Checking Timed Biichi Automata Emptiness Using
the Local-Time Semantics

Frédéric Herbreteau =
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France

B. Srivathsan &
Chennai Mathematical Institute, India
CNRS IRL 2000, ReLaX, Chennai, India

Igor Walukiewicz &
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France

—— Abstract

We study the Biichi non-emptiness problem for networks of timed automata. Standard solutions
consider the network as a monolithic timed automaton obtained as a synchronized product and build
its zone graph on-the-fly under the classical global-time semantics. In the global-time semantics, all
processes are assumed to have a common global timeline.

Bengtsson et al. in 1998 have proposed a local-time semantics where each process in the network
moves independently according to a local timeline, and processes synchronize their timelines when
they do a common action. It has been shown that the local-time semantics is equivalent to the
global-time semantics for finite runs, and hence can be used for checking reachability. The local-time
semantics allows computation of a local zone graph which has good independence properties and is
amenable to partial-order methods. Hence local zone graphs are able to better tackle the state-space
explosion due to concurrency.

In this work, we extend the results to the Biichi setting. We propose a local zone graph
computation that can be coupled with a partial-order method, to solve the Biichi non-emptiness
problem in timed networks. In the process, we develop a theory of regions for the local-time
semantics.
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1 Introduction

Timed automata [2] are a popular model for real-time systems. Typically, systems are
modeled as a network of timed automata that communicate with each other via synchronizing
actions. We are interested in verifying Biichi properties of such models: does there exist
a run of the network that executes transitions from a given set infinitely often? This is
called the Biichi non-emptiness problem. Model checking LTL specifications can be reduced
to the Biichi non-emptiness problem. Moreover, verifying Biichi properties can be useful
in trouble-shooting the model under consideration, for example, a typo in the benchmark
CSMA /CD protocol model was discovered through a Biichi property verification [18]. Recent
works go even further and consider synthesis questions for Biichi timed automata [3, §].
Existing algorithms for the Biichi non-emptiness problem view the network as a single
timed automaton obtained by a synchronized product, and build the so-called zone graph of
this product automaton on-the-fly [29, 28, 25, 23, 18]. The main challenge lies in guaranteeing
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the termination of the zone graph computation. This is achieved through a finite abstraction
of the zone graph that preserves the Biichi property. The aim of course is to get as
small a graph as possible. This has been the central subject of study in timed automata
verification [11, 7, 4, 21, 20]. As a matter of fact, new abstraction methods are usually first
studied in the context of reachability verification and then lifted to the Biichi setting. In
this paper, we continue this trend by extending a recent work on abstractions based on the
local-time semantics [15], to the Biichi non-emptiness problem.

The local-time semantics for timed automata networks was proposed by Bengtsson et
al. [5] with the aim of applying partial-order reduction methods that can exploit the network
representation of the model to build a smaller zone graph. In the local-time semantics, each
process in the network moves independently according to its local timeline which contrasts
with the standard semantics where time elapses synchronously in all the processes. When
processes perform a shared action, they synchronize their local timelines. This semantics gives
good independence properties: for instance, if @ and b are actions performed by processes
P, and Py, an execution (a,2)(b,1) means a happens when the local time of P, is 2 and b
happens when local time of P, is 1. There is no “happens-before” between (a,2) and (b, 1).
The local-time semantics leads to a local-zone graph computation in which performing ab
or ba from a local-zone leads to the same local-zone. This diamond property is essential
for applying partial-order reduction methods. In [15] we have proposed abstractions for the
local zone graph that can be coupled with partial-order methods to solve the reachability
problem. Extending these methods to the Biichi non-emptiness problem, poses certain
technical questions and requires some adaptations of the setting. We settle these issues here.

1.1 Contributions

The first question is whether the local-time semantics is sound for Biichi runs: does existence
of an infinite Biichi run in the local-time semantics ensure existence of an infinite Biichi run in
the usual global-time semantics? Surprisingly, we answer in the affirmative without any extra
assumption. This said, let us remark that this is not true if one allows invariants in states.
The solution is significantly different from the soundness argument used for reachability
where the last valuation of a local run needs to be synchronized.

The next question is whether the local-zone graph is sound for Biichi runs: does an infinite
Biichi run in the local-zone graph ensure existence of an infinite Biichi run in the local-time
semantics. For every finite prefix, we can get a finite run in the local-time semantics. But the
question of whether these prefixes can be glued together to form an infinite run is non-trivial.
The same question arises in the global-time semantics as well, and there the solution makes a
crucial use of Alur-Dill regions [2]. For the local-time semantics, there is no known notion of
a region equivalence. We have shown [15] that in general, there can be no finite time-abstract
bisimulation for the local-time semantics and proposed to restrict attention to a class of
networks called bounded spread networks. Every network can be converted to a bounded
spread network at the cost of reducing concurrency. In this work, we develop a finite region
equivalence over the local-time semantics for bounded spread networks.

Finally, we prove that the combination of the abstraction from [15] and partial-order
reduction can be suitably applied on the local-zone graph to solve the Biichi non-emptiness
problem. For the argument to work we need to assume that the network is deterministic.
This is usually not a strong assumption, as a network can be made deterministic by renaming
actions. The proof of correctness appropriately combines the guarantees known over finite
runs and the region machinery developed above.
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We remark that we do not propose here a concrete POR method. Instead, we consider
a POR method as an oracle that assigns a subset of edges to be explored from each node
of the local-zone graph. Our work can be seen as a theoretical development that allows to
plug in any POR method which is correct for the Biichi problem on untimed networks, to
timed networks. Most recent works in the POR literature consider a very special case where
every process is acyclic and has at most one outgoing action in every state [1, 33, 9, 22]. As
a further work we would like to have equally efficient methods for more general settings as
considered in works on stubborn/ample/persistent sets [30, 27, 13, 32].

1.2 Related Work

The early abstraction methods studied for timed automata depended on the maximum
constant appearing in the automaton [11, 7]. These abstractions were extended to Biichi
runs by Tripakis et al. [29, 28]. Later, superior abstractions were proposed based on the
maximum constant L occurring in lower bound guards (z > ¢,z > ¢) and the maximum
constant U occurring in upper bound guards (x < ¢,z < ¢) [4]. Li [25] showed that these
LU abstractions can be used to solve Biichi non-emptiness problem.

An abstraction method comes with an operator a that can be applied on zones Z. For
reachability, it is enough to check a(Z) C a(Z’) (called a subsumption) to discard further
exploration from Z and continue from Z’. On the other hand, for Biichi non-emptiness, we
need to check for equality a(Z) = a(Z’). Subsumptions are instrumental in reducing the
size of the graph obtained. For the Biichi problem, a restricted usage of subsumption is
possible [23, 18]. However, the gains due to this restricted subsumption are less pronounced in
the Biichi setting as compared to the gains achieved for reachability. There is even a concrete
argument to support this statement: deciding Biichi non-emptiness starting from a zone
graph with subsumption is PSpPACE-hard [18]. The moral is that graphs computed for the

Biichi problem are in general expected to be much larger than the reachability counterparts.

