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Abstract
In the classic model of population genetics, one haplotype (query) is considered as a mosaic copy of
segments from a number of haplotypes in a panel, or threading the haplotype through the panel.
The Li and Stephens model parameterized this problem using a hidden Markov model (HMM).
However, HMM algorithms are linear to the sample size, and can be very expensive for biobank-scale
panels. Here, we formulate the haplotype threading problem as the Minimal Positional Substring
Cover problem, where a query is represented by a mosaic of a minimal number of substring matches
from the panel. We show that this problem can be solved by a sequential set of greedy set maximal
matches. Moreover, the solution space can be bounded by the left-most and the right-most solutions
by the greedy approach. Based on these results, we formulate and solve several variations of this
problem. Although our results are yet to be generalized to the cases with mismatches, they offer a
theoretical framework for designing methods for genotype imputation and haplotype phasing.
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1 Introduction

In modeling a panel of haplotype sequences arising from population genetics processes, a
useful model is to view a haplotype as a mosaic copy of subsequences of other haplotypes in
a panel. In other words, a haplotype (the query) is threaded through different haplotypes
(as templates) in the panel. The classic Li and Stephens model parameterized this process as
a hidden Markov model which can take into account the uncertainties regarding mismatches
(emission probabilities) and template switching (transition probabilities) [3]. This model is
quite sufficient for moderate sample sizes (hundreds to thousands) as it scales linearly with
sample size. As a result, this model has served as a foundation for haplotype phasing and
genotype imputation for the past two decades. However, in the biobank era when the panel
size is large, the standard Li and Stephens model may not be efficient enough.

PBWT as a foundational data structure enables efficient substring matching in a popula-
tion panel with aligned haplotypes [2]. For a panel with M haplotypes of length N , existing
algorithms include space-efficient scanning algorithms for all-vs-all within-panel long and
set maximal matches in O(MN + c) time, where c is the number of matches outputted [2].
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4:2 Haplotype Threading Using the Positional Burrows-Wheeler Transform

Algorithms for time-efficient one-vs-all out-of-panel query long and set maximal match search
in O(N + c) time are also available [6, 10]. These algorithms allow efficient match query on
biobank scale databases.

Indeed, the PBWT has been leveraged for speeding up the Li and Stephens model.
Lunter proposed a representation of the PBWT using the BWT [5]. On this representation,
they perform a search for a maximum likelihood Viterbi path through the Li and Stephens
Hidden Markov Model. While their algorithm can compute the optimal score in O(N) time,
outputting of the haplotype threading requires O(N log M) time. Rubinacci et al. use the
PBWT to select closely related individuals efficiently. These closely related individuals are
then imputed using IMPUTE5, an imputation based on the Li and Stephens model [9]. Loh
et al. use the PBWT similarly for EAGLE2, their phasing algorithm. They use the PBWT
to obtain representative data of a haplotype and then thread it using a haplotype copying
model similar to the Li and Stephens model [4]. Lastly, Delanueau et al. use the PBWT to
speed up phasing through the Li and Stephens model among other methodologies in their
phasing method SHAPEIT4 [1].

However, these algorithms [1, 4, 5, 9] are designed within the Li and Stephens HMM
framework and the PBWT is used as a subroutine. These algorithms mostly focus on the
Viterbi path that gives the maximum likelihood solution. We argue that in the biobank-scale
panel, a query may have a large number of high-quality matches, and thus outputting the
single best Viterbi solution may not be informative to reveal the overall high probability
possible paths. In this work, we formulate the haplotype threading problem as a combinatorial
optimization problem: given a set of haplotypes X and a query z, represent z as segments of
haplotypes in X and optimize a certain objective scoring function.

There are a number of possible scoring functions for threading, however there are common
themes between them. Usually, one wants to represent z using a small amount of haplotypes
in X or a small amount of distinct segments. In this paper, we minimize the number of
segments we use to represent z. We formulate the Minimum Positional Substring Cover
problem (MPSC), given a query z and a set of strings X, find a smallest set of positional
substrings contained in z and a string in X that cover all characters of z. While this
formulation simplifies the original haplotype threading by ignoring potential mismatches in
the Li and Stephens model flavor, it enables efficient enumeration of all possible solutions,
leveraging the structure of PBWT. Augmenting our algorithms with mismatch-tolerating
methods such as random projection [7] or PBWT-smoothing [11], our formulation can capture
the bulk of the high-probability threading paths, and thus provide flexibility for designing
variations of downstream tasks such as genotype imputation and haplotype phasing.

We provide a solution in time linear to the length of the query string given a PBWT of
X. Occasionally, the segment being present in only one string in X is not enough evidence
to use it to represent z. Therefore, we formulate the h-Minimal Positional Substring Cover
(h-MPSC) problem. Given a query string z and a set of strings X, find a smallest set of
segments present in z and h strings in X. We provide a solution in O(h|C| + N) time, where
|C| is the number of segments outputted and N is the length of z.

