
Gene Orthology Inference via Large-Scale
Rearrangements for Partially Assembled Genomes
Diego P. Rubert #

Faculdade de Computação, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Germany

Marília D. V. Braga1 #

Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Germany

Abstract
Recently we developed a gene orthology inference tool based on genome rearrangements (Journal of
Bioinformatics and Computational Biology 19:6, 2021). Given a set of genomes our method first
computes all pairwise gene similarities. Then it runs pairwise ILP comparisons to compute optimal
gene matchings, which minimize, by taking the similarities into account, the weighted rearrangement
distance between the analyzed genomes (a problem that is NP-hard). The gene matchings are
then integrated into gene families in the final step. Although the ILP is quite efficient and could
conceptually analyze genomes that are not completely assembled but split in several contigs, our
tool failed in completing that task. The main reason is that each ILP pairwise comparison includes
an optimal capping that connects each end of a linear segment of one genome to an end of a linear
segment in the other genome, producing an exponential increase of the search space.

In this work, we design and implement a heuristic capping algorithm that replaces the optimal
capping by clustering (based on their gene content intersections) the linear segments into m ≥ 1
subsets, whose ends are capped independently. Furthermore, in each subset, instead of allowing all
possible connections, we let only the ends of content-related segments be connected. Although there
is no guarantee that m is much bigger than one, and with the possible side effect of resulting in sub-
optimal instead of optimal gene matchings, the heuristic works very well in practice, from both the
speed performance and the quality of computed solutions. Our experiments on real data show that
we can now efficiently analyze fruit fly genomes with unfinished assemblies distributed in hundreds or
even thousands of contigs, obtaining orthologies that are more similar to FlyBase orthologies when
compared to orthologies computed by other inference tools. Moreover, for complete assemblies the
version with heuristic capping reports orthologies that are very similar to the orthologies computed
by the optimal version of our tool. Our approach is implemented into a pipeline incorporating the
pre-computation of gene similarities.

2012 ACM Subject Classification Applied computing → Bioinformatics

Keywords and phrases Comparative genomics, double-cut-and-join, indels, gene orthology

Digital Object Identifier 10.4230/LIPIcs.WABI.2022.24

Supplementary Material Both the original version with optimal capping and the new modified
version with heuristic capping can be downloaded from our GitLab server at:
Software (Source Code): https://gitlab.ub.uni-bielefeld.de/gi/FFGC

Acknowledgements We thank the anonymous reviewers for their valuable comments.

1 Corresponding author

© Diego P. Rubert and Marília D. V. Braga;
licensed under Creative Commons License CC-BY 4.0

22nd International Workshop on Algorithms in Bioinformatics (WABI 2022).
Editors: Christina Boucher and Sven Rahmann; Article No. 24; pp. 24:1–24:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diego@facom.ufms.br
https://orcid.org/0000-0002-4131-7309
mailto:mbraga@cebitec.uni-bielefeld.de
https://orcid.org/0000-0002-4092-2646
https://doi.org/10.4230/LIPIcs.WABI.2022.24
https://gitlab.ub.uni-bielefeld.de/gi/FFGC
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Gene Orthology Inference via Genome Rearrangements

1 Introduction

The study of distances and parsimonious evolutionary scenarios based on large-scale genome
rearrangements traditionally depends on the pre-computation of gene families. Computing
such a distance is usually polynomial when genomes have at most one gene per family [4,7,13]
or NP-hard otherwise [3, 5, 8, 20,21]. These works adopt several rearrangement models and
among the most popular ones is the double-cut-and-join (DCJ) operation [24], which mimics
organizational rearrangements, such as inversions, fusions, fissions and translocations.

An alternative (NP-hard) family-free setting for genome rearrangement studies was
proposed in 2013 [6] and further extended [16, 19], in a model that does not require the
pre-computation of gene families and, besides DCJ operations, takes into account insertions
and deletions of DNA segments, collectively called indels. This model is able to infer pairwise
orthologs between two genomes directly, simultaneously based on gene similarities and
rearrangements. In practice, its optimization function can be solved exactly due to an ILP
formulation [19] that is called FF-DCJ-Indel and also reports an optimal matching of
orthologs between the two analyzed genomes. (The ILP FF-DCJ-Indel is itself based on
the previous formulations for family-based approaches [5, 21].)

With these achievements we were able to invert the traditional paradigm of genome
rearrangement studies: instead of requiring the gene families to proceed with rearrangement
comparisons, it became possible to use rearrangement comparisons for inferring the gene
families2. Indeed, in our most recent work [18], we did a first attempt of using FF-DCJ-Indel
for inferring genome-scale gene families across several species. More precisely, given a set of
genomes, our method first computes all pairwise optimal gene matchings, which are integrated
into gene families in the second step, resulting in a complete pipeline called DiffMGC,
whose inferences displayed good quality in the analysis of completely assembled genomes.

However, although the integrated FF-DCJ-Indel is quite efficient and could conceptually
analyze genomes that are not completely assembled but split in several contigs, it failed in
completing that task. The main reason is that each ILP pairwise comparison includes an
optimal capping that must allow the end of any linear segment of one genome to be matched
to the end of any linear segment of the other genome. The optimal capping then produces
an exponential increase of the search space.

In this work, we design and implement a heuristic capping algorithm that replaces the
optimal capping by clustering (based on their gene content intersections) the linear segments
into m ≥ 1 subsets, so that the ends of the linear segments in the same subset S can only
be matched to elements of S. Furthermore, in each subset, instead of allowing all possible
connections, we let only the ends of content-related segments be connected. Although there
is no guarantee that m is much bigger than one, and with the possible side effect of resulting
in sub-optimal instead of optimal gene matchings, the heuristic works very well in practice,
from both the speed performance and the quality of computed solutions.

We call DiffMGC
≈
h the new complete pipeline adopting the heuristic capping for

FF-DCJ-Indel. Our experiments on real data show that we can now efficiently analyze fruit
fly genomes with unfinished assemblies distributed in hundreds or even thousands of contigs.

2 To be more precise, another attempt called MSOAR [22] was made before our studies, the differences
being that MSOAR first infers gene families based on similarities and then computes a matching based
on a heuristic including structural rearrangements and tandem duplications, while FF-DCJ-Indel
takes similarities and rearrangements simultaneously into account for inferring an optimal matching,
in a rearrangement model including DCJ and mimicking all content modifications with insertions and
deletions of DNA segments. MSOAR was not maintained and is no longer operational, therefore we
could never compare its performance to FF-DCJ-Indel.

D. P. Rubert and M. D. V. Braga 24:3

We compared the gene families inferred by DiffMGC
≈
h to Oma [10,17], ProteinOrtho [14],

and Poff [15]. The orthologies inferred by DiffMGC
≈
h are more similar to FlyBase ortho-

logies when compared to orthologies computed by these other inference tools. Moreover, for
complete assemblies DiffMGC

≈
h reports orthologies that are very similar to the orthologies

computed by DiffMGC, which is the optimal version of our tool.

2 Orthology inference via family-free genome rearrangements

For studying large-scale genome rearrangements a high-level view of a chromosome is adopted.
In this view each chromosome is represented by a sequence of genes. Since each gene is an
oriented DNA fragment, we need to distinguish its two possible representations: a gene g

is represented by the symbol g itself, if it is read in direct orientation, or by the symbol g,
if it is read in reverse orientation. In our notation, all genes of a linear chromosome are
concatenated in a string that can be read in any of the two directions and is flanked by
square brackets. As an example, let C = [61894] be a linear chromosome. A genome is
then a set of chromosomes and can be transformed with the following types of mutations:

1. Structural rearrangements (DCJ operations): A cut performed on a chromosome C

of a genome A separates two adjacent genes of C. A double-cut and join or DCJ applied
on genome A is the operation that performs cuts in two different positions of distinct
chromosomes or of the same chromosome of A, creating four open ends, and joins these
open ends in a different way [4, 24]. For example, let A = { [61894], [3572]}, and
consider a DCJ that cuts between genes 1 and 8 of its first chromosome and between
genes 7 and 2 of its second chromosome, creating segments 61•, •894, 357• and •2
(where the symbols • represent the open ends). If we join the first with the fourth and the
second with the third open end, we get A′ = { [612], [357894]}, that is, the described
DCJ operation is a translocation transforming A into A′. Indeed, a DCJ operation can
correspond not only to a translocation but to several structural rearrangements, such as
an inversion, a fusion or a fission.

2. Content-modifying (indel operations): The content of a chromosome can be modified
with insertions and with deletions of blocks of contiguous genes, collectively called indel
operations. Note that at most one chromosome can be entirely deleted or inserted at
once. As an example, consider the deletion of segment 789 from chromosome [357894],
resulting in chromosome [354]. A gene cannot be deleted and then reinserted, nor
inserted and then deleted. This restriction prevents the free lunch artifact of sorting one
genome into the other by simply deleting the chromosomes of the first and inserting the
chromosomes of the second, ignoring their common parts.