In this situation it is even more interesting to use POR to reduce their size.

POR techniques have been applied for the reachability problem, but over the zone graph
computed using the standard global-time semantics. There is much less independence in the
global-time zone graph and the POR method needs to be restricted accordingly. Therefore
some approaches limit the POR methods to parts where independent actions occur in zero
time [26, 24, 6], and other approaches discover which actions remain independent either
statically [10] or dynamically [17].

1.3 Outline of the Paper

In the next section we introduce networks of timed automata and their local-time semantics.

Standard global-time semantics is a special case of the local-time semantics. We define the
Biichi non-emptiness problem over the global-time semantics. In Section 3 we show that
for the Biichi non-emptiness problem it is sound to use the local-time semantics instead of

the global one. We also recall local-zones, local-zone graphs and their properties from [15].

In Section 4, we develop a theory of regions for the local-time semantics. We employ the
concept of a bounded spread network from [15], and show that for such networks the number

of regions is finite if we have a bound on the constants used in the guards of the transitions.

Finally, in Section 5 we recall the abstraction operation ag . from [15], introduce an abstract
notion of a POR method based on a source function, and show how to obtain a finite
abstract local-zone graph where we can use a POR method while retaining soundness and
completeness for Biichi runs. Missing proofs are presented in appendices.
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2 Preliminaries

We write R, R>g and N for the set of reals, non-negative reals and natural numbers,
respectively. We will write 2° for the power set of a set S. Let X be a set of real valued
variables. A constraint over X is described by the grammar: ¢ := x#tc | ¢ A ¢, where z € X
ceNand # € {<,<,=,>,>}. Let ®(X) denote the set of all constraints over X.

A network of timed automata N is a tuple (A1, As, ..., Ag) of k timed automata, each
A; is called a process or a component of the network. Let Proc = {1,...,k} denote the set
of process identifiers. Process A; is given by (Q;, ¢!, %;, X;, A;) consisting of a finite set
Q; of states, an initial state ¢!"** € Q;, a finite alphabet of actions ¥;, a finite set of clocks
X;, and a finite set of transitions A; C Q; x ¥; x ®(X;) x 2% x Q.

Transitions in A; are of the form (p,a, g, R,q) where p and g are the source and target
of the transition, a € ¥; is the action, g € ®(X;) is a guard over local clocks X;, and
R C X, is the set of local clocks of X; that are reset along the transition. We assume that
QiNQ; =0 and X; N X; = ( for all distinct pairs i,j € {1,...,k}. We define ¥ := Uilf i,
X :=UZi X, and Q == [['=F Qi. For a € X, we write dom(a) := {i € {1,...,k} | a € &;}.
For ¢ = (q1,...,qx) in Q, we write ¢(7) for g;.

We say that N is deterministic if for every component A; and for every action a, there
is at most one local transition (p,a, g, R, q) from every local state p € Q;. We will assume
deterministic networks in Section 5.

There are two ways to describe the semantics of a network: one in which all the components
share a common timeline (global-time semantics), and another where each of them work
with a local timeline (local-time semantics). We define the local-time semantics and view
global-time semantics as a special case.

2.1 Local-Time Semantics

Fix a network A" = (Aj,..., A;) for the rest of the section. We assume that each A; has a
special clock t; called the reference clock of process A;. Intuitively, it represents the local
time of process A;. Let T = {t1,...,tx} denote the set of all reference clocks. A valuation
v: X UT — R is a function that maps each variable in X UT to a real number under the
condition that v(¢;) > v(=z;) for all x; € X;. The value v(z;) represents the local time at
process A; when z; was last reset. This explains why we require v(¢;) > v(z;). The value
of clock z; is then obtained as v(t;) — v(x;). This semantics that keeps reset time points
instead of clock ages has previously been introduced in [12] in the global-time setting. In the
rest of the document, we use the notation v(x — y) for v(z) — v(y). The semantics relies on
two operations.

The first one is a local-time elapse. Given a valuation v, a delay §; € R and a process
i, the valuation v +; §; describes a local delay of §; units at process i. It is given by
(v 4+ 8)(t;) = v(t;) + 0; and (v +; 6;)(z) = v(z) for all other variables x. Notice that
((v +; 0;) +, 6;) is the same as ((v +; ;) +; 0;): the order in which we sum the local delays
does not matter. We extend this notion to a tuple A := (d1,...,d;) € RE, of delays, one for
each process: v + A is the valuation v 41 §1 +9 0o - -+ +5 Ok. -

The next operation is clock reset. In the local-time interpretation, resetting a clock
x; € X; amounts to updating its value to the local-time of 7 given by t;. Given valuation v,
and a set of clocks R C X, we write v[R] to be the valuation obtained as (v[R])(x) = v(t;)
when z € RN X; for some i € {1,...,k} and v[R](x) = v(x) otherwise. Valuation v is said
to satisfy a constraint z#c for x € X; if v(t; — x)#c. We write v = (z#c) in this case. A
valuation satisfies a conjunction of constraints ¢1 A ¢ if v = ¢ and v | @a.
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A configuration of a network is a pair (¢g,v) where ¢ € @ and v is a valuation. Recall
that we have defined @ to be the product of the local states @);. A valuation v is said to be
indtial if v(z) = v(y) for all z,y € X UT: all timelines are synchronized and the constraint
x = 0 holds for every clock. A configuration (g,v) is initial if ¢ = (¢i", ..., ¢i"") and v is
an initial valuation.

There are two kinds of transitions between configurations: local delays and action
transitions. From a configuration (g, v) there is a local delay transition (g, v) 2, (g, v+ A)
for each A € RE . For each b € X, a b-transition is a tuple {(q;, b, g;, Ri, 4;) }icdom(p) of local
transitions one from each process in its domain. From (¢, v), we have an action transition
(¢,v) LN (¢',v") if there exists a b-transition {(g;,b, gi, Ri, ¢;) }ic dom(s) sSuch that:

source states match: ¢(i) = g; for all ¢ € dom(b),

valuation satisfies guard: v |= g; for all i € dom(b),

all processes in dom(b) are synchronized: v(t;) = v(t;) for all 4, j € dom(b),
iedom(v) Tl
target states are reached: ¢'(¢) = ¢} if ¢ € dom(b) and ¢'(¢) = ¢q(i) otherwise.

resets are performed: v = v[|J

The important point is that when a common action is performed, the local times of all the
processes in its domain are the same.