In Section 3, we formulate the Minimal Positional Substring Cover problem, discuss
multi-allelic PBWTs, discuss properties of MPSCs, and provide a solution given a PBWT of
X. In Section 4, we discuss three variations of the MPSC problem: the leftmost, rightmost,
and set maximal match only minimal positional substring covers. Then we show that our
original solution is leftmost and provide linear time solutions for the rightmost and set
maximal match only MPSC problems. In Section 5, we discuss the h-MPSC problem and
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provide a solution in O(h|C| + N) time. Then, in Section 6 we discuss boundary cases in
these algorithms. Lastly, we cover possible future work in haplotype threading related to the
Minimal Positional Substring Cover problem in Section 7.

2 Background

We index the characters of a string z with N characters from 0 to N − 1. The first character
is z[0] and the last character is z[N − 1]. The string z[i, j) is the substring of z that starts at
character i and ends at character j − 1. z[i, j] is the substring of z that starts at character i

and ends at character j. z(i, j] is the substring of z that starts at character i + 1 and ends
at character j, z(i − 1, j] = z[i, j] = z[i, j + 1).

A positional substring of a string z is a 3-tuple, (i, j, z), where i and j are nonnegative
integers, i ≤ j + 1 ≤ |z|, and z is the “source” of the substring. The substring corresponding
to the positional substring (i, j, z) is z[i, j]. If i = j +1, then (i, j, z) corresponds to the empty
string, ε. The number of characters in z is j − i + 1. A non-empty positional substring (i, j, z)
is contained (or present) in a string s if 0 ≤ i ≤ j < |s| and s[i, j] = z[i, j]. A positional
substring (i, j, z) corresponding to an empty string is contained in a string s iff 0 ≤ j ≤ |s|.
Two positional substrings, (i, j, s) and (k, l, t) are equal iff i = k, j = l, and s[i, j] = t[k, l].

A positional substring cover C of a string z by a set of strings X is a set of positional
substrings such that every character of z is contained in a positional substring and every
positional substring in the set is present in z and a string in X. I.E., ∀k ∈ {0, . . . , |z| −
1}, ∃(i, j, s) ∈ C s.t. i ≤ k ≤ j, and ∀(i, j, s) ∈ C, ∃x ∈ X s.t. x[i, j] = z[i, j] = s[i, j]. The
“source” s of a positional substring (i, j, s) in a positional substring cover can be any string s

s.t. s[i, j] = x[i, j] = z[i, j] for some x ∈ X. The size of a positional substring cover is the
number of positional substrings it contains.

π is a projection on tuples. π1(i, j, z) = i, π2(i, j, z) = j, and π3(i, j, z) = z.

2.1 Positional Burrows-Wheeler Transform
The Positional Burrows-Wheeler Transform (PBWT) is an index on X, a set of M binary
strings of length N . It was published by Richard Durbin in 2014 [2]. It allows efficient
search for positional matches in binary strings. Furthermore, it allows efficient compression
of binary strings that have local correlation. The main idea of the PBWT is it stores four
two-dimensional integer arrays of size around M × N . The prefix array, a contains N + 1
sortings of the M binary strings. Sorting i in a contains the strings x ∈ X sorted by their
reversed prefixes of length i. If two strings have the same reversed prefix of length i, their
relative order in a[i] and a[0] are the same. The divergence array d contains N + 1 integer
arrays of length M . The j-th integer in the i-th array, d[i][j], contains the starting position
of the longest match between a[i][j] and a[i][j − 1] that ends at i. The u array has N arrays
of length M . The j-th position in the i-th array contains the position the string a[i][j] would
have in a[i + 1] if it had a 0 at index i. The v array has N arrays of length M . The j-th
position in the i-th array contains the position the string a[i][j] would have in a[i + 1] if it
had a 1 at index i.

We now define the PBWT with notation commonly used in this paper in order to give the
reader a deeper understanding of the PBWT and this paper’s notation. We use R(z) to denote
the reverse of the string z. Call yi,j the string corresponding to the ID a[i][j]. Each binary
string in X is given a unique integer ID in {0, . . . , M−1}. The a[i] array contains the IDs of the
strings x ∈ X sorted by R(x[0, i)). d[i][j] = mink∈{l∈{0,...,i}:yi,j [l,i)=yi,j−1[l,i)} k. u[i][0] = 0.

WABI 2022
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z 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0

x0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0
x1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0
x2 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0
x3 1 1 1 0 1 1 1 1 0 0 1 0 0 0 0
x4 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1
x5 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0

(0, 4, x3)
(2, 6, x0)

(6, 11, x5)
(11, 14, x2)

MPSC of z by X

Figure 1 A minimal positional substring cover of z by X.

If yi,j [i] = 0, u[i][j +1] = u[i][j]+1. Otherwise, u[i][j +1] = u[i][j]. v[i][0] = u[i][M −1]+1 if
yi,M−1[i] = 0, otherwise v[i][0] = u[i][M − 1]. If yi,j [i] = 1, v[i][j + 1] = v[i][j] + 1. Otherwise,
v[i][j + 1] = v[i][j]. The definitions in this paragraph and the one above are equivalent.