2.1 Computing an optimal set of orthologs between two genomes
We can represent the pairwise similarities between the genes of genome A and the genes of
genome B in the so called gene similarity graph [6], denoted by S(A,B). This is a weighted
bipartite graph that has a vertex for each gene in genome A and a vertex for each gene
in genome B. Furthermore, for each pair of genes g1 ∈ A, g2 ∈ B, denote by σ(g1, g2)
their normalized similarity, a value that ranges in the interval [0, 1]. Given a threshold
0 ≤ x ≤ 1, if σ(g1, g2) ≥ x there is an edge e connecting g1 and g2 in S(A,B) whose weight is
w(e) = σ(g1, g2). In addition, to each vertex u of S(A,B) we assign a weight w(u) that can
be obtained as follows: w(u) = max{σ(uv) | uv ∈ S(A, B)}, that is, w(u) is the maximum
similarity among the edges incident to the vertex (or gene) u in S(A,B).

WABI 2022

24:4 Gene Orthology Inference via Genome Rearrangements

A matching M from S(A,B), here also called an ortholog-set, defines the tuple (A,B, M),
in which every two genes a, b, such that a ∈ A, b ∈ B and ab ∈ M , are considered to
be orthologs. The complement of M , denoted by M̃ , is the set composed of genes whose
corresponding vertices in S(A,B) are M -unsaturated.

The DCJ-indel distance did
dcj(A,B, M) is the minimum number of DCJ and indel operations

required to transform A into B assuming the orthologs given by M and allowing only the
genes belonging to the complement M̃ to be inserted or deleted. It can be computed using
an approach relying on the cycles and paths of a graph that represents the structural relation
between genomes A and B according to the ortholog-set M [7, 19] (this graph is equivalent
to a consistent decomposition of the family-free relational graph, described in Section 2.2
and represented in Figure 1 (bottom)). Together with the weights of edges and vertices of
S(A,B), the DCJ-indel distance did

dcj allows the computation of the weighted rearrangement
distance wdid

dcj [19]:

wdid
dcj(A,B, S, M) = did

dcj(A,B, M) + |M | − w(M) + w(M̃).

Then, given that M is the set of all possible ortholog-sets in S(A,B), the rearrangement
distance between A and B is the result of the following optimization:

Diff(A,B, S) = min
M∈M

{wdid
dcj(A,B, S, M)} .

Figure 1 shows examples of ortholog-sets and their distances. Denote by DiffM(A,B, S)
an optimal ortholog-set in S(A,B), which is an ortholog-set whose rearrangement distance
equals Diff(A,B, S). Computing the rearrangement distance Diff(A,B, S) and finding an
optimal ortholog-set DiffM(A,B, S) are NP-hard problems [19].

2.2 Family-free relational graph
One approach for solving the NP-hard problems Diff(A,B, S) and DiffM(A,B, S) is by
decomposing the following graph.

The family-free relational graph FFR(A,B, S), shown in Figure 1 (bottom), represents all
possible weighted distances corresponding to all candidate ortholog-sets in S(A,B) [19]. Given
a gene m, denote the extremities of m by mh (head) and mt (tail). The graph FFR(A,B, S)
has a set V (A) with a vertex for each of the two extremities of each gene of genome A and a
set V (B) with a vertex for each of the two extremities of each gene of genome B.

The set of edges is partitioned into several subsets:
Sets EA

adj and EB
adj contain adjacency edges connecting adjacent extremities of genes in A

and in B.
The set Eγ contains, for each edge ab ∈ S(A,B), an extremity edge connecting at to bt,
and an extremity edge connecting ah to bh. To both edges atbt and ahbh, that are called
siblings, we assign the same weight, which corresponds to the similarity of the edge ab in
S(A,B): w(atbt) = w(ahbh) = σ(ab).
Sets EA

id and EB
id contain indel edges connecting the two extremities of each gene in A and

in B. Each indel edge mhmt receives a weight w(mhmt) = max{σ(mv)|mv ∈ S(A,B)},
that is, it is the maximum similarity among the edges incident to the gene m in S(A,B).

D. P. Rubert and M. D. V. Braga 24:5

0.6

0.1

0.5

0.3

0.2
0.3

0.9

0.9t t
0.3 0.2

0.7

0.8

t0.3

t t t t t t

t t t t t t t

A

B

0.6

1
0.3

2
0.9

3
0.9

4
0.8

5
0.3

6

0.6
7

0.3
8

0.9
9

0.9
10

0.2
11

0.7
12

0.8
13

black ⊂ green (black lines next to green lines)
blue ⊂ black (blue dots on green/black lines)

Ranking of the represented ortholog-sets
based on their corresponding distances

M |M | w(M) w(M̃) did
dcj wdid

dcj
black 4 3.2 1.8 5 ∗ 7.6
green 5 3.5 1.2 5 ∗ 7.7
blue 3 2.6 3.0 5 8.4

magenta 4 1.7 2.8 6 11.1

* Rearrangement scenarios are given
below, with genes belonging to M̃
as well as indel operations represen-
ted in gray

green ortholog-set (did
dcj = 5):

- - - - -�1·7 2·8 3·10 4·9 5·13 6
↓ fusion

- - - - -�1·7 2·8 3·10 4·9 5·13 6
deletion ↓

- - - - -1·7 2·8 3·10 4·9 5·13

↓ insertion

- - � � - - -1·7 2·8 12 11 3·10 4·9 5·13

↓ inversion

- � � � - - -1·7 2·8 12 11 3·10 4·9 5·13

↓ inversion

-� � � - - -1·7 2·8 4·9 3·10 11 12 5·13

black ortholog-set (did
dcj = 5):

- - - - -�1·7 2 3·10 4·9 5·13 6
↓ fusion

- - - - -�1·7 2 3·10 4·9 5·13 6
deletion ↓

- - - - -1·7 2 3·10 4·9 5·13

↓ deletion

- - - -1·7 3·10 4·9 5·13

insertion ↓

- - - - - - -1·7 3·10 4·9 8 11 12 5·13

↓ inversion

-� � � - - -1·7 8 4·9 3·10 11 12 5·13

FFR(A,B, S)
and decomposition
corresponding to

the black
ortholog-set

of S(A,B, S)

0.3 0.3

0.3 0.2 0.7

0.6 0.6

0.9
0.9

0.9

0.9

0.8 0.8

s s s s s s s s s s s s1t 1h 2t 2h 3t 3h 4t 4h 5t 5h 6h 6t

s s s s s s s s s s s s s s
7t 7h 8h 8t 9h 9t 10h 10t11t 11h12t 12h13t 13h

Figure 1 On the top part is displayed the gene similarity graph S(A,B) of genomes A =
{ [1 2 3 4] [5 6]} and B = { [7 8 9 10 11 12 13]} and next to it a table with the ranking of four
distinct ortholog-sets. On the middle the rearrangement scenarios induced by two of these ortholog-
sets are shown. On the bottom part the family-free relational graph FFR(A,B, S) is illustrated,
highlighting the edges of the decomposition corresponding to the (black) ortholog-set M = {{1, 7},
{3, 10}, {4, 9}, {5, 13}}. (This decomposition has two AB-paths, one AA-path and one cycle.) All
extremity and indel edges in FFR(A,B, S) are weighted according to S(A,B) but the weights of edges
not derived from M or M̃ are omitted.

2.3 Consistent decompositions of the family-free relational graph

A decomposition of FFR(A,B, S) is a collection of vertex-disjoint components, that can be
cycles and/or paths, covering all vertices of FFR(A,B, S). We only consider consistent
decompositions that correspond to ortholog-sets of S(A,B). A set S ⊆ Eγ is a sibling-set if
it is exclusively composed of pairs of siblings and does not contain any pair of incident edges.
Thus, a sibling-set S of FFR(A,B, S) corresponds to an ortholog-set M(S) of S(A,B).

The set of edges D[S] induced by a sibling-set S is said to be a consistent decomposition
of FFR(A,B, S) and can be obtained as follows. In the beginning, D[S] is the union of S

with the sets of adjacency edges EA
adj and EB

adj. We then need to determine the complement

WABI 2022

24:6 Gene Orthology Inference via Genome Rearrangements

of the sibling-set S, denoted by S̃, that is composed of the indel-edges of FFR(A,B, S) that
must be added to D[S]: for each indel edge e, if its two endpoints have degree one or zero
in D[S], then e is added to both S̃ and D[S]. (Note that S̃ is equal to the complement of
M(S), while |S| = 2|M(S)| and w(S) = 2w(M(S)).) The consistent decomposition D[S]
covers all vertices of FFR(A,B, S) and is composed of cycles and paths. The paths connect
the ends of linear chromosomes in both genomes and can be of three types: either AA-path,
or BB-path or AB-path.

