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Abstract
Species tree estimation is a basic step in many biological research projects, but is complicated by
the fact that gene trees can differ from the species tree due to processes such as incomplete lineage
sorting (ILS), gene duplication and loss (GDL), and horizontal gene transfer (HGT), which can
cause different regions within the genome to have different evolutionary histories (i.e., “gene tree
heterogeneity”). One approach to estimating species trees in the presence of gene tree heterogeneity
resulting from ILS operates by computing trees on each genomic region (i.e., computing “gene
trees”) and then using these gene trees to define a matrix of average internode distances, where the
internode distance in a tree T between two species x and y is the number of nodes in T between the
leaves corresponding to x and y. Given such a matrix, a tree can then be computed using methods
such as neighbor joining. Methods such as ASTRID and NJst (which use this basic approach) are
provably statistically consistent, very fast (low degree polynomial time) and have had high accuracy
under many conditions that makes them competitive with other popular species tree estimation
methods. In this study, inspired by the very recent work of weighted ASTRAL, we present weighted
ASTRID, a variant of ASTRID that takes the branch uncertainty on the gene trees into account in
the internode distance. Our experimental study evaluating weighted ASTRID shows improvements in
accuracy compared to the original (unweighted) ASTRID while remaining fast. Moreover, weighted
ASTRID shows competitive accuracy against weighted ASTRAL, the state of the art. Thus, this
study provides a new and very fast method for species tree estimation that improves upon ASTRID
and has comparable accuracy with the state of the art while remaining much faster. Weighted
ASTRID is available at https://github.com/RuneBlaze/internode.
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1 Introduction

Species tree estimation is a common task in phylogenomics and is a prior step in many
downstream analyses (e.g., estimating divergence, understanding adaptation). Despite the
recent increase in the availability of genome-scale data, species tree estimation remains
challenging due to gene tree heterogeneity, where gene trees (the evolutionary history of
genes) differ from species trees [16]. Among common factors for gene tree heterogeneity,
incomplete lineage sorting (ILS), a population-level process modeled statistically by the
multi-species coalescent (MSC) [47, 24], is extremely common and well-studied.

A standard approach to species-tree reconstruction under the presence of ILS is to
concatenate the alignments of the individual genes and running a maximum likelihood (ML)
heuristic on the combined alignment. This simple approach, however, has been established
to be statistically inconsistent under the MSC, and can even be positively misleading,
converging to the wrong topology with probability 1 as the number of genes increases [43, 42].
Empirically, concatenation can also suffer from degraded accuracy under higher levels of
ILS, and can be affected by scalability issues under large data [29, 34]. In response, many
accurate ILS-aware methods have since been developed. Those that are most commonly
used in practice fall into a class of so-called summary methods, where gene trees are first
independently estimated from each genomic region; the inferred gene trees are then used as
input to the summary method to “summarize” the input gene trees into a species tree.

In recent years, many accurate summary methods statistically consistent under the
MSC have been developed, such as MP-EST [22], NJst [40], ASTRAL [29], ASTRID [49],
FASTRAL [9], and wQFM [25]. Many of these methods are scalable to genomic-scale data,
and under sufficient gene signal and ILS tend to be more accurate than concatenation [34].
Among these methods, ASTRAL is the most commonly used, compares favorably to other
methods in accuracy, and has been successfully applied to many large scale data [33, 55].
However, it is well known that summary methods suffer under inaccurate gene trees [34, 52]
as a result of summary methods not explicitly taking gene tree uncertainty into account.
Under inaccurate gene trees, it might still be preferable to use concatenation even under
substantial ILS [34]. Although co-estimating the gene trees and species trees such as using
StarBeast [36] or directly inferring quartets from the alignment and then combining them
using SVDquartets+PAUP* [6] circumvents this problem, neither can scale to large data.

This sensitivity of summary methods to gene tree error has motivated approaches pre-
processing the gene trees to improve the quality of the signal. Although throwing out
inaccurate gene trees generally does not help [34], statistical binning [31, 4] and contracting
low-support branches [55] improved accuracy for ASTRAL on many conditions. Nonetheless,
these approaches require setting arbitrary thresholds: statistical binning requires a threshold
to determine which branches are trustworthy, and contracting low-support branches also
requires such a threshold. Suboptimal parameter selection in either case can lead to little
accuracy improvement, or even worse, degraded accuracy compared to simply running on
the original input [4, 55]. Thus, pragmatically, accurately applying such methods faces the
difficulty of parameter selection.

Very recently, Zhang and Mirarab introduced weighted ASTRAL [54]. By directly
incorporating gene tree uncertainty into the ASTRAL optimization problem, weighted
ASTRAL improved ASTRAL in accuracy under all of their tested conditions. Notably, under
conditions where concatenation proved more accurate than unweighted ASTRAL, weighted
ASTRAL achieved the largest improvement, shrinking substantially the long known gap
[32, 33, 37] between summary methods and concatenation under low gene signal. More
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specifically, (unweighted) ASTRAL heuristically searches for a species tree that maximizes
the amount of quartet trees (unrooted four-taxon tree) shared with the input gene trees. By
using branch support and lengths to weigh the reliability of gene tree quartets, weighted
ASTRAL instead heuristically maximizes the weighted agreement with respect to the input
gene trees, effectively discounting the contribution of unreliable quartets. Weighted ASTRAL
is threshold-free, was shown to be more accurate than running ASTRAL on contracted gene
trees [54], and in fact might be the most accurate summary method under ILS that can scale
to large datasets.

Here, inspired by weighted ASTRAL, we introduce weighted ASTRID, incorporating gene
tree uncertainty into ASTRID. ASTRID, a fast and more accurate variant of NJst, is based
on the internode distance, defined by ASTRID as the number of edges between two taxa
in a gene tree. We explore variations of this internode distance where branch uncertainty
is considered. Notably, ASTRID is shown to have competitive accuracy against ASTRAL
[49, 34] while having a much faster running time [49, 9], both of which we hope to generalize
to weighted ASTRID when compared against weighted ASTRAL, obtaining a fast alternative
to a very accurate method.