Richard Durbin introduced useful definitions of matches between strings. A match
between two strings, s and t ((i, j, s) = (i, j, t)), is locally maximal if it can’t be extended
in any direction and still match. (s[i − 1] ̸= t[i − 1] or i = 0) and (s[j + 1] ̸= t[j + 1]
or j = N − 1). When comparing a string s to a set of strings X, a match from s to
x ∈ X, ((i, j, s) = (i, j, x)), is set maximal from s to X if it is locally maximal and
there does not exist a match from s to a string in X that is larger and contains this match.
∀t ∈ X∀k ∈ {0, . . . , i}∀l ∈ {j, . . . , M}, (k = i and l = j) or t[k, l] ̸= s[k, l]. Lastly, a
match from s to x ∈ X, (i, j, s) = (i, j, x), is a longest match from s to X ending
at index j if it is a longest match between s and all strings in X that ends at index j.
∀t ∈ X∀k ∈ {0, . . . , i}, k = i or t[k, j] ̸= s[k, j].

3 Minimal Positional Substring Cover

The Minimal Positional Substring Cover (MPSC) problem is, given a set X of M strings and
a string z, find a positional substring cover of z by X of the smallest size out of all positional
substring covers of z by X. Call this cover a minimal positional substring cover of z by X.
Refer to Figure 1 for a depiction of an MPSC.

3.1 Properties
▷ Claim 1. A minimal positional substring cover of z by X exists if and only if for every
i ∈ {0, . . . , |z| − 1}, there exists a string in X that has the same character as z at index i.

Proof. If there exists an i ∈ {0, . . . , |z| − 1} s.t. ∀x ∈ X, z[i] ̸= x[i], there exists no positional
substring cover of z by X since a positional substring that covers index i and is contained in
z and a string in X doesn’t exist. There doesn’t exist a positional substring cover of z by X,
so a minimal positional substring cover of z by X doesn’t exist.

If ∀i ∈ {0, . . . , |z| − 1}, ∃x ∈ X s.t. z[i] = x[i], then there exists a positional substring
cover C of z by X. C = { (i, i, z) : i ∈ {0, . . . , |z| − 1} }. A positional substring cover of z by
X exists, so a minimal positional substring cover of z by X exists. ◁

▷ Claim 2. For a minimal positional substring cover C of z by X, every index k ∈
{0, . . . , |z| − 1} is contained in at most two of its positional substrings. ∀k ∈ {0, . . . , |z| −
1}, ∃(i0, j0, s0), (i1, j1, s1) ∈ C s.t. ∀(i2, j2, s2) ∈ C, i2 ≤ k ≤ j2 ⇐⇒ ((i2 = i1 ∧j2 = j1 ∧s2 =
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s1) ∨ (i2 = i0 ∧ j2 = j0 ∧ s2 = s0)). Note that every index is contained in at least one
positional substring by the definition of positional substring cover, therefore, every index is
contained in at least one and at most two positional substrings in C.

Proof. Suppose there exists an index k that is contained in more than two positional substrings
in a minimal positional substring cover C of z by X. Take D, the set of positional substrings
in C that contain i, D = {p ∈ C : π1(p) ≤ i ≤ π2(p)}. Take the positional substrings
p, q ∈ D that start the earliest and end the latest respectively. ∀r ∈ D, π1(p) ≤ π1(r) and
π2(q) ≥ π2(r). p covers at least [π1(p), i] and q covers at least [i, π2(q)]. Therefore, all the
indices contained in positional substrings in D are covered by p and q. Therefore, removing
all positional substrings in D except p and q from C would yield a smaller set of positional
substrings that covers z by X (since |D| > 2). This contradicts the fact that C is a minimal
positional substring cover of z by X. ◁

▷ Claim 3. Given a minimal positional substring cover C of z by X, the starting points of
all positional substrings in C are unique and their ending points are unique. ∀p, q ∈ C, p ̸=
q =⇒ (π1(p) ̸= π1(q) ∧ π2(p) ̸= π2(q)).

Proof. Suppose that there are two positional substrings in C that start at the same position,
i. Then, the one with the smaller ending position can be removed from C. This new set is
a smaller positional substring cover of z by X because all of the sites are still covered by
positional substrings contained in z and a string in X. This contradicts the assumption that
C is a minimal positional substring cover of z by X. Similar reasoning can be applied to
positional substrings with the same ending position. ◁

▷ Claim 4. For a minimal positional substring cover C of z by X. For any positional
substring p ∈ C, if p has the i-th smallest starting point out of all positional substrings in
C, it also has the i-th smallest ending point out of all positional substrings in C. ∀p, q ∈
C, π1(p) < π1(q) ⇐⇒ π2(p) < π2(q).

Proof. Suppose there are two positional substrings, p, q ∈ C s.t. the order of their starting
points and ending points are different. Without loss of generality, say p starts earlier.
Then, we have π1(p) < π1(q) and π2(p) > π2(q). In this case, q is completely covered by p.
Removing q from C results in a positional substring cover of z by X that is smaller than C.
This contradicts the assumption that C is a minimal positonal substring cover. ◁

We use Claim 4 to define i-th positional substring in a minimal positional substring cover
of z by X. The i-th positional substring in a minimal positional substring cover C is the
positional substring with the i-th smallest starting position in the cover, 0-indexed. This
is equivalent to ordering by ending position (by Claim 4). We use C[i] to denote the i-th
positional substring of C.