We will write (g, v) ab, (¢’, ") for (q,v) ENLN (¢’,v"), a local delay A transition followed

by an action b. Observe that A is determined by v and v’ because 6, = v'(t,) —v(t,) where t, is

. e Ag,b Ayb
the reference clock of process p. A run is an infinite sequence (qg, vg) —=— (q1,v1) —— - - -

of transitions starting from an initial configuration (gg,vg). A finite run is defined similarly:

0,b0 1,b1

(go,v0) oo, (g1,v1) Lob, (Gn,vn) Loy (g,,v}). Observe that finite runs have a final

delay. We write (g, v) T (¢’,v") to say that there is a finite run on a sequence of actions o.

2.2 The Biichi Non-Emptiness Problem

Global-time semantics is a local-time semantics restricted to synchronized valuations. A
valuation v is said to be synchronized if v(t,) = v(ty) for all processes p, g. This implies that in

every delay (d1,...,0;) that is part of the global-time semantics, we have §; = dg = - -+ = Jj.

The global-time semantics obtained this way is the usual semantics that is used in tools and
studies that involve networks of timed automata. To make a distinction, we refer to runs in

the local-time semantics as local runs and runs in the global-time semantics as global runs.

Clearly, a global run is also a local run.

» Definition 1 (Biichi non-emptiness problem). Given a network N and a set of actions
F C X, decide if N has a global run with infinitely many occurrences of actions from F.

In the case of finite runs, the correspondence between local and global semantics is
well-known. Indeed there is a local run to a configuration (¢, v) with a synchronized valuation
v if and only if there exists a global run to (g, v) that follows the same transitions, although
in a different order. This is captured by the notion of independent actions and traces.

» Definition 2 (Independence). Two actions a,b € ¥ are said to be independent if dom(a) N
dom(b) = 0. Two sequences of actions u,w € * are trace equivalent, u ~ w, if one of them
can be obtained from the other by permuting adjacent independent actions.

» Lemma 3 ([16]). Let v,v' be synchronized valuations, and let (q,v) - (¢, v') be a local
run. Then there exists a global run (q,v) =+ (¢',v') such that u ~ w.

12:5

CONCUR 2022



12:6

Checking Timed Biichi Automata Emptiness Using the Local-Time Semantics

» Remark 4. Putting Biichi conditions on transitions makes them trace invariant which is
important if we want to do partial-order methods: if u has infinitely many actions from F,
then so does every w ~ u, which may not be true with Biichi conditions on states.

Moreover, the local-time semantics enjoys a very nice property: any two independent
actions commute as stated by the following lemma.

» Lemma 5 (Diamond property). [16] Let a,b € ¥ with dom(a) N dom(b) = 0. If (q,v) --»
(¢',v") then (q,v) be, (¢',0v").

Observe that this commutation property does not hold in the global-time semantics since
delays are synchronous in all processes. Our motivation for using local time over global
time comes from the fact that local time allows to reorder the actions in a run, hence using
partial-order reduction techniques becomes possible.

3 Biichi Runs in the Local-Time Semantics

In this section, we show that using the local-time semantics is sound for the Biichi emptiness
problem. Hence the local-time semantics looks appealing as it enables to use partial-order
reduction techniques. However, verification algorithms cannot work directly from the state-
space of the network as it is uncountable. We will then introduce the local zone graph as a
symbolic representation of the state-space of timed networks in the local time semantics.

3.1 The Local-Time Semantics is Sound

When state-reachability is considered the soundness of the local-time semantics follows
from Lemma 3. However, it is based on the notion of independence, Definition 2, that is
not adequate for infinite runs. The point is that for infinite runs we may need an infinite
number of permutations to get w from u. The more general definition refers to partial orders
defined by runs. These partial orders are often called traces. The other obstacle in repeating
Lemma 3 is that the lemma refers to runs ending in synchronized valuations, while for infinite
runs we do not have final valuations. For these two reasons the soundness argument is more
involved than that of reachability.

We start with an intuition and an illustrating example. To get a global run from a local run,
the natural idea would be to re-order the events based on the time-stamps. For example, if
we have a finite sequence (a, 2)(b,1)(c, 3)(a, 2.5)(b, 1.5) where the number represents the local
time when the action occurred, then we get a reordered sequence (b, 1)(b, 1.5)(a, 2)(a, 2.5)(c, 3).
It can then be argued that this sequence has a global run where each clock can be delayed
up to the next action to be read. For the case of infinite runs, consider the following example
that consists of two processes A and B.

A H@D($<1),a B: *>®D(y:1),b,{y}

Consider an infinite local run:

1 1 1 1 1

) (b1 4 (b2) ... S =Y (b)) -
(a,3) (1) (a5 + 55) (1:2) =+ (a5 4+ ) (01)
Notice that all the a actions happen before global time 1, and b actions start from 1. Therefore,
a re-ordering of the events based on the time-stamps gives an infinite sequence of a’s “followed
by” an infinite sequence of b’s. This does not correspond to a global run. However, if a was

accepting, we have a global run (a, %)(a, % + 2%) -+ that is accepting. Similarly, if b was
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accepting, we have a global run (b,1)(b,2)---. In each of these runs, the other process plays
no role except for elapsing time. Observe that the absence of state invariants is crucial here
as the infinite sequence of b’s would not be feasible in the global time semantics if state g of
process A had invariant (z < 1).

In general, when we have a local run, we can reorder it based on timestamps to get a
sequence which may have a block of infinite events (say between 0 and 1), followed by another
block of events (say between 1 and 2), and so on. However, the processes that participate
infinitely often in some block do not participate in the future blocks. This means there can
be only finitely many such blocks. Moreover, if the original run is Biichi accepting, then
there is some block (along with some events in blocks before it) that gives a global run which
is Biichi accepting. We formalize this intuition below.

For an infinite sequence w € 3“ we define a trace of w as a labelled partial order
T, = (N, Ay, I5) where A\, (i) = w;, and <, the smallest transitive relation such that i <, j

if dom(w;) N dom(w;) # 0 and i < j. Observe that <9, is reflexive.

» Definition 6. Two infinite runs u,w € X are trace equivalent, u ~ w, if the traces T,
and Ty, are isomorphic

We extend this notion to runs. Consider a local run

o = (g0,v0) =% (g0, vh) = (q1,v1) = (q1,05) 2> (g2, v2) = -

A trace of o is a labelled partial order T, = (N, \,, <,) where A, (i) = (g;, v}, b;), and as
before <, the smallest transitive relation such that ¢ <, j if dom(b;) Ndom(b;) # 0 and i < j.
Observe that we take valuation v} in the label as it ensures that b; is enabled in (g;, v}).