The rest of the study is organized as follows. In Section 2 we describe weighted ASTRID
and introduce the two ways of weighting the internode distance matrix before providing
some theoretical running time bounds. In Section 3 we describe our experimental study,
choosing parameters for weighted ASTRID and comparing it to other methods. In Section 4,
we present our experimental results showing that support-weighted ASTRID is very fast,
is more accurate than ASTRID, has comparable accuracy with weighted ASTRAL, and
provides an alternative accurate species-tree inference method robust to low gene signal,
whereas branch-length weighted ASTRID has mixed accuracy and is less accurate than
support-weighted ASTRID. In Section 5 we summarize our main conclusions and discuss
future work.

2 Materials and methods

2.1 Basic definitions
Let n denote the number of taxa and let k denote the number of genes assuming a set of
gene trees. Given an unrooted phylogenetic tree T , we denote its leafset by L(T ) and its
edge-set E(T ). For each edge e in T , deleting e from T partitions the leaves into two sets
defined by the two connected components separated by e. Let this bipartition be denoted by
πe for some e ∈ E(T ). We denote the set of bipartitions of T by C(T ) = {πe | e ∈ E(T )},
and C(T ) uniquely defines the (unrooted) topology of T . A bipartition πe is said to be
trivial if e is incident to a leaf, since in such case πe ∈ C(T ) for any T on the same leafset.
Two trees are said to be compatible if the union of their bipartitions can coexist in a single
tree. The Robinson-Foulds distance (RF distance) [41] between two trees T and T ′ on the
same leafset is the size of the symmetric difference between the bipartitions of T and T ′, i.e.,
|C(T ) △ C(T ′)|. Given two binary trees T and T ′, we define the nRF (error) rate as their
RF distance normalized by 2n − 6 (the number of non-trivial bipartitions), obtaining a value
that is between 0 and 1.

For taxa u, v ∈ L(T ), let PT (u, v) denote the set of edges on the unique path connecting
u and v in T . Given an estimated gene tree G, we assume that each internal branch e is
associated with a branch support value s(e), some measure of confidence that this branch is
correctly estimated, where s(e) ∈ [0, 1]. Note that we say a branch is correctly estimated (in
topology) if the bipartition associated with that edge is present in the true gene tree. We
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extend this notion of branch support also to pendant edges, where we simply define s(e) = 1
if e is incident to a leaf. Similarly, for a true or estimated gene tree G, let l(e) denote the
length of a branch, where for estimated gene trees is usually given in substitution units
inferred by some maximum likelihood tree inference method.

2.2 Intertaxon-distance based summary method
Under the context of summary methods, given an input of (unrooted) gene trees, our task is
to infer an unrooted species tree topology from these input gene trees. A class of summary
methods first introduced by Liu and collaborators [23, 21] infers the species tree by first
metricizing the gene trees by defining a specific intertaxon distance between leaf nodes on the
gene trees, and then for each pair of taxa averages all such distances across the input gene
trees. The final averaged distance, represented as a distance matrix, is then fed as input to a
distance-based tree inference method, such as UPGMA [28] or neighbor-joining [44], which
infers a tree topology that will be the output species tree of this summary method. Here we
focus on ASTRID (a faster and more accurate variant of NJst) and specifically describe its
most accurate setting under no missing data.

ASTRID metricizes the gene trees by the internode distance dG(u, v) where u, v ∈ L(G)
is defined to simply be the number of edges in between u, v in G, i.e., dG(u, v) = |PG(u, v)|.
Although this definition from ASTRID differs from the original internode distance from
NJst [21], where it was defined as the number of nodes (instead of edges) in between two
taxa, this change has essentially no impact for our purposes [2] and generalizes to our later
modifications better. Given this measure of internode distance, and assuming that each pair
of taxa appears together in some gene tree (no missing data), ASTRID proceeds as follows
with the input set of gene trees G:
1. Initialize an n × n matrix D (n the number of taxa).
2. For each pair of taxa u, v, set D[u, v] to be the empirical mean of dG(u, v) where

G ranges in the input gene trees G where both u, v are present, i.e., set D[u, v] =∑
G∈Gu,v

dG(u, v)/|Gu,v|, where Gu,v is {G | G ∈ G ∧ u, v ∈ L(G)}. This empirical mean is
well defined as we assumed |Gu,v| > 0.

3. Run FastME’s heuristic for balanced minimum evolution [17] (referred to as FastME from
here on) on D, outputting an unrooted species tree.

ASTRID is statistically consistent under the MSC when given true gene trees [2], and is
in practice very fast while having competitive accuracy [49, 34].

2.3 Weighted ASTRID
In the definition of the internode distance, each branch contributes equally to the internode
distance for each pair of taxa it separates. Intuitively, under the realistic assumption that
gene trees are estimated with a non-trivial amount of error, some branches will be more
reliably estimated than the others. As such it makes sense to assign weights to branches
as some confidence of them correctly contributing to the internode distance. For example,
because zero-support branches very likely do not contribute correctly to the internode
distance, assigning a weight of 0 to such branches likely discounts incorrect contributions to
the internode distance. The branch lengths could also be used as such a proxy, because short
branches are empirically hard to estimate. Thus, our problem becomes to choose appropriate
weighting schemes for the edges based on information already annotated in the gene trees,
that is, the branch support and branch lengths. Because branch support is already designed
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as some statistical confidence of the correctness of some branch, it seems natural to naively
assign the support directly as the weight for each branch. We alternatively explore simply
assigning the branch length as the weight. The details are presented as follows.

2.3.1 Distance defined by branch support
We now formally introduce wASTRID-s (weighted ASTRID by support), analogous to the
naming of weighted ASTRAL by support. As mentioned above, if a branch has low support,
it is less likely that this branch contributes correctly to the internode distance, and thus
branches with low support should contribute less. Here we try one simple approach, defining
each branch’s contribution to the internode distance as its support instead of 1, which gives
rise to the following definition of dG(u, v), the new support-weighted intertaxon distance
replacing the internode distance from step 2 of ASTRID:

dG(u, v) =
∑

e∈PG(u,v)

s(e)

In reality, several different measures of support exist with different running time and
accuracy trade-offs [3]. Weighted ASTRAL discovered that the approximate Bayesian
support [3] of IQ-TREE led to the most accurate species tree reconstruction, although other
measures of support also led to accuracy improvements over unweighted ASTRAL. We leave
this choice of support as a parameter to be decided later for wASTRID-s.