The structure of D[S] has all necessary information for computing wdid
dcj(A,B, S, M(S)),

therefore we can say that wdid
dcj(A,B, S, M(S)) = wdid

dcj(D[S]) [19] and modify our optim-
ization problem to Diff(A,B, S) = min

S∈S
{wdid

dcj(D[S])} , where S is the set of all possible
sibling-sets in FFR(A,B, S). Assuming that a decomposition D[S⋆] gives the optimal solution
for Diff(A,B, S), then DiffM(A,B, S) = M(S⋆).

3 Capping

The end of a linear chromosome is called telomere. The telomeres are also the ends of
the paths of any consistent decomposition. Therefore, if κ(A) is the number of linear
chromosomes in A and κ(B) is the number of linear chromosomes in B the number of paths in
any decomposition is κ(A) + κ(B). Our ILP is able to capture all necessary properties from
the cycles of a decomposition, but cannot handle paths. A way to overcome this problem is
by linking all paths of any decomposition with a known technique called capping [13].

3.1 Capping a consistent decomposition
The idea of the capping is to split the telomeres into disjoint pairs and then to connect the
two elements of each pair, so that all paths are linked into cycles. The only restriction is
that a pair cannot contain telomeres from the same genome, therefore, if the numbers of
telomeres in the two genomes are different, some dummy telomeres need to be created, as we
describe in the following.

Suppose that D[S] is any consistent decomposition of FFR(A,B, S). For each telomere
(vertex) v, add to D[S] a cap vertex θv and connect v to θv by an adjacency edge. Now let θ(A)
(respectively θ(B)) be the set of all cap vertices in A (respectively in B). Note that, since each
linear chromosome has two ends, the cardinalities of these sets must be even. Moreover, if
|θ(A)| ≠ |θ(B)|, the cardinalities of these sets must be equalized. Let p∗ = max{κ(A), κ(B)}
and a∗ = |κ(A)− κ(B)|. For equalizing the cardinalities with the minimum number of extra
vertices, we need to add 2a∗ extra cap vertices to the set with smaller cardinality. These
extra cap vertices must be split into pairs (arbitrarily chosen) so that the vertices of each
pair are connected by a dummy adjacency edge in D[S]. Denote by θ̂(A) and θ̂(B) the sets
with equalized cardinalities and let P be a capping-set, which is a perfect matching between
them: for γ ∈ θ̂(A) and γ′ ∈ θ̂(B), if γγ′ ∈ P , then γ and γ′ are connected by a cap edge.
Let θ(D[S], P) be a capped decomposition of D[S] with capping-set P . It is easy to see
that θ(D[S], P) is composed of cycles only.

DCJ-indel optimal capping

So far we explained how to guarantee that all paths in any decomposition are linked into
cycles. Note, however, that there are (2p∗)! ways of completely matching the vertices of sets
θ̂(A) and θ̂(B). For a given decomposition D[S], any of these possibilities, say capping-set

D. P. Rubert and M. D. V. Braga 24:7

P , would produce a capped decomposition θ(D[S], P), and capping the same D[S] with
distinct capping-sets may produce distinct weighted costs. Let P⋆ be an optimal capping-set
for D[S], that is, the capped decomposition θ(D[S], P⋆) has the minimum weighted cost
among all capped decompositions of D[S]. (There can be several co-optimal capping-sets
for the same decomposition D[S] and each optimal capping-set links up to 4 cycles of
D[S] into a single cycle [5].) It has been shown that wdid

dcj(θ(D[S], P⋆)) = wdid
dcj(D[S]),

therefore any consistent decomposition of D[S] with an optimal capping-set is DCJ-indel
optimal and preserves the weighted cost of D[S], reporting both did

dcj(A,B, M(S)) and
wdid

dcj(A,B, S, M(S)) [19]. Figure 2 (top) highlights an optimal capping of a consistent
decomposition.

0.3 0.3

0.3 0.2 0.7

0.6 0.6

0.9 0.9 0.9

0.9

0.8
0.8

t t t t t t t t t t t t t t t t1t 1h 2t 2h 3t 3h 4t 4h 5t 5h 6h 6t
(1·7) (2) (3·10) (4·9) (5·13) (6)

t t t t t t t t t t t t t t t t td td
7t 7h 8h 8t 9h 9t 10h 10t11t 11h12t 12h13t 13h

(1·7) (8) (4·9) (3·10) (11) (12) (5·13)

t t t t t t t t t t t t t t t t1t 1h 2t 2h 3t 3h 4t 4h 5t 5h 6h 6t

t t t t t t t t t t t t t t t t td td
7t 7h 8h 8t 9h 9t 10h 10t11t 11h12t 12h13t 13h

Figure 2 On the top part we show the capping of the decomposition corresponding to the (black)
ortholog-set M = {{1, 7}, {3, 10}, {4, 9}, {5, 13}} from the gene similarity graph S(A,B) of Figure 1
(bottom). Each red vertex is a cap vertex. Each filled (red) vertex is connected to a telomere
(chromosome/path ends). The unfilled vertices represent the extra (equalizing) vertices connected
by a dummy adjacency. The capping is a perfect matching of the complete bipartite graph of the
cap vertices. The optimal capping for this decomposition is highlighted. It closes each of its paths
into a separate cycle. (In general, an optimal capping of a decomposition may link up to 4 paths
into a single cycle [5]). On the bottom part is displayed the complete family-free graph FFR(A,B, S)
optimally capped. Cap edges are unweighted. Weights of extremity and indel edges are omitted.

3.2 Optimally capped family-free relational graph

All consistent decompositions share the same telomeres, therefore a set of capping-sets for
one decomposition is also a set of capping-sets of any other decomposition. If we then simply
add all possible capping-sets to the family-free relational graph, which implies adding a
complete bipartite graph with partite sets θ̂(A) and θ̂(B), we guarantee that an optimal
solution can be found. Let the so-called optimal capping (represented in Figure 2 (bottom))
of FFR(A,B, S) with the minimum number of extra elements be denoted by θ⋆(FFR(A,B, S))
and be defined as follows:

WABI 2022

24:8 Gene Orthology Inference via Genome Rearrangements

1. Add the set of cap vertices θ̂(A) = θ1
A, θ2

A, . . . , θ2p∗
A and connect each telomere of genome A

to one of these cap vertices by an adjacency edge added to EA
adj.

2. Similarly, add the set of cap vertices θ̂(B) = θ1
B, θ2

B, . . . , θ2p∗
B and connect each telomere of

genome B to one of these cap vertices by an adjacency edge added to EB
adj.

3. Add (arbitrarily chosen) p∗−κ(A) dummy adjacency edges to EA
adj and p∗−κ(B) dummy

adjacency edges to EB
adj. (Note that only one of the two genomes may have dummy

adjacencies.)
4. Connect all cap vertices in θ̂(A) to all cap vertices in θ̂(B) with cap edges. The set of all

cap edges is denoted by Eθ.

Since all 2p∗ cap vertices in A are connected to all 2p∗ cap vertices in B and any perfect
matching of these edges is a valid capping, the search space of our optimization problem is
multiplied by (2p∗)!. Denote by P the set of all possible capping-sets (perfect matchings)
between the vertices from θ̂(A) and θ̂(B). The optimization problem over θ⋆(FFR(A,B, S))
can be rewritten as Diff(A,B, S) = min

S∈S,P ∈P
{wdid

dcj(θ(D[S], P)} . Assuming that an optimal

capping of a decomposition D[S⋆] gives the optimal solution for Diff(A,B, S), the optimal
ortholog-set is DiffM(A,B, S) = M(S⋆). Both problems Diff and DiffM can be solved
with the ILP formulation FF-DCJ-Indel [19], which can be found in Appendix A.

3.3 Integration of pairwise optimal ortholog-sets into gene families

In our previous work [18], the ILP FF-DCJ-Indel solving DiffM (with optimal capping)
was integrated in a tool called DiffMGC for inferring gene families across several species.
The pipeline, illustrated in Figure 6 of Appendix B, can be summarized as follows: given a set
of n genomes, gene similarities and ortholog-sets are computed for all pairwise comparisons
and simply integrated into an n-partite graph. The connected components of this graph are
the inferred gene families.

4 Heuristic capping

Conceptually our approach can handle partially assembled genomes distributed into several
contigs/scaffolds: each of these is a linear segment and could simply be treated as the same
object that we so far called chromosome. However, as already explained, the optimal capping
multiplies the search space of FFR(A,B) by (2p∗)! where p∗ is the maximum between the
number of linear segments in genomes A and B. This effect makes it unfeasible to analyze
genomes with a large number of segments with our ILP over an optimally capped family-free
relational graph.

One way of overcoming this issue is by adopting a lighter capping, for example by removing
some edges from the complete bipartite graph of θ̂(A) and θ̂(B), and/or by partitioning these
sets into subsets that are capped independently. In any case it is important to guarantee
that a capping is valid, that is, it allows to find a capping-set (a perfect matching of the cap
vertices). A valid lighter capping may not include the optimal capping-sets, and therefore
may not preserve the computed weighted costs. Note, however, that even if the weighted
costs are not preserved, the ranking of the ortholog-sets/sibling-sets may not be affected.
In Figure 3 we show examples of arbitrary lighter valid cappings and their effects on the
sibling-set ranking.