3.2 Main Idea
We present a solution to the Minimal Positional Substring Cover problem here. This solution
assumes that a PBWT of X is provided. Note that a PBWT specifies a binary alphabet,
whereas the Minimal Positional Substring Cover problem doesn’t assume a binary alphabet.
There are two ways to deal with this. Firstly, it is possible to convert a string s in an
arbitrary alphabet Σ into a binary string where every character is represented by ⌈log |Σ|⌉
binary characters. Minor modifications on the PBWT algorithms would provide algorithms
that take a multiplicative factor of O(log |Σ|) extra time and space. Another solution is as

WABI 2022
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z 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0

x0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0
x1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0
x2 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0
x3 1 1 1 0 1 1 1 1 0 0 1 0 0 0 0
x4 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1
x5 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0

(0, 4, x3)
(2, 6, x0)

(6, 11, x5)
(11, 14, x2)

C, MPSC of z by X

(6, 11, x5)
(11, 14, x2)(2, 5, x2)m

P ⊂ C

k

Figure 2 Depiction of Lemma 1. C is a MPSC of z by X. P is a subset of C that covers only
indices {k, . . . , N − 1}. The longest match m ending at index k − 1 and P form a subset of a MPSC
D of z by X. P ∪ {m} ⊆ D.

follows. Instead of two arrays, u, and v, that keep track of position of the sequence with 0
and 1 respectively, keep one three dimensional array w, that keeps track of position of the
sequence with each character. Then, w[i][j][c] = u[i][j] in the original formulation if c = 0
and v[i][j] if c = 1. In general, w[i][j][c] is the position in a[i + 1][j] of sequence a[i][j] if it
had a c at index i. Minor modifications of query algorithms on the PBWT would run on
this data structure with no extra time, however a multiplicative factor of O(|Σ|) extra space
is taken. We will use the second solution for an arbitrary alphabet PBWT for the rest of
this paper. The construction and all vs. all match algorithms for this second solution have
been explored in a paper by Naseri et al. [8].

We start with P = ∅. Add to P the positional substring corresponding to the longest
match from z to X ending at N − 1. Every minimal positional substring cover of z by X

must cover index N − 1. Replacing the positional substring in any such cover with the
longest match from z to X ending at N − 1 will yield a minimal positional substring cover
of z by X because the sets are the same size and the longest match ending at N − 1 covers
all sites any match ending at N − 1 covers by definition. Now, P is a subset of a minimal
positional substring cover C of a string z by X. It covers indices {k, . . . , N − 1}. For some
integer 0 < k ≤ N − 1. And none of the indices {0, . . . , k − 1}. We will show in Lemma 1
that given a subset of a minimal positional substring cover that covers a contiguous section
of indices, the longest match ending at the last index it doesn’t cover is also in a minimal
positional substring cover. Using Lemma 1, we add the positional substring corresponding to
the longest match ending at k − 1 to P . We repeat this with our new P and new k until P is
a minimal positional substring cover of z by X. Refer to Figure 2 for a depiction of Lemma 1.

▶ Lemma 1 (Minimal Positional Substring Cover Modularity). Given a subset P of a minimal
positional substring cover C of a string z by X that covers all the indices in {k, . . . , N − 1}
and none of the indices in {0, . . . , k − 1} for 0 < k ≤ N − 1. Take m = (i, k − 1, s), the
longest match ending at k − 1 from z to X. P ∪ {m} is a subset of a minimal positional
substring cover of z by X.
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Proof. If P is a subset of a minimal positional substring cover C of a string z by X, then,
the (|C| − |P| − 1)-th positional substring in C must cover index k − 1. If it didn’t, either the
index k − 1 is not covered by C, or another substring in C covers index k − 1. In the first
case, our definition of C is contradicted.

In the second case, if an n-th positional substring covers k − 1, if n > |C| − |P| − 1, our
defintion of P is contradicted. If n < |C| − |P| − 1, our definition of n-th positional substring
is contradicted (n-th positional substring ends after (|C| − |P| − 1)-th positional substring),
or C is not a minimal positional substring cover ((|C| − |P| − 1)-th positional substring starts
after k − 1, in which case it can be removed while maintaining the coverage of all sites).

Now, for any C, replacing the (|C| − |P| − 1)-th positional substring with the longest
match ending at k − 1 of z and X will yield a minimal positional substring cover of z by X.
This is because the new set is the same size as C and all the sites C covered are also covered
by the new set. Any indices greater than k − 1 are covered by P and there are no indices less
than k − 1 that the original (|C| − |P| − 1)-th positional substring covered that the longest
match ending at k − 1 doesn’t cover by the definition of longest match ending at k − 1. ◀

Obtaining the longest match ending at index i is easy using the PBWT. At any index
i, for some sequence a[i + 1][j], the longest match ending at i between it and X − {yi+1,j}
starts at the smaller of d[i+1][j] and d[i+1][j +1] (the starting position of the longest match
ending at i between {a[i + 1][j], a[i + 1][j − 1]} and {a[i + 1][j], a[i + 1][j + 1]} respectively.
Precisely, the longest match ending at i from z to X is (min(d[i + 1][j], d[i + 1][j + 1]), i, z).
Unfortunately, the query sequence is not in the PBWT, so using this method directly is
not possible. In 2021, Sanaullah et al. introduced a method of “virtually inserting” a query
haplotype into a PBWT in time linear with respect to the length of the haplotype [10]. This
calculates the positions in the prefix array and the divergence values a query string would
have if it was present in a PBWT.