While ASTRID is statistically consistent under the MSC when given true gene trees [2],
the statistical consistency of wASTRID-s only makes sense under estimated gene trees because
only estimated gene trees can have meaningful branch support. We conjecture that similar
to wASTRAL-s (support weighted ASTRAL), wASTRID-s is statistically consistent under
the MSC under some probabilistic interpretation of branch support when given estimated
gene trees.

2.3.2 Distance defined by branch lengths
Unlike branch support, which is designed to be a measure of statistical confidence on the
correctness of a branch, branch lengths can only serve as proxies to such information, where
shorter branches are empirically harder to estimate likely as a result of shorter branches
containing less information (fewer substitutions) [50]. We do not attempt a complex conversion
here, and simply just assign the branch length as the confidence similar to how we use the
support values:

dG(u, v) =
∑

e∈PG(u,v)

l(e)

Notably, this definition of dG(u, v) coincides with STEAC [23] (motivated by a different
perspective of the coalescence time between genes), and potentially under a more accurate
setting when paired with the FastME step of ASTRID. In addition, we also explore whether
and how to normalize the input branch lengths of the gene trees for the weighting. We name
this final algorithm wASTRID-pl (weighted ASTRID by path-lengths).

2.4 Running time and fast distance calculation
Clearly, both wASTRID-s and wASTRID-pl retain the original theoretical running time of
ASTRID. Recall that n is the number of species and k is the number of gene trees given
in the input. For each gene tree, our metricization simply assigns already-computed values
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as lengths to each edge; thus calculating the intertaxon distance across all pairs of taxa
per gene tree takes O(n2) time (for normalizing branch lengths in wASTRID-pl, we only
explore ways to normalize that does not affect this asymptotic running time). The averaged
intertaxon distance thus can be calculated in O(kn2) time. The running time of FastME
(using the balanced minimum evolution heuristic) is O(n2 × diam(T )) [8], where diam(T ) is
the topological diameter of the output species tree. Assuming the common Yule-Harding
distribution [53, 12] or the uniform distribution [10, 1, 27] on the output species tree, the
expected diameter is either log n [10] or

√
n [8, 10], respectively. Therefore we re-derive the

original running time result:

▶ Theorem 1. The averaged intertaxon distance of wASTRID-s and wASTRID-pl can be
obtained in O(kn2) time. The final species tree can be obtained using an additional O(n2 lg n)
time by FastME assuming the output species tree is under the Yule-Harding distribution (or
under the uniform distribution, O(n2√

n) time), where n is the number of species and k is
the number of genes.

While the algorithm for the O(kn2) step can be theoretically uninteresting, we implemen-
ted another algorithm for the distance calculation in hope of better in-practice speed. The
asymptotically optimal algorithm is easy to devise because the naive algorithm, which given
a gene tree, starts a BFS at each leaf to obtain the all-pairs intertaxon distance, is already
quadratic time per gene and also asymptotically optimal due to each gene tree having

(
n
2
)

distances. The original ASTRID implementation, in this vein, uses an algorithm which impli-
citly performs multiple traversals in the tree. For weighted ASTRID, we instead implemented
an intertaxon-distance algorithm from TreeSwift [35] based on post-order traversal, through
which we hope to achieve better empirical performance due to better cache locality in its
simultaneous maintenance of multiple distances from the leaves in an array.

3 Experimental Study

3.1 Overview
We conduct three experiments. In Experiment 1, we explore parameter choices (choice of
branch support for wASTRID-s and normalization scheme for wASTRID-pl) for weighted
ASTRID. In Experiment 2, we compare the accuracy and running time of weighted ASTRID
against other methods on a diverse set of simulated conditions. In Experiment 3, we compare
ASTRID, wASTRAL-h, and the best variant of wASTRID (as determined by previous
experiments) on the Jarvis et al. [14] avian biological dataset, comparing the quality of the
reconstructed species trees.

3.2 Datasets
We assembled a set of diverse data from prior studies (see Table 1), consisting of various
simulated conditions with estimated gene trees and one biological dataset (“avian biological”)
from the avian phylogenomics project [14]. We use the nomenclature of the original ASTRID
study and refer to the SimPhy-simulated datasets from the ASTRAL-II study by an “MC”
name. The ILS levels of the datasets are measured in average discordance (AD), defined as
the average nRF rate between the true species tree and the true gene trees. Same as the
original ASTRID study [49], we classify the ILS levels of the datasets into four categories
according to their AD percentages, where below 25% is classified as low ILS (L), between 26%
and 39% medium ILS (M), between 40% and 59% high ILS (H), and higher AD considered
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Table 1 Dataset statistics. The ILS levels of the datasets are categorized according to their AD
percentages, where below 25% is low ILS (L), between 26% and 39% mid ILS (M), between 40% and
59% high ILS (H), and higher AD very high ILS (VH). SH-like denotes FastTree default support;
BS denotes standard bootstrap support using FastTree or RAxML; aBayes denotes IQ-TREE
approximate Bayesian support. (*): training dataset: only 10/50 replicates were used for training.

Dataset # taxa # genes # reps ILS (AD %) Branch Support
ASTRAL-II MC2* [33] 201 1000 10 33 (M) SH-like, BS, aBayes
ASTRAL-III S100 [55] 101 1000 50 46 (H) aBayes
ASTRAL-II MC3 [33] 201 1000 50 21 (L) aBayes
ASTRAL-II MC5 [33] 201 1000 50 34 (M) aBayes
ASTRAL-II MC1 [33] 201 1000 50 69 (VH) aBayes
ASTRAL-II MC6H [20] 201 1000 50 9 (L) aBayes
ASTRAL-II MC11H [20] 1001 1000 50 35 (M) aBayes
Avian 2x [31] 48 1000 20 29 (M) aBayes
Avian 1x [31] 48 1000 20 47 (H) aBayes
Avian 0.5x [31] 48 1000 20 60 (VH) aBayes
Mammalian 2x [31] 37 200 20 21 (L) aBayes
Mammalian 1x [31] 37 200 20 29 (M) aBayes
Mammalian 0.5x [31] 37 200 20 50 (H) aBayes
Jarvis et al. avian [14] 48 14446 1 not known BS

very high ILS (VH). For the simulated conditions, we subsample the gene trees to size
k = 50, 200, 1000 except for the mammalian simulation (k = 50, 100, 200 instead as only 200
gene trees were provided).