D. P. Rubert and M. D. V. Braga 24:9

Alternative capping 1r r r r r r r r r r r r r r r r
r r r r r r r r r r r r r r r r rb rb

Alternative capping 2r rb b r r r r r r r r r r r r r r r r
r rb b r r r r r r r r r r r r r r r r rb rb

Ortholog-sets and their corresponding costs with the two alternative lighter cappings above

Optimal Alternative 1 Alternative 2
M |M | w(M) w(M̃) did

dcj wdid
dcj did

dcj wdid
dcj did

dcj wdid
dcj

black 4 3.2 1.8 5 7.6 6 8.6 8 10.6
green 5 3.5 1.2 5 7.7 6 8.7 8 10.7
blue 3 2.6 3.0 5 8.4 6 9.4 7 10.4

magenta 4 1.7 2.8 6 11.1 6 11.1 7 12.1

Figure 3 Examples of two arbitrary lighter valid cappings of the family-free relational diagram
from Figure 1 (bottom) and their effects on the ranking of ortholog-sets/sibling-sets represented in
Figure 1 (top). Both cappings affect the computed distances, but, while the capping shown in the
left (cyan) preserves the optimal ranking, the one shown in the right (orange) does not.

4.1 Perfect contig intersection graph with thresholds τ and ϵ

Our goal is therefore to develop a lighter heuristic capping that may potentially preserve the
original (optimal) ranking of the best ortholog-sets/sibling-sets. We achieve this by connecting
cap vertices only between the telomeres of the linear segments (contigs or chromosomes)
that (potentially) share most of their genomic contents. This is because those telomeres
have a higher chance of being in the same paths of the best consistent decompositions of the
family-free relational graph.

Given two contigs α and β belonging to genomes A and B, respectively, their shared
genomic content λ(α, β) is the number of edges in S between genes of α and β. Formally,
for α ⊆ A, β ⊆ B, we have λ(α, β) = |{g1g2 ∈ S | g1 ∈ α, g2 ∈ β and w(g1g2) > 0}|. Now
let C(A,B) = (VA, VB, E) be the bipartite contig intersection graph where the vertex sets
are VA = {α : α is a contig in A} and VB = {β : β is a contig in B}. Initially the set of
edges is E = {αβ | α ∈ VA, β ∈ VB and λ(α, β) > 0}. Each edge αβ is weighted such that
w(αβ) = λ(αβ). Then, given a positive integer τ , we remove some edges from E by applying
a filtering procedure that simply iterates over VA∪VB, keeping in E only the τ edges of highest
weights for each vertex. Then, the remaining edges are again filtered out to remove weak
relations between contigs, according to another threshold given by a rational value ϵ ∈ [0, 1]:
for each vertex v and the edge e of highest weight incident to v, edges uv of weights below
ϵw(e) are removed.

Capping attempt induced by the contig intersection graph

The contig intersection graph will now induce our capping procedure. The idea is to allow
cap connections only between the ends of contigs that are connected in C. Therefore, the
contigs that are in the same connected component of C will be capped together, independently
from the contigs that are in other connected components. In other words, the connected
components of C will impose a partitioning of the capping procedure.

Let us then assume that C has a single connected component. Note that a capping induced
by C can only be valid if its partite sets VA and VB are of the same size. This necessary
condition also applies and is sufficient for the optimal capping, but here it is not sufficient:
even when VA and VB are of the same size, since not all connections between the ends of
the contigs in VA and in VB are present, the induced capping could be invalid (Figure 4 (a)).

WABI 2022

24:10 Gene Orthology Inference via Genome Rearrangements

Here the necessary and sufficient condition for a valid capping is the existence of a perfect
matching in C(A,B), as stated in Lemma 2, whose proof relies on a theorem closely related to
perfect matchings and demonstrated by Hall [12] in 1935. Denote by N (S) the neighborhood
of a vertex set S, that is, the set of all vertices adjacent to some vertex of S.
▶ Theorem 1 (Hall’s marriage theorem). Let G = (U, V, E) be a bipartite graph. There
exists a matching in G that covers the vertex set V if and only if for each subset S ⊆ V ,
|S| ≤ |N (S)|.

Note that a perfect matching exists in C if and only if the condition of Theorem 1 holds
for both VA and VB. We can now establish the relation between perfect matchings in C and
the validity of the capping it induces in the family-free relational graph.
▶ Lemma 2. A perfect matching exists in C(A,B) if and only if the capping of FFR(A,B, S)
induced by C is valid.
Proof. If a perfect matching M exists in C, for each edge αβ in M , in the induced capping
of FFR(A,B, S) the pair of cap vertices connected to the ends of α can be connected in any
of the two distinct ways to the pair of cap vertices connected to the ends of β, resulting in a
capping-set.

The converse is shown by contraposition. Suppose that a maximum cardinality matching
M in C is not a perfect matching. Therefore, by Hall’s marriage theorem, there exists some S

in C such that |N (S)| < |S|. Let S′ be the set of cap vertices in the capping induced by C for
all contigs in S. Since the connection of these cap vertices follows C and each contig has two
cap vertices, it is clear that |S′| = 2|S| and |N (S′)| = 2|N (S)|, hence, |N (S′)| < |S′|. By
the pigeonhole principle, at least 2 cap vertices (because |N (S′)| and |S′| are even numbers)
will not be incident to any cap edge, therefore no capping-set exists. ◀

Building the perfect contig intersection graph

We will now describe a procedure for transforming the contig intersection graph C(A,B) into
a perfect contig intersection graph Ĉ(A,B) that has at least one perfect matching, as shown
in Algorithm 1. In the completion loop, dummy contigs are iteratively created until a perfect
matching is possible. If a maximum cardinality matching M is found but is not a perfect
matching, a Hall violator set S can be found as follows. Let v be a vertex unsaturated by M ,
then S = {v} ∪ {u | u is reachable from v by an M -alternating path}. Finally, |S| − |N (S)|
dummy contigs are created and connected to each contig in S.

An edge in Ĉ(A,B) is matchable if it is part of at least one perfect matching and non-
matchable otherwise. Once the completion loop is finished, Ĉ admits at least one perfect
matching and its matchable edges can be identified efficiently [23]. The last step of our
algorithm is then removing from Ĉ all non-matchable edges. An example of the construction
of a perfect contig intersection graph is illustrated in Figure 4 (b).

Search space compared to optimal capping

If the threshold τ is similar to the numbers κ(A) and κ(B) of contigs in each genome, and
in the unlike situation where all contigs from one genome are connected to all contigs from
the other genome in C, the heuristic capping induced by Ĉ may be as large as the optimal
capping.

The threshold τ is thought to be smaller than κ(A) and κ(B), effectively reducing the
number of capping-sets. We could not yet estimate this reduction as a function of τ , though.
As our experimental results with real genomes show (details below, in Section 5), with a small
τ the heuristic capping leans to a considerably smaller number of capping-sets in practice.

D. P. Rubert and M. D. V. Braga 24:11

Figure 4 (a) Example of a contig intersection graph C(A,B). The genomes A and B have contigs
α1..5 and β1..5, respectively. The capping of FFR(A,B, S) induced by C is invalid. (b) Transformation
of C into a perfect contig intersection graph Ĉ(A,B): Vertex sets S1 and S2 represent Hall violators
(among other possibilities) that demand the creation of dummy contigs φ1

B and φ1
A, respectively.

Dotted edges represent those that are non-matchable and must be removed from Ĉ after the
completion is finished. Notice that the component with vertices α1, α2, α3, β1, φ1

B and β2 is not a
complete bipartite subgraph. (In both (a) and (b), for the capped FFR only cap vertices, cap
edges and dummy adjacencies are represented explicitly, while vertices of gene extremities between
cap vertices are represented by a line with small dots. In addition, colored solid edges represent a
maximum cardinality matching between cap vertices, while the cap edges not in the matching are
dashed grey.)

4.2 Heuristically capped family-free relational graph
The bipartite perfect contig intersection graph Ĉ(A,B) has edge set Ê and partite sets
V̂A = VA ∪ V φ

A and V̂B = VB ∪ V φ
B , where VA and VB are the sets of contigs and V φ

A and
V φ
B the sets of dummy contigs. Recall that the sets V̂A and V̂B have the same cardinality,

which here we denote by p≈. The heuristic capping θ≈ of the family-free relational graph
FFR(A,B, S) induced by Ĉ(A,B) is shown in Figure 4 (b) and described as follows:

1. Add the set of cap vertices θ̂(A) = θ1
A, θ2

A, . . . , θ2p≈
A . For i = 1 . . . |VA|, associate each contig

αi ∈ VA to cap vertices θ2i−1
A and θ2i

A and connect with adjacency edges one telomere
of αi to θ2i−1

A and the other to θ2i
A . Note that 2|V φ

A | cap vertices remain disconnected.
2. Similarly, add cap vertices θ̂(B) = θ1

B, θ2
B, . . . , θ2p≈

B . For j = 1 . . . |VB|, associate each contig
βj ∈ VB to cap vertices θ2j−1

B and θ2j
B and connect with adjacency edges one telomere

of βi to θ2j−1
B and the other to θ2j

B . Again, 2|V φ
B | cap vertices remain disconnected.