To connect local and global time semantics we will rearrange actions depending on their
local time. We use 6, (i) for the local time of execution of action b; in the trace o; it is
given by 0, (i) = v.(t,) where p € dom(b;). Recall that by definition of an action transition,

!

vi(p) = vi(q) for all p,q, € dom(b;).

> Lemma 7. Ifi <, j then 0,(i) < 0,(j).

A trace prefix T' of a trace T, is a restriction of T, to some <,-downward closed subset
of N. A linearization of a trace T, is a bijection f : N — N such that if f(i) <, f(j) then
1 < j. This means that the order of elements in a linearization should respect the order in 7.
Observe that the sequence given by f should use all elements of T,, because f is bijective.
The next lemma says that every linearization yields a local run.

» Lemma 8. For every T' a prefiz of T,, every linearization f of T' gives a local run.

The next result states the desired soundness property of the local-time semantics with
respect to the global semantics. As every global run is a local run, one direction of the
proposition is easy. The other side consists in finding a prefix of T;, from which we can build
a global run as explained in the example above.

» Proposition 9. Consider a network of timed automata N'. There is a Biichi local run of
N iff there is a Biichi global run of N.
3.2 Local-Zone Graphs

Thanks to Proposition 9, we know that we can safely use the local-time semantics to detect
Biichi runs. However, we cannot solve the Biichi non-emptiness problem by an exploration
of the state-space of timed automata as it is uncountable. Algorithms for timed automata

12:7

CONCUR 2022



12:8

Checking Timed Biichi Automata Emptiness Using the Local-Time Semantics

work with sets of configurations sharing the same discrete state. We copy this approach to
our setting. To start off, we lift operations on individual valuations to sets of valuations. For
a set of local valuations W, define:

local-elapse(W) := {v+ A |v e W, A e RE 1,

W[R] := {v[R] | v € W}, for a set of clocks R C X.

Wng:={v]|vk g} for a guard g.
Next, the transition relation on configurations can be lifted to sets. We write (¢, W) LN
(¢, W') when there exists a b-transition {(gi, b, gi, Ri, ;) }icdom(s) Such that:

source states match: ¢(i) = ¢; for all i € dom(b),

target states are reached: ¢'(i) = ¢} for all i € dom(b) and ¢’ (i) = ¢(i) otherwise,

W' = local-elapse(Ws) where Wy = W) [Upedom(b) R, with W7 =W n (/\pedom(b) gp A

Ntp =14 | p,q € dom(b)}), and W is not empty.

We will call == a symbolic transition. We write (q, W) Dala, (Gn, W) if there is a sequence

of symbolic transitions (q, W) =2 (g1, W1) -+ - =2 (gn, Wh).

Local-zones are special sets of valuations that occur naturally while computing the
reachable configurations. A local-zone is a set of valuations described by a conjunction of
constraints of the form x — y#c where 2,y € X UT, ¢ € Z and # € {<,<}. Local-zones
can be efficiently represented using Difference Bound Matrices (DBMs). It can be shown
that for a local-zone Z, the sets local-elapse(Z), Z[R] and Z N g (intersection with guard)
are local-zones [5, 16]. This leads to the definition of a local-zone graph that captures the
reachable configurations of a network.

» Definition 10 (Local-zone graph LZG(N)). The local-zone graph LZG(N) of a network N
is a transition system whose nodes are of the form (q,Z) where q is a state of the network,
and Z is a local-zone. The initial node is (qo, Zo) with Zy = local-elapse(Vy) where Vy is the

set of initial valuations (given by the local-zone Ay ye xur®—y = 0) and qo = (¢, ..., ¢i"®).

The transitions are given by the symbolic transition relation (q, Z) = (¢,2).

The next lemma relates transitions over valuations and zones. Proof follows from the
definition of symbolic transitions. If Z = local-elapse(Z) then Z is time-elapsed.

» Lemma 11. For every network of timed automata and every action b:
b
pre-property: If (¢,v) --+ (¢',v") and v € Z for some time-elapsed local-zone Z then
(¢,2) N (¢',Z") and v' € Z' for some local-zone Z'.

post-property: If (¢, 2) LN (¢',Z") and V' € Z' for local-zones Z,Z’, then (q,v) LN (¢',v")
for some v € Z.

The initial zone is time-elapsed. By definition of the symbolic transition, every zone
reachable by = transitions is also time-elapsed. Using this observation along with the pre-
and post-properties of Lemma 11, we get the following theorem.

» Theorem 12 ([16, 5]). For a given network N, there is a run of N reaching a state q iff
there is a path in LZG(N) from the initial node to a node (q,Z).

This shows soundness and completeness of the local-zone graph with respect to state
reachability. In particular, soundness follows from the post-property and completeness follows
from the pre-property. Interestingly, these two properties are not sufficient to show soundness
for infinite runs. In other words, does an infinite run in the local-zone graph imply existence
of an infinite run in the local-time semantics? From the post-property, each prefix of the
infinite run in the local-zone graph leads to corresponding finite local-time run in the network.
However the problem of forming an infinite run from these prefixes is non-trivial.
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In the global-time settings, the proof of soundness crucially relies on Alur&Dill’s finite
region bisimulation. However, there is no finite abstraction that is sound, complete and
that preserves all runs on the local zone graph [15]. This last property is crucial to apply
partial-order reduction techniques. In the next section, we consider a subclass of timed
networks for which we can define a finite region abstraction in the local-time settings.

4 A Region Equivalence for Bounded Spread Valuations

In this section we recall the notion of bounded spread networks of timed automata [15]. We

—D

then define a region equivalence =}, for such networks.

4.1 Bounded Spread Networks

We consider networks of timed automata where every feasible sequence of actions can be
done with bounded desynchronisation between the processes.

» Definition 13. Let D € N. A valuation v is said to have spread D if |v(t, —ty)] < D

A A .
for all processes p,q. A run (qo,vo) Losbo, (q1,v1) A0 s spread D if v; and v; + A;

Aog,bo

have spread D for all i > 0. A network N has spread D if for every run (qo,vo) ——

Aq,b . AQ,b AlLb
(qi,v1) =% ..., there exists a D-spread run (qo,v0) —=— (q1,v1) —=— --- over the

same sequence of actions, but with possibly different delays.

It has been shown that every network can be converted into a D spread network for any
arbitrary D > 1, by adding extra synchronizations [15]. Moreover, for D-spread networks it
is possible to get a finite abstraction of the local zone graph, by making use of simulations.

4.2 A Finite Region Bisimulation

A time-abstract simulation relation on the local semantics is a reflexive and transitive
relation between configurations having the same control state. Two conditions need to
be satisfied when (¢,v) < (¢,v): (1) for every local delay A there exists A’ such that
(g, v+ A) < (q,v"+A"), and (2) for every transition (g, v) LN (q1,v1) there exists a transition
(g,v") LN (g1,v}) such that (g1,v1) < (q1,v]). When A = A’ we simply call 5 a simulation
relation. For technical convenience, we will use (time-abstract) simulation relations that do
not rely on the control state and depend only on the valuations. Hence we will write it as
v X v, a relation over valuations and use its straightforward extension to configurations:
(¢,v) < (¢g,v") if v < v'. The relation < is a (time-abstract) bisimulation relation if both <
and <! are (time-abstract) simulation relations.