For the measure of support for the datasets, the weighted ASTRAL study provided
gene trees reannotated with aBayes support and IQ-TREE inferred branch lengths for the
ASTRAL-II and ASTRAL-III datasets. We also reannotated the avian and mammalian
simulation with aBayes support and IQ-TREE branch lengths because aBayes was determined
as the best measure of support also for wASTRID-s. We use the MC2 condition as the
training data for both wASTRID-s and wASTRID-pl, where to explore the choice of branch
support for wASTRID-s, we also took the original FastTree [38] inferred trees annotated
with the default FastTree SH-like support and also computed a version of the gene trees with
standard bootstrap support [11] using 100 FastTree trees.

3.3 Methods
For testing, we compare against ASTRID, ASTRAL, and weighted ASTRAL, with the
following settings:

ASTRID (v2.2.1), the base method of weighted ASTRID. We use the original imple-
mentation, turning off missing data imputation, as our data has no missing entries in the
final averaged matrix.
ASTRAL(-III) (v5.7.8). We do not contract very low support edges in the gene trees
because a good threshold can be hard to determine across datasets. In addition, no
contraction allows us the fully explore the impact of weighting.
wASTRAL-h (hybrid weighted ASTRAL, v.1.4.2.3). This was the most accurate
weighted ASTRAL from the original study, using both branch lengths and support to
weigh gene tree quartets. wASTRAL-h supports parallelization, so we run wASTRAL-h
with 16 threads.
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Many of the datasets have FastTree-inferred gene trees that were reannotated with IQ-
TREE approximate Bayesian support. FastTree-inferred trees have polytomies for identical
sequences, but these polytomies will be resolved when the trees get reannotated by IQ-TREE,
adding false positive edges which may adversely affect the accuracy of the unweighted
methods. In these cases, we run the unweighted methods on the original FastTree gene trees.

3.4 Evaluation criterion

For simulated datasets, we compare the topological error rate of the reconstructed species
trees using the normalized Robinson-Foulds error (nRF error) with respect to the true species
trees. Because all the inferred and true species trees are binary, the nRF error rate is
equivalent to the missing branch rate (ratio of branches in the reference tree missing from
the reconstructed tree).

On the avian biological dataset, as the true tree is not known, we compare the estimated
species trees against prior topologies (wASTRAL tree and published trees). We also compute
the local posterior-probability (localPP) branch support [45] for the reconstructed species
trees obtained using wASTARL-h to assess the reliability of the branches.

On all datasets, we keep track of the wall-clock running time of the methods, the time
taken from consuming the input gene trees (that may have been preprocessed with new
branch support values) until outputting the species tree.

3.5 Experimental Environment

All experiments were conducted on the Illinois Campus Cluster, a heterogeneous cluster that
has a four-hour running time limit. The heterogeneity of the hardware makes the wall-clock
running times not directly comparable across runs, but can still be used to gather obvious
running time trends.

4 Results & Discussion

4.1 Experiment 1: Parameter selection

In Figure 1, we explore the choice of branch support among the default FastTree SH-like
support, IQ-TREE approximate Bayesian (aBayes) support (normalized to the [0, 1] range),
and bootstrap support (100 FastTree replicates) on the training datasets. The best accuracy
of wASTRID-s is obtained by using the normalized aBayes support on gene trees. All
measures of support, however, improved the species tree estimation error in general. The
superiority of (normalized) aBayes support is consistent with the support chosen for weighted
ASTRAL, where it was also found superior to SH-like support and bootstrap support. This
advantage is even more pronounced when considering that aBayes support can be obtained
much faster than bootstrap support [3].

On this training dataset, wASTRID-pl attained the highest accuracy when normalizing the
branch lengths in each gene tree by the maximum path length in that gene tree (better than
no normalization). Interestingly, while worse than ASTRID with fewer genes k ∈ {50, 200},
wASTRID-pl attained higher accuracy than ASTRID when k = 1000. However, when
comparing wASTRID-s and wASTRID-pl, wASTRID-pl was always less accurate.
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Figure 1 Comparison of the choice of branch support and the choice of branch length normalization
strategy for wASTRID-s and wASTRID-pl respectively on the training data, showing the species tree
topological error rates (nRF error). “SH-like” is FastTree SH-like support. “aBayes” is IQ-TREE
approximate Bayesian support. “BS” is bootstrap support using 100 FastTree trees. The x-axis
varies in the number of genes k in the input. Results are shown averaged across ten replicates. Error
bars show standard error.

4.2 Experiment 2: Results on simulated datasets
In this experiment, we show four-way comparisons among ASTRID, ASTRAL, weighted
ASTRAL (wASTRAL-h), and weighted ASTRID (wASTRID-s). We omit showing the
branch-length weighted wASTRID-pl, as it was discovered to be on all datasets less accurate
than wASTRID-s. We put an emphasis on the accuracy (nRF error), while later revisiting
the problem of running time.

4.2.1 ASTRAL-III S100
This 101-species dataset contains four conditions that varied in the gene tree estimation
error (GTEE, measured by the average nRF error between the estimated gene trees and
their corresponding true gene trees) by varying the sequence lengths. We show the results
of three of the four conditions in Figure 2. In all such figures, we show the unweighted
methods (ASTRID, ASTRAL) in dotted lines. On S100, aside from the obvious trend that
summary methods become more accurate as k (the number of genes) increases, all methods
also improve in accuracy when given more accurate estimated gene trees. These two trends
are unsurprising and well-documented across studies for summary methods in general.