3. For i◦ = 1 . . . |V φ
A | and i = |VA|+ i◦, connect the pair of cap vertices θ2i−1

A and θ2i
A by a

dummy adjacency edge, associating this pair to the dummy contig φi◦
A ∈ V φ

A . Similarly,
for j◦ = 1 . . . |V φ

B | and j = |VB|+ j◦, connect the pair of cap vertices θ2j−1
B and θ2j

B by a
dummy adjacency edge, associating this pair to the dummy contig φj◦

B ∈ V φ
B .

4. For each edge ab ∈ Ê, let a ∈ V̂A and b ∈ V̂B be associated, respectively, to the cap
vertices θ2i−1

A , θ2i
A ∈ θ̂(A) and θ2j−1

B , θ2j
B ∈ θ̂(B). Connect the four “crossing” pairs of cap

vertices {θ2i−1
A , θ2j−1

B }, {θ2i
A , θ2j−1

B }, {θ2i−1
A , θ2j

B } and {θ2i
A , θ2j

B } with cap edges. The set
of all cap edges is denoted by Eθ.

WABI 2022

24:12 Gene Orthology Inference via Genome Rearrangements

Algorithm 1 Creates a perfect contig intersection graph from a contig intersection graph.

Input: A contig intersection graph C(A,B) = (VA, VB, E)
Output: A perfect contig intersection graph Ĉ(A,B) = (V̂A, V̂B, Ê)

1: V̂A ← VA , V̂B ← VB , Ê ← E

2: while a maximum cardinality matching M in Ê is not a perfect matching do
3: S ← a Hall violator set derived from M

4: Φ← dummy contigs {φ1, . . . , φ|S|−|N (S)|}
5: if S ⊆ V̂A then V̂B ← V̂B ∪ Φ else V̂A ← V̂A ∪ Φ
6: Ê ← Ê ∪ (S × Φ)
7: remove from Ê all non-matchable edges
8: return Ĉ = (V̂A, V̂B, Ê)

Denote by P≈ the set of all possible capping-sets (perfect matchings) between the vertices
of θ̂(A) and θ̂(B). The optimization problem over θ≈(FFR(A,B, S)) is defined as

Diff
≈
h(A,B, S) = min

S∈S,P ∈P≈
{wdid

dcj(θ(D[S], P)} .

Assuming that a heuristic capping-set of a decomposition D[S≈] gives the optimal solution for
Diff

≈
h(A,B, S), the best heuristic ortholog-set is DiffM

≈
h(A,B, S) = M(S≈). Both problems

Diff
≈
h and DiffM

≈
h can also be solved with the ILP FF-DCJ-Indel, shown in Appendix A.

4.3 Integration of pairwise heuristic ortholog-sets into gene families

The ILP FF-DCJ-Indel solving DiffM
≈
h (with heuristic capping) is the core of a new

version of our tool, called DiffMGC
≈
h, for inferring gene families across several species, as

illustrated in Figure 6 of Appendix B. Recall that each family is a connected component of
the n-partite graph obtained by the simple integration of the computed pairwise ortholog-sets.
An ambiguous family corresponds to a connected component of the n-partite graph that has
more than one gene from the same genome. Otherwise we have a resolved family, which can
be either complete, when it contains one gene per genome, or incomplete otherwise. The
types of families are shown in Figure 7 of Appendix B.

5 Implementation and experiments

The pipeline DiffMGC (with optimal capping) was previously integrated into the ffgc
workflow [11, 19], which includes the pre-computation of gene similarities, allowing therefore
the automatic generation of families directly from the genome data. We implemented the new
pipeline DiffMGC

≈
h (with heuristic capping) as another extension of the same workflow.

The implementation and its documentation can be downloaded from our GitLab server at
gitlab.ub.uni-bielefeld.de/gi/FFGC.

5.1 Computational environment and parameters
We ran experiments in a 2.4GHz multi-core machine. Whenever possible, tasks ran using 8
cores. As an ILP solver, we used CPLEX. The default values of the parameters of DiffMGC
and DiffMGC

≈
h for the pre-computation of gene similarities (with the help of blast [2])

were kept, except for two of them. The first one is the minimum number of genomes for

gitlab.ub.uni-bielefeld.de/gi/FFGC

D. P. Rubert and M. D. V. Braga 24:13

which each gene must share some similarity in, set to 1 – otherwise genes not similar to
any other gene, which should be still considered in indels, will not appear in genomes. The
second one is the stringency threshold, set to t = 0.8. Succinctly, the stringency filter [11,14]
prunes edges in S(A, B) that are adjacent to edges with considerably higher weights based
on a threshold. Empirical evidence shows that thresholds higher than t = 0.8 may discard
relevant gene relationships, while lower values simply increase the ILP running time with
small variations in the results found by the solver.

For the capping heuristic, we set τ = 3 (which in average corresponds to half of the
number of chromosomes in a completely assembled Drosophila genome) and ϵ = 0.01 (a
conservative choice for only filtering out from Ĉ very weak edges). Since these (reasonable)
choices produced very good results, we did not explore other possibilities, but in a future
work we intend to do a systematic study testing the speed and quality performances of the
heuristic capping for different values of τ and ϵ.

5.2 Analysis of Drosophila genomes
All genome assemblies used in experiments were fetched from NCBI. The FlyBase consortium
sequenced, assembled and annotated the genomes of 12 Drosophilas with ∼ 12,000–16,000
protein-coding genes, however only 11 of those genomes are available on NCBI together with
the complete annotation: D. simulans, D. sechellia, D. melanogaster, D. yakuba, D. erecta,
D. ananassae, D. persimilis, D. willistoni, D. mojavensis, D. virilis and D. grimshawi.

Average numbers of cap edges and capping-sets in θ⋆ and in θ≈

The analyzed Drosophila genomes have 507 contigs on average, therefore each optimally
capped family-free relational diagram has 1,014 × 1,014 = 1,028,196 cap edges and an
unfeasible total of 1,014! capping-sets on average.

In contrast, considering the perfect contig intersection graphs for all pairwise Drosophila
comparisons, 99.7% of the components in those graphs have only 1 contig in each part of the
graph. In the remaining 0.3%, 80% have 7 or fewer contigs in each part, with the largest
component having 76 contigs in each part. The perfect contig intersection graphs have an
average of 1,419 edges. For that number of edges, each heuristically capped family-free
relational diagram has 2,838 cap edges on average. As the exact number of perfect matchings
in arbitrary graphs is not trivial to estimate, we computed an upper limit for the average
number of distinct capping-sets: ∼ 305!.

Benchmark for our experiments

Reference families were obtained directly from FlyBase (flybase.org). Since the set of
genes classified in FlyBase is slightly different from the set of genes present with their coding
sequences in database files, we filtered out a small portion (∼ 7%) of genes in FlyBase
families so that only those present in the databases with their coding sequences were kept.
Prior to any comparison of inferred families to FlyBase families, we also filtered out from
the inferred families genes not present in FlyBase families.

We perform two distinct comparisons. First, based on a set of three completely assembled
Drosophila genomes, we compare DiffMGC

≈
h families (inferred with the optimal capping) to

DiffMGC families (inferred with the heuristic capping) using FlyBase families as reference.
Next, based on the complete set of 11 Drosophilas including partially assembled genomes, we
compare DiffMGC

≈
h families to the gene families inferred by other inference tools, again

using FlyBase families as reference.

WABI 2022

flybase.org

24:14 Gene Orthology Inference via Genome Rearrangements

5.2.1 Comparing DiffMGC≈
H to DiffMGC

We performed a first empirical evaluation on how the heuristic capping could impact running
times and the quality of results. We compare families inferred by DiffMGC and DiffMGC

≈
h,

considering genomes of D. melanogaster, D. simulans and D. yakuba, with 7, 6 and 6 linear
chromosomes (after filtering out unlocalized contigs), respectively. DiffMGC cannot deal
with large contig numbers and those were the only species assembled by FlyBase at
chromosome level available on NCBI.