The region equivalence of Alur and Dill [2] is a fundamental concept in the global-time
semantics that leads to a finite region automaton recognizing the untimed behaviour of

the system. This has been cornerstone of several decidability results for timed automata.

In the global-time semantics two valuations are made region equivalent with respect to a
constant M if for every clock, the values given by the two valuations lie in one of the intervals
[0],(0,1),[1],...,[M],(M,o0) and the ordering of fractional parts of clocks less than M is
the same in both valuations. In the local-time setting, there is an additional challenge. While
in the global-time semantics, when a clock goes beyond M, its actual value is irrelevant, it is
not the case in the local-time semantics. Indeed, if the difference ¢, — ¢, > M we cannot
forget the actual value, since ¢, can elapse some local time and bring the difference ¢, — ¢,
to something lesser than M. This is a fundamental difference between the two semantics,
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and this is the basic reason that leads to the result of [15] that there is no finite simulation
for the local-time semantics. This is why we need to restrict to D-spread valuations v
where |v(t, —t,)| < D. We show that with this restriction there is an adequate notion of a
region equivalence. We proceed in two steps: first we define when two local valuations are
“close-enough”, next we factor in the maximum constant M and bounded spread D to get a
finite time abstract bisimulation. Some of these results appear in [14].

For x € R, we write |z] for the greatest integer that is lesser than or equal to z.
We will write {«} for z — |x], the fractional part of = starting from [z|. For example,
|[4.2] =4,{4.2} =0.2 and |—4.2] = —5,{—4.2} = 0.8. Notice that 0 < {z} < 1 for all z € R.

» Definition 14. For local valuations v and v', we define v ~* v’ if for all pairs of clocks
x,y € XUT (including reference clocks), we have |v(x —y)| = [v'(x —y)].

Notice that the above definition does not explicitly make use of {v(z — y)}. Some
relation between fractional values gets derived through the definition. For example, suppose
v(x —y) =1, then v(y — x) is —1. This will ensure v'(z —y) = 1 and v'(y — z) = —1. But if
v(z —y) = 1.5, then v(y — x) = —1.5, and in particular |v(y — z)] = |v'(y — z)] = —2. This
will say that 1 < v'(z —y) < 2 and —2 < v'(y —x) < —1. We will precisely derive some
useful properties later. Before that, we modify the definition to account for the maximum
constant.

» Definition 15 ((M, D)-equivalence). Let M : X — NU{—o00} be a bounds function mapping
each process clock to a non-negative constant or —oo when the value of the clock is irrelevant.
Let D € N denote a spread. For a local valuation v, let Bounded(v) = U e ppocttp} U {7 €
X, | v(t, —x) < M(z)}. Notice that Bounded(v) contains all the clocks that have a value
below bound M in v as well as all reference clocks.

Two D-spread local valuations v,v’ are (M, D)-equivalent, denoted as v =2 o', if

- M
Bounded(v) = Bounded(v’)
vig =* V'|g where vig and v'|g denote the valuations v and v’ restricted to clocks in
B = Bounded(v).
For a D-spread valuation v, we write [v]? to denote the equivalence class of v under =2 and
refer to it as the (M, D)-region of v.

Intuitively, the above definition says that v =2 v’ if the bounded part of v and v’ are
close enough. This is in the same spirit as in the global-time semantics. Now the goal is to
show that =P is a time-abstract bisimulation. The most difficult part is to prove that for all
local delays A, there exist local delays A’ such that v + A =2 o' + A’. This is shown in the

next lemma. We denote by i),, a delay of § time units in process A,.

!

» Lemma 16. Let v =* v'. For every local delay v i>p u, there exists a &' such that

v’ 6—>p u where u ~* u'.
The next task is to show that if M is appropriately chosen, the =2 equivalence also
preserves actions. We say that a network N conforms to bounds function M if every

constraint & ~ ¢ in N satisfies ¢ < M(z).

» Lemma 17. Let v,v’ be D-spread valuations such that v =2 v'. Let N be a network that

conforms to M. For every action transition (gq,v) LN (q1,v1) we have (q,v") N (g1,v})
such that vi =2 v}.
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» Corollary 18. Let N be a network that conforms to M and let v =P v’ be D-spread

- M

valuations. For every (q,v) NN (q1,v1) such that v+ A is D-spread, there exists a A’
such that v' + A’ is D-spread and (q,v’) NN (q1,v]) with vy =2 v].

The corollary shows that =% is a time-abstract bisimulation on the local semantics

restricted to D-spread configurations. This also motivates the following definition of a region
graph obtained as a quotient of the = equivalence. Recall that the initial valuations are
given by {v | v(x) = v(y) for all clocks z,y}. Hence by definition of =2 equivalence all of
them fall in one equivalence class.

» Definition 19 ((M, D)-region graph). Let N be a network. A node of an (M, D)-region
graph of N is of the form (q,[v]2) where q is a state of N and v is a D-spread valuation.
There is a transition (q, [v]Y) LN (g1, [n1]%) if (q,v) NN (q1,v1) for some local delay A
such that v+ A is D-spread. The initial node is (qo, [vo]%,) where vy is any initial valuation
and qq 1s the tuple of initial states.

» Theorem 20. Let N be a network that conforms to bounds function M. Then:

0,bo

For every D-spread local Tun (qo, vo) Lobo, (q1,v1) -+, there exists a run (qo, [vo]%) LN
(q1,[v1]%) -+ in the (M, D)-region graph.

For every run (qo, [vo]%)) Lo, (q1,[v1]5) -+ in the (M, D)-region graph, there exists a

D-spread local run (qo, v() Lorbo, (q1,v1) -+ such that vj € [v;]%, for alli > 0.

The (M, D)-region graph is finite.

5 Abstraction and Partial-Order Reduction for Biichi Runs

The goal of this section is to make use of the local zone graph (Definition 10) for solving the
Biichi non-emptines problem. We will start by showing that the local zone graph LZG(N)
is sound and complete for infinite runs of bounded spread networks (Proposition 21). This
is only the beginning because: (i) the local zone graph is still potentially infinite, and (ii)
the statement does not talk about partial-order reduction. In the next step we introduce a
quasi-abstraction ag Lu» and a partial-order approach. Then, we show that their combination
maintains correctness for Biichi runs.