More interestingly, the weighted methods (wASTRID-s, wASTRAL-h) are clearly more
accurate than their unweighted counterparts, especially at higher levels of GTEE (GTEE
= 0.55, 0.42). The improvement in accuracy from the weighted methods does not seem to
depend on the number of genes, suggesting that the noise brought by low-quality gene trees is
not simply resolved by having ample data. This advantage of the weighted methods, however,
is smaller as more accurate gene trees are used (GTEE = 0.31), as expected.

wASTRID-s clearly improves upon ASTRID on this dataset, with an obvious advantage
in the nRF error across all conditions and all numbers of genes. wASTRID-s notably almost
matches the accuracy of wASTRAL-h. With k ∈ {200, 1000}, no clear benefit exists for using
wASTRAL-h on the shown conditions.
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Figure 2 Topological error of species tree across methods on the ASTRAL-III S100 dataset
(n = 101, AD = 46%). Subfigures vary the sequence lengths, affecting the gene tree estimation
error (measured in GTEE, the average distance between estimated gene trees and true gene trees).
The x-axis varies in the number of genes. Results are shown averaged across 50 replicates with
standard error bars. All weighted methods (wASTRID, wASTRAL) ran on gene trees reannotated
with IQ-TREE aBayes support branch support and lengths. All methods achieve better accuracy
when given more (larger k) or better (lower GTEE) data. Weighted methods are more accurate
than unweighted ones. wASTRID-s and wASTRAL-h have almost the same accuracy.

On this dataset, wASTRID-pl (as seen in full results in Appendix Figure 8), similar to
trends seen in the training dataset, attains better accuracy than ASTRID when k = 1000, but
is almost always worse than wASTRID-s. While this better accuracy than ASTRID suggests
potential for wASTRID-pl and STEAC-like methods in general, this accuracy disadvantage
to wASTRID-s led to us dropping wASTRID-pl from future experiments.

4.2.2 ASTRAL-II SimPhy

This dataset was generated varying the speciation rates, ILS level, and number of taxa, with
the “H”-suffixed conditions regenerated from a previous study [20] halving sequence lengths
to increase GTEE. We show the results in Figure 3 (only three out of five of the conditions
visualized for brevity; see Appendix Figure 9 for the full results).

Across all conditions in this dataset, the weighted methods are more accurate than the
unweighted methods. This advantage does not seem to depend on the level of ILS or the
number of species. Even under the easiest condition (MC3), wASTRAL-h and wASTRID-s
still consistently achieved better accuracy. All methods also performed worse in accuracy as
ILS increased, as expected.

While wASTRID-s still consistently improved upon ASTRID in accuracy on this dataset,
we also see datasets where wASTRID-s is worse than wASTRAL-h (MC1 as shown here
and MC6H as shown in Appendix Figure 9). The relative performance of wASTRID-s and
wASTRAL-h seems related to the relative performance of the base methods: MC1 and MC6H
are the two conditions that ASTRAL is in general more accurate than ASTRID, but the
relative performance of the base methods does not explain the whole picture – for MC1 going
to k = 1000, ASTRID became more accurate than ASTRAL yet wASTRID-s is still worse
than wASTRAL-h. More positively, on the other conditions of this dataset, wASTRAL-h
has nearly the same accuracy as wASTRID-s, although wASTRAL-h is marginally more
accurate, which might be due to the hybrid weighting of wASTRAL-h also using the branch
lengths.
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Figure 3 Topological error (nRF error rate) of species tree across methods on selected conditions
on the ASTRAL-II SimPhy conditions (n = 201, 1001, 201, AD = 21, 35, 69% respectively). Each
subfigure depicts a different model condition. The x-axis varies in the number of genes. Results are
shown averaged across 50 replicates with standard error bars. ASTRAL did not finish 24 out of
the 50 replicates within four hours for k = 1000 on MC11H and thus the data point was omitted.
All weighted methods (wASTRID, wASTRAL) were run on gene trees reannotated with IQ-TREE
aBayes support branch support and lengths. Weighted methods are more accurate than unweighted
ones. wASTRID-s on MC1 was less accurate than wASTRAL-h and otherwise has the same accuracy.
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Figure 4 Topological error (nRF error rate) of species tree across methods on the avian simulation
(n = 48). Each subfigure depicts a different model condition. The x-axis varies in the number
of genes. Results are shown averaged across 20 replicates with standard error bars. All weighted
methods (wASTRID, wASTRAL) ran on gene trees reannotated with IQ-TREE aBayes support
branch support and lengths. ASTRID and wASTRID-s are more accurate than ASTRAL and
wASTRAL-h, with a slight accuracy advantage to the weighted methods over the unweighted ones.

On the largest input of these conditions (MC11H, k = 1000), ASTRAL did not finish
under our four-hour time limit on around half of the replicates (see Appendix Section A.7
for more details), but wASTRAL-h did. We comment on this scalability advantage of
wASTRAL-h over ASTRAL later.

4.2.3 Avian and mammalian simulation
These two datasets were generated based on model trees inferred on biological datasets. Both
datasets have three conditions with varying ILS by scaling the model tree branch lengths by
2X, 1X, or 0.5X, with shorter branch lengths leading to higher degrees of ILS. Notably, prior
results from the ASTRID study [49] showed that ASTRID outperformed ASTRAL on the
avian simulation, while on the mammalian simulation ASTRAL was more accurate. Also,
the mammalian simulation only has 200 genes available, so we vary k among 50, 100, 200
unlike the other datasets.
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Figure 5 Topological error (nRF error rate) of species tree across methods on the mammalian
simulation (n = 37). Each subfigure depicts a different model condition. The x-axis varies in the
number of genes. Results are shown averaged across 20 replicates with standard error bars. All
weighted methods (wASTRID, wASTRAL) ran on gene trees reannotated with IQ-TREE aBayes
support branch support and lengths. ASTRAL and wASTRAL-h are more accurate than ASTRID
and wASTRID-s. The weighted methods have mixed accuracy compared to the unweighted ones.

On the avian simulation (Figure 4), aside from obvious trends (ILS increases difficulty;
more genes leads to more accurate reconstruction), same as the original study, ASTRID is
consistently more accurate than ASTRAL. Strangely, although the weighted methods inherit
the relative performance of their base methods, in a few cases the weighted methods do
not help in accuracy, but they do not erode accuracy either. Even on conditions where the
weighted methods improved accuracy, the improvement was small. For example, wASTRAL-
h, even though improving upon ASTRAL, is even less accurate than ASTRID, whereas
on previously shown data wASTRAL-h was consistently the best in accuracy. This avian
simulation does carry substantial GTEE (> 50%), so it is not clear what led to the weighted
methods underperforming.