For DiffMGC
≈
h, the largest number of edges in Ĉ(A,B) was for A = D. melanogaster

and B = D. yakuba. In this case, Ĉ has 10 edges distributed among 4 components with 2
vertices (including 1 dummy contig), and 1 component with 6 vertices. That corresponds to
at most 11,520 capping-sets in θ≈, while the three pairwise comparisons with the optimal θ⋆

have between 12! and 14! capping-sets. Even so, the running times were very similar between
the two approaches, varying from 15 to 30 seconds, probably due to the fact that these three
species are phylogenetically closely related and very well assembled and annotated, allowing
the solver to quickly identify the best ortholog-sets despite the much higher increase of the
search space produced by θ⋆.

Quality of inferred families

While 12,406 families were inferred using DiffMGC, 12,405 were inferred using DiffMGC
≈
h,

and 99.8% of those families are the same. Consequently, only slight variations were found
when comparing those families to the FlyBase families – 11,542 and 11,544 families are
identical to those of FlyBase for DiffMGC and DiffMGC

≈
h, respectively.

5.2.2 Comparing DiffMGC≈
H to other tools

For comparing the performance of DiffMGC
≈
h against other inference tools, we analyzed

the complete dataset with 11 Drosophila genomes. Unlocalized contigs were not filtered out,
resulting in genomes with 11 to 1,041 contigs.

Homologous families were also inferred by the following tools using the default parameters
unless noted otherwise.

ProteinOrtho and Poff. ProteinOrtho [14] compares similarities of gene sequences
and clusters them to find significant orthologous groups. To enhance the prediction accuracy,
the Poff extension [15] can be used to take into account the relative order of genes as an
additional feature for the discrimination of orthologs. We changed the parameter “minimum
reciprocal similarity for additional hits” from the default 0.95 to 0.8 – experiments have
shown that, as the “stringency threshold” parameter of DiffMGC, higher values might
discard relevant gene relationships.

Oma. Based on sequence similarities and on phylogeny, Oma [1] is the underlying tool of
the homonym online orthology browser. The standalone tool allows custom genomes to be
compared to infer orthologous groups. We have also provided the phylogenetic tree of the 11
Drosophilas as input.

D. P. Rubert and M. D. V. Braga 24:15

Quality of inferred families

Considering FlyBase families as reference, we compare the families inferred by Oma,
ProteinOrtho, Poff and DiffMGC

≈
h (Figure 5). All methods inferred more than 12,000

families. Since the number of families alone cannot hint the quality of results, we focus on
the intersections with FlyBase families.

All Resolved Resolved complete
4,000

6,000

8,000

10,000

12,000

14,000

6189

10958

12516

Types of families

#
of

fa
m
ili
es

FlyBase & intersec.
Oma
ProteinOrtho
Poff
DiffMGC

≈
h

4323

71917191

5231

86898689

5356

89168916

5507

8682
9074

Figure 5 The numbers of all, resolved and resolved complete families in FlyBase, followed by the
numbers of families inferred by Oma, ProteinOrtho, Poff and DiffMGC

≈
h, respectively. The

lower part of each bar represents the intersection between the inferred sets and FlyBase. (For
resolved complete families, the numbers of families in the intersections are shown on the top of
bars.) More details on the distribution of families inferred by the four methods can be found in
Appendix C.

All except DiffMGC
≈
h produced only resolved families. For general and resolved fam-

ilies, 7,191 Oma families and FlyBase families are identical. ProteinOrtho, Poff and
DiffMGC

≈
h inferred 8,689, 8,916 and 9,074 families identical to those in FlyBase, re-

spectively, while the intersection with FlyBase for resolved families decreased slightly for
DiffMGC

≈
h (8,682). For resolved complete families, however, the intersection of DiffMGC

≈
h

and FlyBase families is the largest again, with 5,507 families (89% of the FlyBase set),
against, 4,323 (70%), 5,231 (85%) and 5,356 (87%) for Oma, ProteinOrtho and Poff
respectively.

We also counted the numbers of gene homologies that are classified as true positive (TP),
false positive (FP) and false negative (FN) with a procedure described in Appendix C. We
then computed the values of precision

(
TP

TP+FP

)
and recall

(
TP

TP+FN

)
for the four methods.

Our tool DiffMGC
≈
h had the lowest value for precision (probably due to its unrefined

ambiguous families) and the highest value for recall, which seems to be consistent to its high
agreement with FlyBase families.

WABI 2022

24:16 Gene Orthology Inference via Genome Rearrangements

Running times

The running times are dominated by the preprocessing for all tools – the computation of
pairwise sequence similarities. This step took more than 200 hours for Oma, which relies on
an internal implementation of the Smith-Waterman algorithm, and 30 hours for DiffMGC

≈
h,

which uses blast [2]. As for ProteinOrtho and its extension Poff, they took 45 minutes
for performing sequence alignments with diamond [9].

Having at hand the results of alignments, Oma spent around 1 hour to output the inferred
gene families, while ProteinOrtho and Poff spent 10 minutes. DiffMGC

≈
h took 1 hour

to postprocess alignments and generate ILPs, then less than 10 minutes to solve most of
ILPs, totaling approximately 14 hours. Only 4 of the 55 ILPs reached the time limit of 2
hours, within a gap to the optimal solution of around 0.1% for 3 and 11% for 1 of them.
Another round of postprocessing spent 5 minutes to generate families from the solver results.

6 Conclusions and Discussion

We devised and implemented a heuristic capping for improving our recently developed pipeline
DiffMGC [18] for inferring gene families based on genome rearrangements. In DiffMGC
we adopted an optimal capping including all connections between the ends of linear segments
to allow all possible (2p∗)! capping-sets in the input of the ILP FF-DCJ-Indel that infers
the DiffM pairwise orthologs. However, due to the heavy optimal capping, FF-DCJ-Indel
fails in handling a pair of genomes if one or both of them (with the dimension of a fruit fly
genome) are distributed in a hundred contigs.

In contrast, the new pipeline DiffMGC
≈
h adopts a lighter heuristic capping including

connections only between linear segments that share gene content leading to a smaller number
of capping-sets in the input of the same FF-DCJ-Indel that here infers DiffM

≈
h pairwise

orthologs. Data from experiments show that the heuristic capping can indeed be much
lighter than the optimal capping, reducing drastically the search space. In the analysis
of 11 Drosophila (partially assembled) genomes, the number of distinct capping-sets was
reduced, on average, from (unfeasible) 1,014! to less than 305!. Although the latter value
is still large, the heuristic capping allows FF-DCJ-Indel to efficiently handle a pair of
fruit fly genomes where both of them can be distributed in hundreds or even thousands of
contigs. The bottleneck of our pipeline is still the ILP pairwise computations that, despite
the gain of heuristic capping, solve instances of an NP-hard problem. However, at least
for genomes with the dimension of a fruit fly genome, DiffMGC

≈
h lifts the limitation of

requiring chromosome-level assembled genomes, expanding to a great extent its applicability.
Not only the genomes in contig-level could be analyzed, but also the quality of the inferred

orthologies was very good. The quality evaluation was done by adopting the gene families
curated by the FlyBase consortium as a benchmark. The analysis based on a smaller
dataset of three completely assembled Drosophila genomes compared the previous workflow
DiffMGC with the new DiffMGC

≈
h and showed that the gene families inferred by the two

pipelines are virtually the same. The heuristic capping in practice did not have a negative
impact on the inferred gene families, preserving the original (optimal) orthology relations. A
larger experimental study based on 11 Drosophila genomes, including partially assembled
genomes distributed in several contigs, compared DiffMGC

≈
h to other genome-scale methods,

namely Oma, ProteinOrtho and Poff. Our results showed that DiffMGC
≈
h was able

to infer the highest number of families and complete families in common with FlyBase,
and was very close to the top on the number of incomplete resolved families. Indeed, our

D. P. Rubert and M. D. V. Braga 24:17

tool had the highest value for recall, which seems to be consistent to its high agreement with
FlyBase families. However, for precision DiffMGC

≈
h had the lowest value, probably due

to its 877 unrefined ambiguous families, the largest of them including 151 genes.
As a future work we intend to refine our ambiguous families by breaking them into smaller

families, so that we can improve our precision without losing in our recall rate. We will also
replace blast by diamond in our pipeline, bringing its preprocessing running times closer
to those of ProteinOrtho and Poff. This will allow us to more efficiently evaluate our
tool with datasets including larger genomes. Additionally we intend to do a systematic study
testing the speed and the quality performances of the heuristic capping for a range of distinct
values of the parameters τ and ϵ, so that we can derive a way to estimate good values for
these parameters considering the input datasets.

References
1 Adrian M Altenhoff, Jeremy Levy, Magdalena Zarowiecki, Bartłomiej Tomiczek, Alex Warwick

Vesztrocy, Daniel A Dalquen, Steven Müller, Maximilian J Telford, Natasha M Glover, David
Dylus, et al. OMA standalone: orthology inference among public and custom genomes and
transcriptomes. Genome Res, 29(7):1152–1163, 2019.

2 Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman.
Basic local alignment search tool. J Mol Biol, 215(3):403–410, 1990.