» Proposition 21. Let N be a D-spread network. There is an infinite D-spread local run

1,b1

(go,vo) Lobo, (q1,v1) Lub i N iff there is an infinite path (qo, Zo) Lo, (g1, 21) LI
in LZG(N).

Proof. Left-to-right direction follows from the pre-property of local zone graph, Lemma 11.

We focus on the right-to-left direction.
Let S; be the set of all D-spread valuations u; € Z; such that there is a D-spread run as
below leading to u;:

AL bo Al by Ay by
(qo,u0) —=—= (qu,u1) —=>— ++ ———— (i, ;)

with ug an initial local valuation. The set S; need not contain all D-spread valuations of
Z;. Consider some D-spread valuation v of Z;. Due to the post-property, it has some run
leading to it, not necessarily D-spread. As the network is D-spread, there is a corresponding
D-spread run over the same sequence of actions. However this run may not end up in the
same valuation v.
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Let us come back to the D-spread run given above. Due to the pre-property of local
zones, we have uy € Zy for all 0 < k <1i. As N is D-spread, S; is indeed non-empty, for all
1 > 0. In fact, each uy in the above run belongs to Si as the prefix with actions bg - - bg_1 is
a D-spread run leading to (gx, ux). Therefore, for every u;+1 € S;41, there exists a u; € S;
such that (g;, u;) TN (Git1,uit1) for some local delay Al

Construct a graph with nodes (i, g, [u;]%,) for each u; € S;. Add an edge (4, g, [u;]%) —
G+ 1, qiv1, [wir1]%) if (qi, us) NN (¢i+1,ui+1). Due to the discussion in the previous
paragraph, every node has a predecessor. Moreover, by Theorem 20, there are finitely many
(M, D)-regions, so this graph is finitely branching. Hence there is an infinite path in this
graph. This path corresponds to an infinite path in the (M, D)-region graph. Thanks to
Theorem 20, this can be instantiated into an infinite D-spread local run |

5.1 Abstractions and Partial-Order Methods

We recall some notions from [15]. A quasi-abstraction a is a function that maps each zone
Z to a set of valuations a(Z) such that a(a(Z)) = a(Z). A finite quasi-abstraction function
ag Lo has been studied in the context of reachability [15]. It is based on a preorder relation
between local valuations.

» Definition 22 (The <7 ,-preorder). Let L : X — {— oo} UNand U : X — {—oco} UN be
two functions. For two valuations v and v', we say v <5, v if:
v(ty, —tq) = V'(tp — tq) for all processes p,q
for all processes p and all x € X,

v(t, —x) < Ul(zx) implies v'(t, — x) < v(t, — ),
v(t, —x) < L(zx) implies v'(t, — z) > v(t, — x),
v(t, — x) > L(x) implies v'(t, — x) > L(z)

Notice that if v is a D-spread valuation and if v <%, v/, valuation v’ is also D-spread.
Here is a known result about <%,. We say that a network N conforms to bound functions L
and U if for every process clock « we have L(x) > ¢ for every lower bound guard > ¢,z > ¢
occurring in N, and U(z) > ¢ for every upper bound guard x < ¢,z < ¢ in N.

» Lemma 23 ([15]). Let N be a D-spread network that conforms to given LU bounds. The
<%, pre-order is a simulation on the local semantics of N': if v <%, v and (q,v) N (q1,v1)

ALb
then (g,v") == (q1,v}) and vy X7, v].
The <7, relation is now lifted to zones, but restricted to D-spread valuations.

» Definition 24 (aZ, -quasi-abstraction). For a zone Z, we define spreadp,(Z) = {v € Z |
v has spread D}. We define a2, (Z) = {v | I’ € spread,(Z) such that v <3, v'}.

The ag L, operator can be used to give a finite abstraction of the local zone graph LZG(N),
by truncating exploration of Z if a2, (Z) C a2, (Z’) and continuing the exploration from
Z'. The operation a2, (Z) C a2, (Z’) is known as subsumption in the literature [23, 18].
For Biichi non-emptiness, subsumptions cannot be used directly since we need to find
cycles [23, 18]. We will define an abstraction of the local zone graph that makes use of
equality with respect to a2, . Notice that the equality a2, (Z) = a2, (Z’) can be checked
efficiently in time O((| X |+ |T])?) [15]. We will first present our view of partial-order methods
and then combine this with the a2, operator in our new abstraction of the local zone graph.
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We describe a generic approach to partial-order methods on local zone graphs. Then our
main result will say that once we have a method that works on LZG(N'), we can use the
same method on a finite abstraction of LZG(N) obtained using ag Lu-

We formalize what it means to have a partial-order method on LZG(N) using a notion
of a source function. Let enabled(g, Z) denote the set of actions b € ¥ that are enabled from

the node (g, Z), i.e. such that there exists an edge (¢, Z) LN (¢', Z") for some (¢', Z").

» Definition 25. A source function for a timed network N is a function src: Q x P(X) —
P(X). An action b is source enabled in (q,Z) if b € src(q,enabled(q, Z)). A source path is
a path taking only source enabled actions. A source function is trace faithful if for every
node (q, Z) of LZG(N), and an infinite path u from (q, Z) in LZG(N) there is a source path
w ~u from (g, Z) in LZG(N).

Obeserve that this definition of a source function allows to store some information in the

state (like which process moved just before, etc.). Indeed such information is important for
certain partial-order reduction approaches.

5.2 Local Zone Graph with Abstraction and Partial-Order

We are now in a position to define a local zone graph for the Biichi non-emptiness problem.

This zone graph will use ag L for finiteness and an arbitrary source function for partial-order
reduction.

» Definition 26 (eLZG[;;"*(N)). Let N be a D-spread network conforming to a given
LU-bounds. Let src : Q x P(X) — P(X) be a trace faithful source function. The graph
eLZG7;;(N) is a subset of nodes and edges of LZG(N') together with some new edges called
equality edges. FEach node is labeled either covered or uncovered. The graph must satisfy the
following conditions:

The initial node of LZG(N') belongs to the graph.
For every uncovered node (q,Z) of eLZG[;;"*(N) and for every b € src(q, enabled(Z))
the transition (¢, Z) % (¢, Z') present in LZG(N) should be in eLZGZ " (N).

For every covered node (q,Z') there exists an uncovered node (q, Z) with a2, (Z) =

a2, (Z'); moreover there is an explicit equality edge (¢, Z) —¢ (¢, Z') in eLZG; " (N).

Every node of the graph is reachable from the initial node by a path of = edges.

We write ~ to mean a, possibly empty, sequence of equality edges followed by LN edge.

Similarly ~> stands for a sequence of = edges possibly with equality edges in between.

Let M be defined as M (z) = max(L(x),U(zx)) for every process clock z. The next lemma
gives a useful property of the ag . abstraction which entails that the above local zone graph
is a finite object.