The results for the mammalian simulation (Figure 5) paint a more perplexing picture. On
the 2X condition, surprisingly, the weighted methods are less accurate than their unweighted
counterparts in general. This trend continues with the 1X condition, where wASTRAL-h only
mostly matches ASTRAL in accuracy, and wASTRID-s is worse than ASTRID in accuracy.
Only on the 0.5X condition, both weighted methods clearly help in accuracy. wASTRAL-h
is clearly better than wASTRID-s on this dataset, but this difference can be explained by
the accuracy advantage of ASTRAL on ASTRID. While it is again unclear why the weighted
methods underperformed, this dataset is relatively easy compared to the previously shown
datasets, with all methods achieving around 0.05 nRF error rate even with k = 200, so
despite the puzzling relative performance, the difference in accuracy among methods is very
small.

4.2.4 Running time
We show the wall-clock running time of the four methods under three representative conditions
(n = 101, 201, 1001) in Table 2, with a direct comparison of the two most accurate methods
visualized in Figure 6. While the heterogeneity of the hardware dilutes the comparability of
the running times, clearly wASTRID-s and ASTRID are much faster than wASTRAL-h and
ASTRAL, with wASTRID-s on average taking less than 12 seconds even on the largest input,
whereas on the same input wASTRAL-h on average takes roughly two hours. In general,
wASTRID-s is around two orders of magnitude faster than wASTRAL-h. Although we note
that the default flags of both ASTRAL and wASTRAL-h (that we used in the experiments)
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Figure 6 Wall-clock running time (sec) comparison of wASTRID-s and wASTRAL-h on selected
representative simulated conditions on n = 101, 201, 1001 for k ranging in 50, 200, 1000. Bars and
labels show averages across 50 replicates. wASTRID-s is dramatically faster than wASTRAL-h.

Table 2 Wall-clock running time (sec) across methods on selected representative simulated
conditions on n = 101, 201, 1001 for k ranging in 50, 200, 1000. Data points show averages across 50
replicates. ASTRAL did not finish 24 out of the 50 replicates within four hours for k = 1000 on
MC11H and thus the data point was omitted. The methods sorted by the fastest to the slowest
are almost always wASTRID-s, ASTRID, wASTRAL-h, and ASTRAL across all shown conditions.
ASTRID and wASTRID-s are much faster than ASTRAL and wASTRAL-h.

Running time (s) ASTRAL ASTRID wASTRAL-h wASTRID-s
k (# genes)

S100 (n = 101) 50 12.1 0.1 4.6 0.1
200 29.6 0.2 6.6 0.1
1000 300.7 1.4 22.8 0.2

MC5 (n = 201) 50 20.3 0.2 12.3 0.1
200 57.5 0.6 25.6 0.2
1000 600.7 1.8 106.9 0.5

MC11H (n = 1001) 50 552.9 18.0 611.8 11.3
200 2059.6 14.9 1333.4 8.8
1000 – 27.5 7191.0 11.8

also calculate support and lengths for reconstructed species tree, in practice, this is a fast
step relative to the species tree reconstruction, and does not affect our running time analysis
in any substantial way. On MC11H, wASTRID-s and ASTRID took less time going from
k = 50 to 200, likely due to the k = 50 trees having larger diameters, negatively impacting
the FastME step running time which has a linear dependency on the diameter of the output
tree.

The weighted methods are faster than their unweighted counterparts. For example on
S100 (seqlen = 400), wASTRAL-h under k = 1000 is more than ten times faster than
ASTRAL, and ASTRAL did not finish around half of the datasets for the largest input
(MC11H, k = 1000). Aside from the benefit of parallelization (we ran wASTRAL-h using 16
threads, but off-the-shelf ASTRAL does not support parallelization), this speed advantage
under a large number of genes of wASTRAL-h over ASTRAL can also be attributed to the
algorithmic change implemented in wASTRAL-h. The new weighted ASTRAL algorithm
removes the in-practice quadratic dependency of ASTRAL’s search algorithm on the number
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Columbea

(a) wASTRID-s avian tree.

Columbea

(b) wASTRAL-h avian tree.

Figure 7 Results on the avian biological dataset (n = 48, k = 14446). In (a) and (b), we show
the reconstructed species tree topology of wASTRID-s and wASTRAL-h, annotated with local
posterior-probability branch support (localPP) computed using wASTRAL-h. The red branches
show where the two trees differ. The six well corroborated clades according to Braun and Kimball
[5] are displayed by both trees and highlighted in gradients. For wASTRID-s, the red branches also
coincide with the only two low support branches. Contracting the very low support branches for
wASTRID-s arrives at a topology compatible with wASTRAL-h. wASTRAL-h took around 294
seconds to infer its tree. wASTRID-s was very fast and took 1 second to infer its topology.

of genes [30] and instead has a linear dependency on k for the running time. wASTRID-s is
consistently faster (at least two times faster on most conditions) than ASTRID, showing that
the new distance calculation algorithm implemented is more efficient than the original one.

4.3 Experiment 3: Results on the avian biological dataset

Jarvis et al. studied the phylogeny of birds using a dataset on 48 taxa using 14446 genes [14].
The original gene trees were annotated with RAxML [46] bootstrap support, which we
directly use in our wASTRID-s analysis. This dataset is known to have very low gene
resolution, with the average support only 32% [31]. ASTRAL on the original set of gene
trees reconstructed a species tree that contained obvious inaccuracies, but contracting low
support branches enabled ASTRAL to construct a very plausible topology in agreement
with established results [55]. Zhang and Mirarab reanalyzed the original gene trees using
wASTRAL-h, and reconstructed the same topology as ASTRAL running on contracted gene
trees [54]. In addition to directly comparing against their wASTRAL-h tree, we also compute
the number of differing branches between the inferred trees and the two published trees
of the Jarvis et al. study: the ExaML-based concatenation tree, called the TENT (“total
evidence nucleotide tree”), and the coalescent-based published tree based on binned MP-EST
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(MP-EST* tree). We show the results in Figure 7. In addition to showing the topology and
the localPP branch support, we also highlight in gradients six clades that are thought to be
strongly corroborated [5] for avian phylogeny.