3 Sébastien Angibaud, Guillaume Fertin, Irena Rusu, Annelyse Thévenin, and Stéphane Vialette.
On the approximability of comparing genomes with duplicates. J Graph Algo App, 13(1):19–53,
2009. doi:10.7155/jgaa.00175.

4 Anne Bergeron, Julia Mixtacki, and Jens Stoye. A unifying view of genome rearrangements.
In Proc. of WABI, volume 4175 of Lecture Notes in Bioinformatics, pages 163–173, 2006.
doi:10.1007/11851561_16.

5 Leonard Bohnenkämper, Marília D. V. Braga, Daniel Doerr, and Jens Stoye. Computing
the rearrangement distance of natural genomes. J Comput Biol, 28(4):410–431, 2021. doi:
10.1089/cmb.2020.0434.

6 Marília D. V. Braga, Cedric Chauve, Daniel Doerr, Katharina Jahn, Jens Stoye, Annelyse
Thévenin, and Roland Wittler. The potential of family-free genome comparison. In C. Chauve,
N. El-Mabrouk, and E. Tannier, editors, Models and Algorithms for Genome Evolution,
volume 19 of Computational Biology Series, chapter 13, pages 287–307. Springer Verlag, Berlin,
2013. doi:10.1007/978-1-4471-5298-9_13.

7 Marília D. V. Braga, Eyla Willing, and Jens Stoye. Double cut and join with insertions and
deletions. J Comput Biol, 18(9):1167–1184, 2011. doi:10.1089/cmb.2011.0118.

8 David Bryant. The complexity of calculating exemplar distances. In David Sankoff and Joseph H.
Nadeau, editors, Comparative Genomics, volume 1 of Computational Biology Series, pages
207–211. Kluver Academic Publishers, London, 2000. doi:10.1007/978-94-011-4309-7_19.

9 Benjamin Buchfink, Chao Xie, and Daniel H. Huson. Fast and sensitive protein alignment
using DIAMOND. Nat Methods, 12:59–60, 2015.

10 C. Dessimoz, G. Cannarozzi, M. Gil, D. Margadant, A. C. J. Roth, A. Schneider, and G. H.
Gonnet. OMA, a comprehensive, automated project for the identification of orthologs from
complete genome data: introduction and first achievements. In Proc. of RECOMB-CG, volume
3678 of Lecture Notes in Bioinformatics, pages 61–72, 2005.

11 Daniel Doerr, Pedro Feijão, and Jens Stoye. Family-free genome comparison. In João C.
Setubal, Jens Stoye, and Peter F. Stadler, editors, Comparative Genomics: Methods and
Protocols, volume 1704 of Methods in Molecular Biology, pages 331–342. Springer Nature, New
York, 2018. doi:10.1007/978-1-4939-7463-4_12.

12 P. Hall. On representatives of subsets. Journal of the London Mathematical Society, s1-
10(1):26–30, 1935.

WABI 2022

https://doi.org/10.7155/jgaa.00175
https://doi.org/10.1007/11851561_16
https://doi.org/10.1089/cmb.2020.0434
https://doi.org/10.1089/cmb.2020.0434
https://doi.org/10.1007/978-1-4471-5298-9_13
https://doi.org/10.1089/cmb.2011.0118
https://doi.org/10.1007/978-94-011-4309-7_19
https://doi.org/10.1007/978-1-4939-7463-4_12

24:18 Gene Orthology Inference via Genome Rearrangements

13 Sridhar Hannenhalli and Pavel A. Pevzner. Transforming men into mice (polynomial algorithm
for genomic distance problem). In Proc. of FOCS, pages 581–592, 1995. doi:10.1109/SFCS.
1995.492588.

14 Marcus Lechner, Sven Findeiß, Lydia Steiner, Manja Marz, Peter F. Stadler, and Sonja J.
Prohaska. Proteinortho: Detection of (co-)orthologs in large-scale analysis. BMC Bioinform,
12(124), 2011.

15 Marcus Lechner, Maribel Hernandez-Rosales, Daniel Doerr, Nicolas Wieseke, Annelyse
Thévenin, Jens Stoye, Roland K. Hartmann, Sonja J. Prohaska, and Peter F. Stadler. Orthology
detection combining clustering and synteny for very large datasets. PLoS One, 9(8:e105015),
2014.

16 Fábio V. Martinez, Pedro Feijao, Marília D. V. Braga, and Jens Stoye. On the family-free DCJ
distance and similarity. Algorithms Mol Biol, 13(10), 2015. doi:10.1186/s13015-015-0041-9.

17 Alexander C. J. Roth, Gaston H. Gonnet, and Christophe Dessimoz. Algorithm of OMA for
large-scale orthology inference. BMC Bioinform, 9(518), 2008.

18 Diego P. Rubert, Daniel Doerr, and Marília D. V. Braga. The potential of family-free
rearrangements towards gene orthology inference. J Bioinform Comput Biol, 19(6):2140014,
2021. doi:10.1142/S021972002140014X.

19 Diego P. Rubert, Fábio V. Martinez, and Marília D. V. Braga. Natural Family-Free Genomic
Distance. Algorithms Mol Biol, 16(4), 2021. doi:10.1186/s13015-021-00183-8.

20 David Sankoff. Genome rearrangement with gene families. Bioinformatics, 15(11):909–917,
1999. doi:10.1093/bioinformatics/15.11.909.

21 Mingfu Shao, Yu Lin, and Bernard Moret. An exact algorithm to compute the double-cut-
and-join distance for genomes with duplicate genes. J Comput Biol, 22(5):425–435, 2015.
doi:10.1089/cmb.2014.0096.

22 Guanqun Shi, Liqing Zhang, and Tao Jiang. MSOAR 2.0: Incorporating tandem duplications
into ortholog assignment based on genome rearrangement. BMC Bioinform, 11(10), 2010.

23 Tamir Tassa. Finding all maximally-matchable edges in a bipartite graph. Theoretical Computer
Science, 423:50–58, 2012.

24 Sophia Yancopoulos, Oliver Attie, and Richard Friedberg. Efficient sorting of genomic
permutations by translocation, inversion and block interchange. Bioinformatics, 21(16):3340–
3346, 2005. doi:10.1093/bioinformatics/bti535.

A ILP formulation for family-free DCJ-indel

This ILP was developed in our previous work [19], but there it only considered an optimal
capping of a family-free relational graph FFR(A,B, S). It is an adaptation of the ILP for
computing the DCJ-indel distance of family-based natural genomes, by Bohnenkämper et
al. [5], which is itself an extension of the ILP for computing the DCJ distance of family-based
balanced genomes, by Shao et al. [21].

Given a valid capping θ (that here can be θ⋆ or θ≈), the general idea is searching
for a sibling-set that, together with a capping-set, induces an optimal consistent capped
decomposition of the capped diagram θ(FFR(A, B, S)) = (V, E), where V = V A

γ ∪ V B
γ ∪

θ̂(A) ∪ θ̂(B) and the set of edges comprises all disjoint sets of distinct edge types: E =
Eγ ∪Eθ∪EA

adj∪EB
adj∪EA

id∪EB
id. Therefore the same ILP formulation (shown in Algorithm 2)

computes either Diff(A, B, S) (with θ⋆) or Diff
≈
h(A, B, S) (with θ≈). A particular feature

of this ILP when compared to those from [5] and [21] is that its search space includes all
sibling-sets, of any size.

For capturing the properties required for computing the best DCJ-indel weighted cost,
whose details can be found in [18,19], the ILP is distributed in three main parts. Counting
indel-free cycles (those without indel edges) makes up the first part, depicted in constraints

https://doi.org/10.1109/SFCS.1995.492588
https://doi.org/10.1109/SFCS.1995.492588
https://doi.org/10.1186/s13015-015-0041-9
https://doi.org/10.1142/S021972002140014X
https://doi.org/10.1186/s13015-021-00183-8
https://doi.org/10.1093/bioinformatics/15.11.909
https://doi.org/10.1089/cmb.2014.0096
https://doi.org/10.1093/bioinformatics/bti535

D. P. Rubert and M. D. V. Braga 24:19

Algorithm 2 FF-DCJ-Indel: ILP for computing the best DCJ-indel weighted cost.
Input: A family-free relational graph FFR(A,B, S) with a valid capping θ⋆ or θ≈.

min p +
∑

e∈Eγ

xe −
∑

1≤i≤|V |

zi +
∑
k∈K

sk + 1
2

∑
e∈E

te − 1
2

∑
e∈Eγ

wexe +
∑

e∈Eid

wexe

s. t. xe = 1 ∀ e ∈ EA
adj ∪ EB

adj (C.01)∑
uv∈E

xuv = 2 ∀ u ∈ V (C.02)

xe = xd ∀ e, d ∈ Eγ , e, d are siblings (C.03)
yi

yj

≤
≤

yj + i(1 − xvivj)
yi + j(1 − xvivj)

}
∀ vivj ∈ E (C.04)

yi

yj

≤
≤

i(1 − xvivj)
j(1 − xvivj)