3.3 Algorithm
A virtual insertion entails the calculation of the positions the string would take in the prefix
arrays a, and the calculation of the new divergence values of the string and the string below
it in every prefix array index. The original algorithm was described for binary strings. Here
we describe the algorithm on an arbitrary alphabet PBWT. We begin by calculating the
locations of the query z in the prefix arrays.

We will keep track of the index t[k], k ∈ {0, . . . , N}. t[k] is the index in the k-th prefix
array (a[k]) which the query sequence z would be placed above if it were in the PBWT.
Choose t[0] arbitrarily, we choose t[0] = 0. The position z would be above in a[k + 1]
is the position t[k] would be at in a[k + 1] if it had z[k] at position k. In other words,
t[k + 1] = w[k][t[k]][z[k]]. We can use the w array to calculate each t[k] in constant time.
Overall, O(N) where N = |z|. Next, we calculate the divergence values.

The key observation for the efficient calculation of divergence values is that the divergence
value of the query sequence z at index k will be less than or equal to its divergence value
at index k + 1. The same holds for the divergence value of the sequence below z. See
Section 2.3 of [10] for a proof of this claim. Therefore, we calculate two integer arrays, dz

and dbelowz of size N + 1. We calculate dz[N ] and dbelowz[N ] by starting at d = N and
decrementing until z[d − 1] ̸= yN,t[N ]−1[d − 1] for dz (and until z[d − 1] ̸= yN,t[N ][d − 1]
for dbelowz). Then, we set k = N − 1 → 0 and calculate dz[k] and dbelowz[k] by starting at
dz[k + 1] and dbelowz[k + 1] respectively and decrementing until the next characters are not
equal, see condition in previous sentence. Overall, this takes O(N) time since every index
has a constant cost and over all the sites, the divergence calculation is a counter from N to 0.

WABI 2022
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As we noted before, obtaining the longest match ending at index k is easy given a PBWT
of binary strings. This still holds in our arbitrary alphabet PBWT. The longest match ending
at k of a[k + 1][j] to X − {yk+1,j} will be adjacent to it in a[k + 1], either above or below
it. For our query z, the longest match ending at k starts at the smaller of dz[k + 1] and
dbelowz[k + 1]. Therefore, using Lemma 1 after virtual insertion, we can output a minimal
positional substring cover of z by X. Add the longest match ending at N − 1 (j, N − 1, z) to
the cover, save k = j. Repeat the following until k = 0: Add the longest match ending at
k − 1, (j, k − 1, z) to the cover, set k = j. At the end of this process, we have a minimal
positional substring cover of z by X. Refer to Algorithm 1 for the pseudocode of this
algorithm. Note that there are some boundary cases in the algorithm not included in the
pseudocode, these are discussed in Section 6.

Algorithm 1 Minimal Positional Substring Cover.

// Virtual Insertion
t[0] = 0;
for k = 0 → N − 1 do

t[k + 1] = w[k][t[k]][z[k]];
CURdz = CURdbelowz = N ;
for k = N → 0 do

CURdz = min(CURdz, k);
CURdbelowz = min(CURdbelowz, k);
while CURdz > 0 and z[CURdz − 1] = yk,t[k]−1[CURdz − 1] do

CURdz − −;
dz[k] = CURdz;
while CURdbelowz > 0 and z[CURdbelowz − 1] = yk,t[k][CURdbelowz − 1] do

CURdbelowz − −;
dbelowz[k] = CURdbelowz;

// Minimal Positional Substring Cover Output
C = ∅;
k = N ;
while k > 0 do

oldk = k;
k = min(dz[k], dbelowz[k]);
if k = oldk then

output “No positional substring cover of z by X exists.”;
exit;

C = C ∪ {(k, oldk − 1, z)};
output C;

3.4 Time Complexity
The time complexity of this algorithm is O(N) where N is the length of the query string.
The calculation of locations in the prefix array is clearly O(N) since the calculation of each
index is constant time and there are N indices. The calculation of divergence values is not
constant time per index, however each index incurs a constant cost and a variable cost. Over
all N indices, the sum of the variable costs is O(N) since the variable costs are counters from
N to 0. Therefore, the virtual insertion part of the algorithm takes O(N) time. The minimal
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positional substring cover output section of the algorithm takes constant time per positional
substring in the ouput, therefore it takes O(|C|) time. The size of a minimal substring cover
of z by X is at most N because there may not be any empty positional substrings in a
minimal positional substring cover. Therefore, given a PBWT of a set of M strings, and a
query string z of length N , Algorithm 1 outputs a minimal positional substring cover of z by
X in O(N) time.

4 Problem Variants

4.1 Leftmost Minimal Positional Substring Cover
A leftmost minimal positional substring cover C of z by X is a minimal positional substring
cover of z by X with the following property: for any i-th substring in C, it starts at least as
early as the i-th substring of every other minimal positional substring cover of z by X. We
use i-th positional substring of an MPSC as defined in Section 3.1. With this notation, a
minimal positional substring cover C of z by X is leftmost if ∀i ∈ {0, . . . , |C| − 1}∀D ∈ {P : P
is a minimal positional substring cover of z by X}, π1(C[i]) ≤ π1(D[i]).