The ASTRID tree (shown in Appendix Figure 10) differed in eight or nine edges with
each of the wASTRAL-h, TENT, and MP-EST* trees. In addition, the ASTRID tree did
not recover the Columbea clade, which is a clade that has seen strong support in various
analyses of this data [14, 55, 39].

Using wASTRID-s, we recovered a topology that is much more in agreement with the
other trees, differing in two branches (4.4% of the branches) with the wASTRAL-h tree. It
is also in much higher agreement with the published trees (differing in three branches with
the TENT, two branches with the MP-EST* tree). Looking closer, the two branches where
it differs from the wASTRAL-h tree coincide with the only two very low support branches
(no more than 5% in support), and thus contracting the very low support branches arrives
at a topology compatible with the wASTRAL-h tree. Both wASTRID-s and wASTRAL-h
recover the Columbea-Passerea split, a major conclusion in the original analysis of this data,
and even agree on the placement of the hard-to-place Hoatzin.

For running time, both ASTRID and wASTRID-s finished quickly. ASTRID completed
in 6.4 seconds, and wASTRID-s completed in 1.1 seconds. Our rerun of wASTRAL-h on this
data finished in 294.2 seconds, showcasing the much better scalability of the new weighted
ASTRAL optimization algorithm in the number of genes, whereas ASTRAL on the same
input took 32 hours in the ASTRAL-III study. In summary, on this dataset, wASTRID-s
inferred a more accurate tree compared to ASTRID, is much faster than wASTRAL-h, and
is compatible with wASTRAL-h after contraction of two very low support branches.

4.4 Additional remarks
Impact of number of genes, ILS, and GTEE

In all results shown, all methods achieved better accuracy when given more genes, and all
methods have decreased accuracy as the degree of ILS or GTEE increases. These trends are
well known and quite expected for all summary methods. The number of species does not
seem to influence the accuracy of the methods. The relative performance of the methods
does shift across different numbers of genes, but there seems to be no reliable predictor of
this change across the conditions. All methods seem equally adversely impacted by ILS in
accuracy, but for GTEE, the weighted methods are seen to be more robust to the low signal,
as by design the weighted methods can extract better signals from the gene trees under high
GTEE.

Impact of weighting

Weighting improved accuracy on all the datasets (simulated and biological) except on the
mammalian simulation, and the improvement of accuracy tends to be the same degree for
both wASTRAL-h and wASTRID-s, with a slight advantage to wASTRAL-h, likely due to
the hybrid weighting using more information than support-weighted ASTRID. Even with
ample genes or lower levels of GTEE, the weighted methods still in general improved upon
the unweighted variants in accuracy. It is not clear how the mammalian simulation (and
to some degree, the avian simulation) differs from the other datasets, where the weighted
methods could in cases be worse than the original methods in accuracy. The mammalian
simulation has a non-trivial amount of GTEE, but has the smallest number of species among
the tested datasets and was generated from a different protocol than the ASTRAL simulation
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datasets, and all these factors could potentially affect the accuracy. Although the weighted
methods are in general faster than their unweighted counterparts, this speed advantage is
orthogonal to the weighting and entirely due to faster algorithmic design or implementation.

wASTRAL-h vs. wASTRID-s

ASTRAL and ASTRID are known to be among the most accurate summary methods under
ILS, and their relative accuracy is dataset dependent, as also shown in our results. The
relative accuracy of their weighted counterparts is clearly influenced by the accuracy of
their base methods, as seen in the performance differences in the avian and mammalian
simulation, where either wASTRID-s and wASTRAL-h can be the more accurate method.
On the ASTRAL simulated datasets (ASTRAL-III S100, ASTRAL-II SimPhy), wASTRID-s
and wASTRAL-h have comparable accuracy, with a small advantage to wASTRAL-h, which
might be due to wASTRAL-h’s more effective hybrid weighting. Somewhat unsurprisingly,
on all conditions except the mammalian simulation, wASTRID-s is more accurate than
unweighted ASTRAL, even on conditions where ASTRAL is more accurate than ASTRID.

As for running time, wASTRID-s is clearly the winner. Despite wASTRAL-h’s improved
algorithm and parallelism, wASTRID-s is still two orders of magnitude faster than wASTRAL-
h, and hence can provide better scalability on large-scale data. We do not extend this running
time discussion to a highly parallelized setting (e.g., 64 cores, common for large-scale data
analysis) since wASTRAL-h has not been efficiently parallelized yet (as noted in their
future work), so any current discussion likely does not reflect the future parallel efficiency of
wASTRAL-h. The wASTRID-s algorithm is trivially parallelizable in its distance calculation
(albeit very fast already), but parallelizing the FastME step can be difficult both in design
and in implementation, which can be a bottleneck under large n. Intriguingly, wASTRAL-h
theoretically can scale better in the number of species than wASTRID-s as wASTRAL-h
has a running time that is subquadratic in the number of species, but our results show that
at n = 1001 this point is far from being reached. Thus wASTRID-s is much faster than
wASTRAL-h, while having comparable accuracy.

5 Conclusions

While the estimation of species trees using summary methods, such as ASTRAL, ASTRID,
MP-EST, and others, is now commonplace, it is known that gene tree estimation error
reduces the accuracy of the estimated species tree. We presented support weighted ASTRID
(wASTRID-s), an improvement over ASTRID that incorporates uncertainty in gene tree
branches into its estimation of the averaged internode distance. Our work is largely inspired
by the recent work of weighted ASTRAL (wASTRAL-h), which improved upon ASTRAL,
and we showed that wASTRID-s obtained similar accuracy improvements over ASTRID.
The advantage provided by wASTRID-s over ASTRID is most noteworthy under higher
degrees of gene tree estimation error. wASTRID-s has very close accuracy to wASTRAL-h
and is sometimes more accurate, but overall wASTRAL-h has a small advantage in accuracy.
The improvement of wASTRAL-h over wASTRID-s may be due to its weighting also
incorporating branch lengths. A branch-length weighted version of ASTRID (wASTRID-pl)
has mixed accuracy compared to ASTRID, and does not compete against the support-weighted
wASTRID-s in accuracy. In general, wASTRID-s and wASTRAL-h serve as accurate species
tree inference methods under ILS and are more robust to GTEE than ASTRID and ASTRAL,
two of the most accurate summary methods. Both can scale very well, with wASTRID-s much
faster. However, the differences in accuracy are dataset dependent, just as the comparison
between ASTRAL and ASTRID for accuracy seems dataset dependent.
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This study was limited to datasets where the only cause for gene tree discordance with
the species tree was ILS and gene tree estimation error. When considering real world datasets
that may have other sources of gene tree heterogeneity, such as GDL or HGT, it seems
likely that ASTRAL and other quartet-based methods may have an advantage over ASTRID
and wASTRID-s, due to the theoretical proofs of statistical consistency for quartet-based
methods for those conditions (and the lack of such proofs for distance-based species tree
estimation methods) [18, 26, 7, 13].

