

(1,2) {1,...,|Bl} n|3" tex nssx Theorem 1

(1,3) S =" N (8)| = (2] - 1)n+1 Lemma 6

(1,3) B, |zt L ifse B* Lemma 9-11
k ifs¢gB

(3,5) B, |zt < |NZ(s)] Theorem 2

(r2r+1),r>1 B, |zt < INL(s)] Lemma 8, 10

2r—1,2r4+1),r>30dd S, |x|" IN(s)] Lemma 6

(2r,2r +1), r > 2 even Sn X" INJ(s)] Lemma 6

6 Experimental results on the gapped LSB functions

Several gapped LSB functions are introduced in Section 4. Now we investigate their behavior
at the gap. We pick 3 LSB functions to experiment, corresponding to the rows 2-4 in
Table 1. For d =1,2,...,6, we generate 100,000 random pairs (s,t) of sequences of length
20 with edit distance d. Fach one of the picked LSB functions fj is applied and the
number of pairs that share a bucket under fj is recorded. The code can be found at
https://github.com/Shao-Group/lsbucketing. The results are shown in Figure 1.
Recall that Lemma 6 implies fg is (2r — 1,2r + 1)-sensitive when r is odd. The
discussion after the proof shows that the gap at 2r indeed exists. In particular, if s can
only be transformed to t by r pairs of indels, then N/ (s) N N/ (t) = @. On the other
hand, if there are some substitutions among the 2r edits between s and ¢, then by a similar
construction as in the case where r is even, we can find a length-n sequence v such that
edit (s,v) = edit (v,t) = r. Motivated by the this observation, we further explore the
performance of the LSB functions at the gap for different types of edits. Given a gapped
LSB function f, for the gap at d, define categories 0, ..., |d/2] corresponding to the types of
edits: a pair of length-n sequences with edit distance d is in the i-th category if they can
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Frequency of s and ¢ sharing a bucket
under the function fj

Figure 1 Probabilities (estimated by frequencies) that two sequences share a bucket with respect
to their edit distance under three gapped LSB functions (red, green, and blue bars correspond to
the rows 2—4 of Table 1).

be transformed to each other with 4 pairs of indels (and d — 2i substitutions) but not ¢ — 1
pairs of indels (and d — 2i + 2 substitutions). Figure 2 shows the results for the three LSB
functions in Figure 1 at their respective gaps with respect to different types of edits. Observe
that the result for f én (in red) agrees with our analysis above.

e 11 - lir=1,B=s, i e 1L 007 =2, B = (1,1)-guaranteed subset | |
B 00r =1,B = (1,1)-guaranteed subset E
2 2
253 08) 1 25 08) 1
g 27 700 013 0.68
Z s = I .
=B =B \
@ O IR 0.
S 06) 1 ZE o6l o 1
~ & &
53 5 vﬁ e
5 04f = 1 ° T o4l 1
g g
g 02f | g 02 |
g g
= 0 0 =

0 0

2+0x2 04+1x2 440x2 2+1x2 04+2x2
edit (s, t) =2 edit (s,t) =4

Figure 2 Probabilities (estimated by frequencies) that two sequences share a bucket with respect
to their edit type under three gapped LSB functions. The types of edits are labeled in the format
a + b x 2 where a is the number of substitutions and b is the number of pairs of indels. Left: two
(1, 3)-sensitive bucketing functions (rows 2 and 3 of Table 1). Right: the (3, 5)-sensitive bucketing
function (row 4 of Table 1).

7 Conclusion and Discussion

We introduce locality-sensitive bucketing (LSB) functions, that generalize locality-sensitive
hashing (LSH) functions by allowing it to map a sequence into multiple buckets. This
generalization makes the LSB functions easier to construct, while guaranteeing high sensitivity
and specificity in a deterministic manner. We construct such functions, prove their properties,
and show that some of them are optimal under proposed criteria. We also reveal several
properties and structures of the metric space S,, which are of independent interests for
studying LSH functions and the edit distance.

Our results for LSB functions can be improved in several aspects. An obvious open
problem is to design (d;, ds)-sensitive functions that are not covered here. For this purpose,
one direction is to construct optimal (r,r)-guaranteed subsets for » > 1. As an implication
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of Lemma 11, it is worth noting that the optimal (1,1)-guaranteed subset is a maximal
independent set in the undirected graph G} whose vertex set is S, and each sequence
is connected to all its 1-neighbors. It is natural to suspect that similar results hold for
(r,r)-guaranteed subsets with larger r. Another approach is to use other more well-studied
sets as buckets and define LSB functions based on their connections with S,,. This is closely
related to the problem of embedding S,, which is difficult as noted in the introduction. Our
results in Section 3 suggest a new angle to this challenging problem: instead of restricting
our attention to embedding S,, into metric spaces, it may be beneficial to consider a broader
category of spaces that are equipped with a non-transitive relation (here in LSB functions
we used subsets of integers with the “have a nonempty intersection” relation). Yet another
interesting future research direction would be to explore the possibility of improving the
practical time and space efficiency of computing and applying LSB functions.

A technique commonly used to boost the sensitivity of an LSH function is known as
the OR-amplification. It combines multiple LSH functions in parallel, which can be viewed
as sending each sequence into multiple buckets such that the probability of having similar
sequences in one bucket is higher than using the individual functions separately. However, as
a side effect, the OR-amplification hurts specificity: the chance that dissimilar sequences
share a bucket also increases. It is therefore necessary to combine it with other techniques
and choosing parameters to balance sensitivity and specificity is a delicate work. On contrast,
the LSB function introduced in this paper achieves a provably optimal separation of similar
and dissimilar sequences. In addition, the OR~amplification approach can also be applied on
top of the LSB functions as needed.
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