» Lemma 27. For every zone Z, the abstraction agLU(Z) is a union of (M, D)-regions. The
graph eLZGP:**(N) is finite for D-spread networks N .

LU

Our goal is to show soundness and completeness of eLZGT;7"*(N) for Biichi non-emptiness.

We have already seen in Proposition 21 that LZG(N) is sound and complete. Therefore we
will now relate paths in LZG(N') with paths in eLZG7; " (N).
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5.2.1 Soundness

For soundness, we want to show that every infinite path in eLZG?;’"*(N) corresponds to
an infinite path in LZG(N'). The main difficulty in the argument comes from equality
edges. Consider two reachable nodes (g1, Z1) and (g1, Z}) such that a2, (Z1) = a2, (Z]).
Let us say there is an equality edge (q1,21) —e (q1,Z]). Hence, eLZG.;"*(N) does not
contain paths from (g1, Z;). We must thus show that for every path from (g1, Z;) in LZG(N)
there is a similar path from (qy, Z7). One may guess that as <}, is a simulation, for every

(ql,Zl) (g2, Z2), we have (ql,Zl) (g2, Z5) with a2, (Z]) = aZ,,(Z5). But this is not

true. Notice that the a2 <ov operator restricts to D-spread valuations. So it can say nothing
about the other valuations of Z; and Z; and these non D-spread valuations may lead to
D-spread valuations in Zs and Zj5. We have no control on such valuations just by using the
fact that <%, is a simulation. Nevertheless, we are able to show soundness of eLZG7,, (N),
albeit with a more involved reasoning that additionally uses the fact that A is a D-spread

system and the network N is deterministic.

» Lemma 28. Let N be a deterministic D-spread network conforming to LU -bounds. Let
(q1,Z1) be a node reachable from (qo, Zo), namely (qo, Zo) == (q1,Z1) for some o1 € L.
Let (q1, Z1) be a reachable node of LZG(N) that satisfies a2, (Z1) = a2, (Z]).

For every finite or infinite sequence of transitions oo: if (q1, Z1) == in LZG(N), then

(q1,2)) 2= in LZG(./\/). Moreover, if o9 1s finite then enabled(qq, Z3) = enabled(qa, Z4),
where (q1, Z1) == (g2, Z2) and (q1, Z1) == (g2, Z5).

Proof. Suppose o5 is finite. Consider the sequence (qo, Zo) == (q1, Z1) == (go, Z2). By post-

property, there exists a local run (g, vo) 71, (g1,v1) 22, (g2,v2) with vy € Zy,v1 € Z; and
vy € Zo. As N is D-spread, we can assume this run to be D-spread. Thus, vy € spread(Z1).
As a2, (Z1) = aB,,(Z]), there exists v] € spreadp(Z]) such that v; <}, v}. Hence
there exists a run (ql7 v) 72 (g2, v5). By pre-property, there exists a sequence of symbolic
transitions (q1, Z) == (g2, Z3).
If o9 is infinite, then the above argument says that for every finite prefix o3 of o9 there is a
sequence (ga, Z4) == Since N is deterministic, the local zone graph LZG(N) is deterministic.

Hence we get the presence of the infinite path o9 from (go, Z4), that is, (qg, Z5) 2

For the last statement consider (¢1,21) == (g2, Z2) and (q1, Z}) == (ga2, Z5). Say b is

enabled from (g2, Z2). Using the first statement of the lemma o9b is possible from (g1, Z1),
thus b is possible from (g2, Z3), as the transition system is deterministic. The case of b from
(g2, Z4) is the same by exchanging the roles of Z; and ZJ. <

» Lemma 29. Let N be a deterministic D-spread network that conforms to a bounds
LU -bounds.

Let (q0, Zo) 5 (¢, 2) %5 (¢, Z) be a path in eLZGP:*™(N) which could potentially contain
equality edges. Then, there exists an infinite D-spread local run over the sequence o,(c.)“.

5.2.2 Completeness

We now move on to showing that the graph that is computed is complete for Biichi non-
emptiness. Recall that covered nodes and successors via actions that are outside the src are
not explored in eLZGZ;7". We will now make use of Lemma 28 to show that source paths in
LZG(N) are preserved in eLZGfI’j "“(N). Later, for the final result, we will use the fact that
sre is trace faithful.
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» Lemma 30. Let N be a D-spread network that conforms to a bounds function LU. Let
(go, Zo) LN (q1,721) 2 be an infinite source path in LZG(N'). Then there is an infinite path

b, by . sre
(90, Zo0) ~> (q1, Z1) ~> - -+ in eLZG; " (N).

» Theorem 31. Let N be a deterministic D-spread network that conforms to LU -bounds and
let F be a set of accepting actions. Then, there is an infinite global run visiting F' infinitely
often, iff there is a reachable cycle in eLZG?,(N) containing an edge over an action in F.

Proof. By Proposition 9, there is an infinite global run visiting F' infinitely often iff there
is an infinite local run visiting F infinitely often. Since N is D-spread, there is an infinite
D-spread run with the same sequence of actions. Therefore it remains to prove that there is
a D-spread local run visiting F' infinitely often iff there is a reachable cycle in eLZG7, (N)
with an action in F.

Suppose there is such a local run. Proposition 21 says that there is an infinite Biichi path
in LZG(N) from (go, Zo). Since the source function is assumed to be trace faithful, there
is a source path that visits F' infinitely often. Lemma 30, gives us a Biichi source path in
eLZG?;:(N). The eLZG7;*(N) graph is finite (Lemma 27). Hence the infinite path leads
to a cycle. As the infinite path contains F' infinitely often, the cycle contains an action in F'.

For the other direction, suppose there is a reachable cycle containing F' in eLZG; ;" (N).
Lemma 29 gives a D-spread local run with the same sequence of actions and control states.

Hence, this local run visits F' infinitely often. |

6 Conclusions

We have developed a setting allowing to use partial-order methods for solving the Biichi
non-emptiness problem for timed systems. Partial-order methods exploit commutation of
independent actions. This is why we use local-time semantics for networks of timed automata.
For a given network N we define a finite local-zone graph eLZG?T;7"*(N) such that there is a
Biichi run in NV if there is a Biichi path in eLZG7;7"¢(N). Moreover, if we have a partial order
method that works on the, potentially infinite, local-zone graph LZG(A/), this method can be
used for exploring eLZG7;"(N). We find this a satisfying formulation since in eLZG7;"*(N)
independent actions do not necessarily commute, due to equality edges.

We did not present here a concrete partial-order method that can be used in our setting.
In principle, any ample/persistent/stubborn set method can be used to calculate what we
call here source sets. These methods become quite complicated when dealing with infinitary
conditions, and these complications limit the efficiency of partial-order reductions. As a first
step, it would be reasonable to assume some structural properties, like may-termination [31],
but we do not have a satisfying solution at this point.