Although wASTRID-s is highly accurate and very fast, we recommend using wASTRID-s
in conjunction with wASTRAL-h and other species tree estimation methods. Due to its
speed, the inclusion of wASTRID-s adds little computational burden, and having multiple
different approaches for estimating the species tree, each based on a very different (but
statistically consistent) technique, can provide insights into what parts of the species tree are
most reliably recovered, and which parts may need further data in order for full resolution.

For future work, finding a way to incorporate branch lengths into the branch certainty
scoring for wASTRID-s, a hybrid weighting, will improve accuracy and might close the
accuracy gap between wASTRID-s and wASTRAL-h under some conditions. Missing data in
the final averaged distance matrix has not been addressed, and generalizing the approach from
ASTRID [48] for handling missing entries to weighted ASTRID will be important. ASTRID
has been used to speed-up and sometimes improve analyses for ASTRAL by assisting in
constraining the search space explored by ASTRAL (e.g., FASTRAL [9]), suggesting that a
weighted version of ASTRID might provide even better accuracy improvements in FASTRAL.
Another direction for future work is species tree estimation in the presence of gene duplication
and loss, where gene family trees have multiple copies of species and so are called MUL-trees.
The combination of DISCO [51], a method for decomposing the MUL-trees into single-copy
gene trees, with ASTRID produced very good accuracy and scalability [51], suggesting that
combining DISCO with wASTRID might be even more accurate.
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A Commands

A.1 Weighted ASTRID

The commands differ depending on the type of support annotated on the gene trees. For
FastTree SH-like, bootstrap support, and aBayes support, the commands for wASTRID-s
are respectively:

wastrid -i $genes -o $output # FastTree SH-like
wastrid -x 100 -i $genes -o $output # bootstrap
wastrid -n 0.333 -i $genes -o $output # aBayes

For the final setting of wASTRID-pl (distance defined by path lengths, with branch
lengths normalized by the maximum path-length in the tree), the above commands need
to be appended with an additional flag: -m n-length (distance using “normalized branch
length” instead of the default -m support).

A.2 Weighted ASTRAL

We ran hybrid-weighted ASTRAL (v1.4.2.3) using the following command on trees annotated
with aBayes support:

astral-hybrid -x 1 -n 0.333 -i $genes -o $output

A.3 ASTRID

We ran ASTRID (v2.2.1) using the following command:

ASTRID -s -i $genes -o $output

The -s flag is specified to skip the missing data imputation step of ASTRID, as all tested
data have no missing data in the averaged internode distance matrix (i.e., each pair of taxa
appears together at least once in some gene tree).

A.4 ASTRAL

We ran ASTRAL (v5.7.8) using the following command:

java -jar astral.5.7.8.jar -i $genes -o $output

A.5 Approximate Bayesian support

We computed IQ-TREE (v2.1.2) aBayes support using the following command:

iqtree2 -s $aln -te $gtree -m GTR+G -abayes

where $aln is the alignment file for the gene tree, and $gtree is the path to the gene tree
topology.
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A.6 Bootstrap support
We computed bootstrap support (on the training dataset) using FastTree (v2.1.11) on
bootstrap replicates generated by Goalign (v0.3.5) [19].

The following command was used to generate bootstrap replicates ($aln is the original
gene alignment):

goalign build seqboot -i $aln -S -n 100

The FastTree command used for inferring a tree from one bootstrap replicate is ($bs_aln
is one bootstrap alignment replicate generated by Goalign):

FastTree -nt -gtr -nosupport $bs_aln > $output

The FastTree bootstrap trees are then randomly resolved to eliminate polytomies, and
then mapped by RAxML-NG [15] to the original gene trees using the following command:

raxml-ng --support --tree $gtree --bs-trees $bs_trees --bs-metric fbp

where $gtree is the path to the original gene tree, and $bs_trees contains new-line separated
newick trees inferred on the bootstrap replicates.

A.7 Failures to complete
ASTRAL failed to complete 24/50 replicates (replicates 2, 4, 6, 8, 9, 11, 13, 15, 16, 17, 20,
23, 27, 28, 29, 30, 32, 36, 38, 39, 40, 41, 48, and 49) on the MC11H condition (n = 1001)
under k = 1000. The 24 log files indicate that ASTRAL has indeed timed out on each of the
replicates. An example of the last three lines of the log files is attached:

1 Calculated 700000 weights ; time ( seconds ): 1549
2 Calculated 800000 weights ; time ( seconds ): 1544
3 slurmstepd : error: *** JOB 5328647 ON golub041 CANCELLED AT 2022 -05 -08 T05

:24:48 DUE TO TIME LIMIT ***
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Figure 8 Topological error of species tree across methods on the ASTRAL-III S100 dataset
(n = 101, AD = 46). Results are shown averaged across 50 replicates, with error bars showing the
standard error. All weighted methods (wASTRID-s, wASTRID-pl, wASTRAL) ran on gene trees
reannotated with IQ-TREE aBayes support branch support and lengths.
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Figure 9 Topological error (nRF error rate) of species tree across methods on selected conditions
on the ASTRAL-II SimPhy conditions. Results are shown averaged across 50 replicates with standard
error bars. ASTRAL did not finish 24 out of the 50 replicates within four hours for k = 1000 on
MC11H and thus the data point was omitted. All weighted methods (wASTRID, wASTRAL) were
run on gene trees reannotated with IQ-TREE aBayes support branch support and lengths.
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Figure 10 Reconstructed species tree on the Jarvis et al. avian biological data using ASTRID.
Branch support values are in localPP values calculated by wASTRAL-h.
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