▷ Claim 5. If the i-th substring in a leftmost minimal positional cover C of z by X begins at
index j, every (i − 1)-th substring in a minimal positional substring cover of z by X contains
index j − 1. ∀i ∈ {1, . . . , |C| − 1}∀D ∈ {P : P is a minimal positional substring cover of z by
X}, π1(D[i − 1]) ≤ π1(C[i]) − 1 ≤ π2(D[i − 1]).

Proof. Suppose there existed an i ∈ {1, . . . , |C| − 1} and D ∈ {P : P is a minimal positional
substring cover of z by X} such that π1(C[i]) − 1 > π2(D[i − 1]). Then, since D is a cover of
z by X, it contains a positional substring that contains index π1(C[i]) − 1, call it D[j]. If
j < i−1, the definition of i-th positional substring is contradicted since π2(D[j]) > π2(D[i−1]
and j < i − 1. If j > i − 1, j = i by definition of i-th positional substring, and C is not
leftmost since π1(C[i]) > π1(D[i]). Therefore, no such i and D exist.

Suppose there existed an i ∈ {1, . . . , |C| − 1} and D ∈ {P : P is a minimal positional
substring cover of z by X} such that π1(C[i]) − 1 < π1(D[i − 1]). Then the set {D[j] : 0 ≤
j < i − 1} covers the indices [0, π1(D[i − 1]) − 1] with i − 1 positional substrings and the
set {C[j] : i ≤ j < |C|} covers the indices [π1(C[i]), N − 1] with |C| − i positional substring.
Their union is a positional substring cover of z by X with |C| − 1 positional substrings.
This contradicts the assumption that C is a minimal positional substring cover of z by X,
therefore, no such i and D exist. ◁

Here, we will show that the minimal positional substring cover C of z by X outputted
by Algorithm 1 is leftmost. The (|C| − 1)-th substring in any MPSC D of z by X must cover
index N − 1. This is because it is the substring with the greatest ending position in D (in
order for D to be minimal) and D must cover index N − 1. The leftmost starting point of any
positional substring that ends at N − 1 contained in z and a string in X is the starting point
of the longest match from z to X ending at index N − 1. This is exactly the (|C| − 1)-th
positional substring in C.

Therefore, the set containing only the C[|C|−1] is a subset of a leftmost minimal positional
substring cover of z by X. By Claim 5, the (|C| − 2)-th substring of a leftmost minimal
positional substring cover must contain index π1(C[|C| − 1]) − 1. The leftmost starting point
of any positional substring that ends at π1(C[|C| − 1]) − 1 contained in z and a string in X is
the longest match between z and X ending at that index. This is exactly the (|C| − 2)-th
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positional substring in C. Therefore, the set {C[|C| − 2], C[|C| − 1]} is a subset of a leftmost
minimal positional substring cover of z by X. This logic can be repeated for every positional
substring in C to show that it is a leftmost minimal positional substring cover of z by X.

4.2 Rightmost Minimal Positional Substring Cover

A rightmost minimal positional substring cover C of z by X is a minimal positional substring
cover of z by X with the following property: for any i-th substrings, it ends at least
as late as the i-th substring of every other minimal positional substring cover of z by
X. ∀i ∈ {0, . . . , |C| − 1}∀D ∈ {P : P is a minimal positional substring cover of z by
X}, π2(C[i]) ≥ π2(D[i]).

The logic for obtaining a rightmost minimal positional substring cover is similar to that
for a leftmost. One method is to find the leftmost cover using Algorithm 1 of the query
R(z) and XR = {R(x) : x ∈ X}, then reverse all positional substrings in the outputted cover.
This would require building a PBWT on XR, which would take O(|Σ|MN) time. Another
method is to build it with the longest matches starting at i. The first positional substring
the cover C would be the longest match starting at index 0. The second would be the longest
match starting at π2(C[0]) + 1, the third at π2(C[1]) + 1, and so on. The proof for this cover
being rightmost is very similar to the leftmost proof.

To obtain the longest match from z to X starting at index k efficiently, create an
analogous array to the divergence array for longest match starting at k. Take array δ of
length N where δ[i] = min(dz[i + 1], dbelowz[i + 1]) for i ∈ {0, . . . , N − 1} (use the definitions
of dz and dbelowz from Algorithm 1). Create the analogous array b of length N where
b[j] = maxi∈{k∈{0,...,N−1}:δ[k]≤j} i for j ∈ {0, . . . , N − 1}. This can be done in O(N) time.
Now b[j] corresponds to the end of the longest match starting at j from z to X. Therefore,
we can build a rightmost minimal positional substring cover of z by X in O(N) time given a
PBWT of X.

4.3 Minimal Positional Substring Cover Using Set Maximal Matches

In haplotype threading, it is usually better to have longer matches when possible. This
is because matches that are longer are usually between individuals that are more closely
related. In this case, it may be useful to have a MPSC of z by X that is composed of only
set maximal matches. Here we provide a brief description of how to output a MPSC of z by
X containing only set maximal matches in O(N) time given a PBWT of X.