}
∀ vivj ∈ EA

id ∪ EB
id (C.05)

izi ≤ yi ∀ 1 ≤ i ≤ |V | (C.06)
rv

rv′

≤
≥

1 − xuv

xu′v′

}
∀ uv ∈ EA

id
∀ u′v′ ∈ EB

id
(C.07)

tuv

tuv

≥
≥

rv − ru − (1 − xuv)
ru − rv − (1 − xuv)

}
∀ uv ∈ E (C.08)∑

d∈EA
id , d∩e̸=∅

xd − te ≥ 0 ∀ e ∈ EA
adj (C.09)

te = 0 ∀ e ∈ E \ EA
adj (C.10)∑

e∈Ek
id

xe − |k| ≤ sk ∀ k ∈ K (C.11)

and xe ∈ {0, 1} ∀ e ∈ E (D.01)
0 ≤ yi ≤ i ∀ 1 ≤ i ≤ |V | (D.02)

zi ∈ {0, 1} ∀ 1 ≤ i ≤ |V | (D.03)
rv ∈ {0, 1} ∀ v ∈ V (D.04)
te ∈ {0, 1} ∀ e ∈ E (D.05)
sk ∈ {0, 1} ∀ k ∈ K (D.06)
p = p∗ (optimal capping) or p≈ (heuristic capping) (D.07)

(C.01)–(C.06), variables and domains (D.01)–(D.03). The second part is for counting
transitions (paths between an indel edge in A and an indel edge in B, described in constraints
(C.07)–(C.10), variables and domains (D.04)–(D.05). The last part describes how to count
the number of circular singletons (circular chromosomes exclusively composed of indel and
adjacency edges) with constraint (C.11), variable and domain (D.06). The objective function
of our ILP minimizes the size of the sibling-set (that is twice the size of the ortholog-set),
with sum over variables xe, the number of circular singletons, calculated by the sum over
variables sk, half the overall number of transitions in indel-enclosing (non-singletons) cycles,
calculated by the sum over variables te, and the weight of all indel edges in the decomposition,
given by the sum over their weights wexe for all e ∈ Eid, while maximizing both the number
of indel-free cycles, counted by the sum over variables zi, and half of the weight of the
sibling-set. Note that the minimization is not affected by constant p that corresponds to p∗
when the graph is optimally capped or to p≈ when the graph is heuristically capped.

WABI 2022

24:20 Gene Orthology Inference via Genome Rearrangements

B Pipeline description

Both the previous DiffMGC with optimal capping and the new DiffMGC
≈
h with heuristic

capping can be summarized in the following pipeline. Given a set of n genomes, for
all pairwise comparisons gene similarities and ortholog-sets are computed with the ILP
FF-DCJ-Indel solving either DiffM (for DiffMGC) or DiffM

≈
h (for DiffMGC

≈
h). The

resulting pairwise ortholog-sets are then simply integrated into an n-partite graph, and the
connected components of this graph are the inferred gene families.

n genomes -
(

n
2

)
pairwise comparisons:

Pairwise
similarities -

DiffM
(

≈
h
)

Pairwise
ortholog-set

Pairwise
similarities -

DiffM
(

≈
h
)

Pairwise
ortholog-set

...
...

...

Pairwise
similarities -

DiffM
(

≈
h
)

Pairwise
ortholog-set



Integration of the
multiple pairwise

ortholog-sets:
inferred gene

families

Figure 6 The pipeline of our approach is straightforward: our gene families are the connected
components of the n-partite graph derived by the integration of the computed ortholog-sets.

An ambiguous family corresponds to a connected component of the n-partite graph that
has more than one gene from the same genome. Otherwise we have a resolved family, which
can be either complete, when it contains one gene per genome, or incomplete otherwise.
Figure 7 illustrates these types of families in a 3-partite graph.

r r r r r r r rr r r r r r r rr r r r r r r
A

B

C ︸ ︷︷ ︸
ambiguous

complete︷ ︸︸ ︷ incomplete︷ ︸︸ ︷

︸ ︷︷ ︸
resolved

Figure 7 Types of families given by the integration of three ortholog-sets into a 3-partite graph.

C Supplementary information on the analysis of eleven Drosophilas

First we show in Figure 8 the distribution of the numbers of resolved FlyBase families (per
family size) inferred by each of the four methods.

The numbers of homologies that are classified as true positive (TP), false positive (FP)
and false negative (FN) were obtained as follows. Let H be the subsets of size two of all
FlyBase families. For a given method, let M be the subsets of size two of all inferred
families. Then TP is the size of H∩M, FN is the size of H\M and FP is the size of M\H.
For the four methods we calculated precision

(
TP

TP+FP

)
and recall

(
TP

TP+FN

)
. The results

(Fig. 9) show that DiffMGC
≈
h (with 877 ambiguous families, the largest of size 151) had the

lowest precision and the highest recall, which is consistent with its agreement with FlyBase.
Finally, to give an idea of how many families the four methods have in common, we show

the pairwise intersections in Table 1.

D. P. Rubert and M. D. V. Braga 24:21

2 3 4 5 6 7 8 9 10 11
0

1,000

2,000

3,000

4,000

5,000

6,000

Family size

#
of

fa
m
ili
es

FlyBase Oma
ProteinOrtho Poff
DiffMGC

≈
h

Figure 8 Distribution of resolved families in common with FlyBase families for eleven Drosophilas.

Method TP FP FN precision recall F1-score
Oma 500,500 1,618 114,343 0.997 0.814 0.90

ProteinOrtho 522,462 4,744 92,381 0.991 0.849 0.91
Poff 531,383 3,645 83,460 0.993 0.864 0.92

DiffMGC
≈
h 561,002 74,801 53,841 0.882 0.912 0.90

0.85

0.9

0.95

1

Pr
ec
isi
on

Oma ProteinOrtho Poff DiffMGC
≈
h

0.8

0.85

0.9

R
ec
al
l

Figure 9 Precision
(

TP
TP+FP

)
, recall

(
TP

TP+FN

)
and their harmonic mean F1-score for Oma,

ProteinOrtho, Poff and DiffMGC
≈
h, based on the dataset with eleven Drosophilas.

WABI 2022

24:22 Gene Orthology Inference via Genome Rearrangements

Table 1 Comparison of inferred families considering eleven Drosophila species. Each cell in the
diagonal holds the number of families given by a method and the number of those families that are
identical to a FlyBase family. The remaining cells show the number of families in common between
two methods and the percentages separated by a dot show the proportions with respect to the total
number of families given by the method in the corresponding row and column, respectively.

common resolved incomplete families (FlyBase has 4,769 res. incomplete families)

DiffMGC
≈
h Poff ProteinOrtho Oma

DiffMGC
≈
h

5,996 3,380 3,209 2,899
100% 56%�44% 57%�46% 48%�30%

∩FlyBase 3,175 (53%)

Poff - 7,707 5,751 4,235
- 100% 75%�82% 55%�44%

∩FlyBase - 3,551 (46%)

ProteinOrtho - - 6,995 4,127
- - 100% 59%�43%

∩FlyBase - - 3,458 (49%)

Oma - - - 9,673
- - - 100%

∩FlyBase - - - 2,863 (40%)

common resolved complete families (FlyBase has 6,189 res. complete families)

DiffMGC
≈
h Poff ProteinOrtho Oma

DiffMGC
≈
h

5,834 5,177 5,026 4,257
100% 89%�88% 86%�86% 73%�91%

∩FlyBase 5,507 (94%)

Poff - 5,865 5,501 4,468
- 100% 94%�94% 76%�95%

∩FlyBase - 5,356 (91%)

ProteinOrtho - - 5,835 4,369
- - 100% 75%�93%

∩FlyBase - - 5,231 (89%)

Oma - - - 4,688
- - - 100%

∩FlyBase - - - 4,328 (92%)

	1 Introduction
	2 Orthology inference via family-free genome rearrangements
	2.1 Computing an optimal set of orthologs between two genomes
	2.2 Family-free relational graph
	2.3 Consistent decompositions of the family-free relational graph

	3 Capping
	3.1 Capping a consistent decomposition
	3.2 Optimally capped family-free relational graph
	3.3 Integration of pairwise optimal ortholog-sets into gene families

	4 Heuristic capping
	4.1 Perfect contig intersection graph with thresholds tau and epsilon
	4.2 Heuristically capped family-free relational graph
	4.3 Integration of pairwise heuristic ortholog-sets into gene families

	5 Implementation and experiments
	5.1 Computational environment and parameters
	5.2 Analysis of Drosophila genomes
	5.2.1 Comparing DiffMGCH~~ to DiffMGC
	5.2.2 Comparing DiffMGCH~~ to other tools

	6 Conclusions and Discussion
	A ILP formulation for family-free DCJ-indel
	B Pipeline description
	C Supplementary information on the analysis of eleven Drosophilas