We begin by running Algorithm 1 on z and the PBWT of X. Call its outputted cover
D. All the positional substrings (i, j, s) in D are longest matches ending at j from z to X,
therefore the longest match (m) starting at i from z to X is a set maximal match from z

to X. This is because for another match to encompass this match, it needs to contain the
indices {i, . . . , j} and start earlier or end later. No match starts earlier because (i, j, s) is the
longest match ending at j. No match ends later because m is the longest match starting at i.
Therefore, in order to obtain an MPSC containing only set maximal matches, we just have
to replace every positional substring (i, j, s) ∈ D with the longest match starting at i from z

to X. We can do this efficiently using the b array from Section 4.2. b[i] contains the ending
point of the largest match starting at i. We can compute the b array in O(N) time. We
can replace every match in D in O(1) time and |D| ≤ N . Therefore we can obtain a MPSC
composed of only set maximal matches in O(N) time.
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z 1 1 1 0 1 0 1

x4 0 1 0 1 0 0 0
x2 1 0 1 0 1 0 0
x0 1 0 1 0 1 0 1
x1 0 1 1 0 0 1 1
x5 1 0 1 0 1 1 1
x3 1 1 1 0 1 1 1

a[k + 1] d[k + 1]

t[k + 1]
f

g

f − g = 1
f − g = 2
f − g = 3

Figure 3 Finding the longest match ending at k present in h strings in X for k = 6 and h = 3.
We only depict indices {0, . . . , k} for all strings. Highlighted in gray are divergence vales, d[k + 1][j].
f and g values depicted are the final f and g values. The window is depicted for f − g ∈ {1, 2, 3}.

5 h-Minimal Positional Substring Cover

The h-Minimal Positional Substring Cover problem, is, given a query string z, and a set of
strings X, find the smallest cover out of all positional substrings covers C of z by X where
every positional substring in C is contained in at least h strings in X. The solution to this
problem is similar to the solution to the Minimal Positional Substring Cover problem, and it
is biologically useful because the large group of similar individuals for every region suggests
that they are closely related. Note that Claims 2–4 hold for h-MPSCs. Furthermore, with
this definition, a 1-MPSC is a MPSC of z by X and a MPSC is a 1-MPSC of z by X.

The h-Minimal Positional Substring Cover problem is similar to the Minimal Positional
Substring Cover problem. The main difference is that in the new problem, we only consider
positional substrings that have h matches in X. Any h-MPSC will contain a positional
substring that contains the last index and is contained in h strings in X by definition. We
can replace this positional substring with the largest match ending at index N − 1 contained
in h strings in X. This will result in a set that is still a h-MPSC because it covers all the
same sites as the previous set and is the same size. Therefore, we start building a h-MPSC
with the longest match ending at index N − 1 with h matches. Finding this match is easy
using the PBWT.

5.1 Longest Match ending at k present in h strings in X

Once a query string z is virtually inserted into a PBWT, it is easy to find the largest match
ending at index k between z and X that matches at least h strings in X. The idea is to keep
track of a window in column k + 1 of the prefix and divergence arrays. We will keep track of
the boundaries of the window, 0 ≤ f < g ≤ N . f is the index of the first haplotype in the
window and g is the index of the first haplotype after f not in the window. We will also keep
track of e, the starting position of the match. We start with e = min(dz[k + 1], dbelowz[k + 1]),
f = t[k + 1] − 1 if dz[k + 1] < dbelowz[k + 1], otherwise f = t[k + 1]. Lastly g = f + 1. The
number of strings in the window at any point is g − f . Now, until g − f = k, we expand the
boundaries of the window to include the next longest match to z. If d[k + 1][f ] < d[k + 1][g],
then we decrement f and update e accordingly, e = max(d[k + 1][f ], e), f = f − 1. Otherwise,
we update g and e accordingly, e = max(d[k + 1][g], e), g = g + 1 Overall, the search of this
match takes O(h) time. Figure 3 depicts this process.
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5.2 Algorithm
Then, using similar logic to Lemma 1, we repeatedly add the longest match with h matches
ending at the site just before the beginning of the last match to obtain the h-MPSC.
See Lemma 2.

Algorithm 2 h-Minimal Positional Substring Cover.

Perform the same steps to virtually insert as in Algorithm 1;
// h-MPSC Output
C = ∅;
k = N ;
while k > 0 do

// longest match ending at k − 1 with h matches in X search
e = min(dz[k], dbelowz[k]);
if dz[k] < dbelowz[k] then

f = t[k] − 1;
else

f = t[k];
g = f + 1;
while g − f < k do

if d[k][f ] < d[k][g] then
e = max(d[k][f ], e);
f − −;

else
e = max(d[k][g], e);
g + +;

if e = k then
output “No h-positional substring cover of z by X exists.”;
exit;

C = C ∪ {(e, k − 1, z)};
k = e;

output C;

▶ Lemma 2 (h-MPSC Modularity). Given a subset P of a h-minimal positional substring
cover C of a string z by X that covers all the indices in {k, . . . , N − 1} and none of the
indices in {0, . . . , k − 1} for 0 < k ≤ N − 1. Take m = (i, j, s), the longest match ending at
k − 1 from z to X that is contained in h strings in X. P ∪ {m} is a subset of a h-MPSC of
z by X.

Proof. If P is a subset of a h-minimal positional substring cover C of a string z by X, then
the (|C| − |P| − 1)-th positional substring in C must cover index k − 1. If it didn’t, either the
index k − 1 is not covered by C, or another substring in C covers index k − 1. In the first
case, our definition of C is contradicted.

In the second case, if an n-th positional substring of C covers k − 1, if n > |C| − |P| − 1,
our definition of P is contradicted. If n < |C| − |P| − 1,our definition of n-th positional
substring is contradicted (n-th positional substring ends after (|C| − |P| − 1)-th positional
substring), or C is not a minimal positional substring cover ((|C| − |P| − 1)-th positional
substring starts after k − 1, in which case it can be removed while maintaining the coverage
of all sites).
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Now, for any C, replacing the (|C| − |P| − 1)-th positional substring with longest match
ending at k − 1 between z and h strings in X will yield a h-MPSC of z by X. This is because
the new set is the same size as C and all the sites C covered are also covered by the new set.
Any indices greater than k − 1 are covered by P and there are no indices less than k − 1 that
the original (|C| − |P| − 1)-th positional substring covered that the longest match ending at
k − 1 between z and h strings in X doesn’t cover by definition. ◀

5.3 Time Complexity
Given a string z, and a PBWT of a set of strings X, we output a h-MPSC of z by X. Finding
each positional substring takes O(h) time. Therefore, this algorithm takes O(h|C| + N)
where C is the outputted cover. The N part of the time complexity comes from the virtual
insertion and the h|C| component from the cover search and output. See Algorithm 2 for the
pseudocode of this algorithm.

6 Boundary cases in implementation

In the implementation of the algorithms discussed in this paper, there are boundary cases that
need to be accounted for which aren’t dealt with in the pseudocode. These boundary cases are
left out of the pseudocode because their handling would make the pseudocode unnecessarily
long and difficult to understand. We briefly discuss these boundary cases here and how
to handle them. For virtual insertion t[k] may equal M , while there is no a[k][M ], this
represents the fact that z would sort below every string in X in a[k]. While there is no value
w[k][M ][c], it is simple to calculate in constant time what this value should be. w[k][M ][c]
is the same as w[k][0][c + 1], where c + 1 is the lexicographically smallest character that is
larger than c. This can also be calculated in constant time as w[k][M ][c] = w[k][M − 1][c] + 1
if yk,M−1[k] = c, or w[k][M ][c] = w[k][M − 1][c] otherwise. It should also be checked if z is
longer than the strings in X, if so, no cover exists. Lastly, for the h-MPSC problem, there
are two boundary cases. Firstly, if h > |X|, no cover exists. Secondly, while incrementally
widening the window to contain h strings, care should be taken to avoid trying to obtain
the divergence value d[k][−1] or d[k][M ]. In other words, if f = 0 or g = M , stop trying to
increment f or decrement g respectively.

7 Discussion and Conclusion

In this paper, we have defined and proposed the Minimal Positional Substring Cover problem
as a solution to the haplotype threading problem. We proved useful properties of Minimal
Positional Substring Covers and provided a solution to the MPSC given a PBWT of X

that takes time linear to the length of the query string. We also discussed variations of the
Minimal Positional Substring Cover problem: leftmost, rightmost, and set maximal MPSCs.
We provided solutions to these problems with the same time complexity as the original
solution. Lastly, we discussed the h-MPSC problem, where every positional substring in
the cover is contained in h strings in X. We provided a solution to this problem that takes
O(h|C| + N) time given a PBWT of X.

We have laid the ground work for the application of the Minimal Positional Substring
Cover problem to haplotype threading. Immediate future work includes the modifications
of the MPSC problem that would make a solution more viable for a haplotype threading
solution. One such modification is an L-MPSC problem. An L-MPSC is the smallest
positional substring cover of z by X that only contains positional substrings of length L or
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more. This is biologically useful because small matches can be considered uninformative
due to the high likelihood of one occurring by random chance. Therefore, we may want to
consider haplotype threading where every match is at least as long as some threshold length
L. Another possibly useful variation is the o-MPSC problem. This is similar to the h-MPSC
problem except instead of every substring being contained in h strings in X, every index
needs to be covered by o overlapping positional substrings in C. The h-MPSC corresponds to
finding a group of individuals that are closely related to each other and z for a region while
the o-MPSC problem finds a group of individuals that are closely related to z for every index
(they may not be closely related to each other). Lastly, a length maximal MPSC solution may
be useful. A length maximal MPSC is an MPSC with a largest sum of lengths of positional
substrings out of all MPSCs of z by X. A solution to this problem maximizes the overlapping
regions on an MPSC, these overlaps are useful because they suggest relatedness between
adjacent segments in the MPSC.

One benefit of formulating haplotype threading as a combinatorial problem like MPSC is
that it enables the study of its solution space. We presented the leftmost and the rightmost
solutions. All other solutions are bounded by these solutions. It may also be useful to
design algorithms to derive another solution from an existing solution. E.g., given a solution
C, replacing a template C[i] by another one covering the same gap between C[i − 1] and
C[i + 1] would be another solution. Finally, it may be possible to systematically enumerate all
solutions. We leave these as future work. We believe efficient solutions to these biologically
useful problems exist.
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