We did not address the question of Zeno runs. Often one is not just interested in existence
of a Biichi run but also wants it to be non-Zeno, that is, a run where time diverges. While
there is no consensus on what kind of infinite runs can be considered realistic, it is rather clear
that Zeno runs are not realistic. It is always possible to convert a network to a strongly non-
Zeno network [29] and encode the non-Zeno requirement in a Biichi condition. Sometimes
this construction can produce a blow-up than can be alleviated with more complicated
approach [19]. It remains to be seen if this construction can be adapted to the local-time
semantics.
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A Appendix for Section 3

» Lemma 8. For every T' a prefiz of T,, every linearization f of T' gives a local run.

Proof. We will suppose that 7" is infinite. For finite 7" the argument is essentially the same.
Consider a linearization of a prefix of T, given by a 1-1 function f : N — N. This means
that rng(f) is <,-downwards closed: if j € rng(f) and ¢ <, j then i € rng(f). We construct
a local run:

Af0)broy - Apaybr)
) SrO2@, ( ) Do, .

(@t (0)> Vs(0) df(1)> V(1)

In order to state the invariant we define a function flast(i, p) giving the last action before
1 with an action of process p: flast(i,p) = f(I) where [ the largest number strictly smaller
than i with by an action of p; we keep flast(i, p) undefined if there is no such I. Recall that
a state ¢ = (¢, ...,q") is a tuple of states of component processes. We use ¢? for the p-th
component of ¢g. The invariants are:

for every process p, cj?(i) = q;)last(i,p)—&-l or q‘?(i) = ¢} if flast(i, p) undefined.

for every process p, vs(;)(t,) = 0(f(4)) if p € dom(by(;)); otherwise v ;) (t,) = 0(flast(i, p))

or Uy (tp) = vo(tp) if flast(i,p) is not defined.

for every x # t, a clock of process p: if flast(i,p) is defined then vy (x) = v(z)

where v(2) = Vfast(i,p)[R] and R are resets of bgast(ipy; if flast(i, p) not defined then

V(i) () = vo(z).
We set qroy = qr) and Uso)(tp) = 0(f(0)) for p € dom(bsy) and vsg)(tp) = vo(tp)
otherwise. Finally, we set vy = vo(z) for all other clocks. This satisfies the invariant as
bf(o) is <-minimal action.

Suppose that we have constructed a run up to (cjf(i),ﬁf(i)). The invariants guarantee
that for every process p € dom(bs(;)) we have:

- _ P

U = 9rap

Vpey(tp) = vy (tp) and Vg () = vy()(z) for every clock z of p.
Since by(;y is enabled from (g (;), v(;)) this shows that it is also enabled from (Gz ), Vs (i))-

Consider (Gf(), Vf()) M (qv,vp). We need to show that g, = Gf(;4+1) and that there is A
giving vp + A = o(f(i + 1)).

We start with g,. Take a process p € dom(bs(;)) then flast(i + 1,p) = f(i) and we get
a = qfiast(i-{-l,p)-{-l' For p & dom(by(;)), we have ¢ = (j?(i) = q]%ast(i,p)—i—l = q%ast(i—&-l,p)-&-l'
The last equality is because flast(i,p) = flast(i + 1,p) when p & dom(bys(;)).

Now we look at reference clocks t,. If p € dom(bs(;)) \ dom(bs41y) then we have
vp(ty) = 0(f(i)) = 0(flast(i,p)) as required. If p & dom(bys;y) U dom(bs(it1y) then vy(t,) =
0(flast(i,p)) = O(flast(i + 1,p)). If p € dom(bsiy1)) then vy(t,) = O(fast(i + 1,p)) <
O(f(i+ 1)) so we take §, = 0(f(i + 1)) — vp(tp) to reestablish the invariant.

Finally, to check the third invariant take a clock x # t, of a process p. Recall that
vy = V() [Rp] where Ry, are resets of action by(;). If p € dom(bs(;)) then v in the invariant
is vy [R] because flast(i + 1,p) = f(i). This is as required. If p & dom(by(;)) then
flast(i + 1,p) = flast(i,p) and vy(x) = Vy(;), so we are done in this case too.

Hence, we have prolonged the run to (g¢41), U¢(i+1)) and all invariants are satisfied. By
induction we obtain the desired local run corresponding to a linearization f. <

» Proposition 9. Consider a network of timed automata N'. There is a Biichi local run of
N iff there is a Biichi global run of N.
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Proof. Since a global run is also a local run, one direction is easy.

For the other direction, let us take a local run with infinitely many occurrences of actions
from F', and construct a global run. Recall that 6(¢) is the time of the execution of action b;,
namely v;(t,) for p € dom(b;). Consider an order ¢ < j when (i) < 6(j) or 6(i) = 6(j) and
1< J.

This order is a linear order <, and moreover if ¢ < j then it is not the case that j <1
(Lemma 7). Yet the linear order < may not have type w meaning that it can be a transfinite
sequence. We find a prefix T of T, such that < is a linearization of T of type w and T has
infinitely many occurrences of actions from F.

Before doing this let us see how this gives us a desired global run. The <-linearization of
some prefix T of T, gives us a local run (Lemma 8):

A b Af
o = (qo;v0) = (qo,vg) = (qu,v1) — -~

with 8(0) < (1) < ---. We define vj(t,) = 0(¢) for all process p and v;(x) = v;(z) for all
other clocks z. Clearly all v} are synchronized valuations. We claim that

_\ 0 _/\ b _\ s _
0= (QOv'UO) = (CIOW(/)) = (QhUl) = ((J1,UI1) e

is a global run (where §; = 0(i) — 0(i — 1), and v;41 is determined by v, and resets of
b;). For this we verify that every transition (g;, v}) LN (¢it1,Vit1) AN (qit1,0;,) exists.
We know (g;,v}) LN (Gi+1,vi+1). We also have by assumption that v;(t,) = (i) = v}(t,)
for all p € dom(b;), as well as v(z) = vi(z) for all clocks x that are not reference clocks.
Hence (g;, v}) LN (git1,vp) exists. We have vp(z) = v;41(x) for all clocks that are non-
reference clocks. Additionally vy (t,) = v}(t,) = 6(4) for every process p. Hence, if we take
diy1 = 0(i + 1) — 0(i) we get vj,; = vp + ;41 as required. Repeating this reasoning we
construct a desired run.

We come back to the problem of finding a desired linearization. If < gives a linearization
of T, of type w then we are done. Otherwise, consider the set I = {i : ¢ has finitely many <
—smaller elements}. We have that < is an order of type w on I. Moreover I is a <,-downward
closed as it is impossible to have j <, i and ¢ < j at the same time. If I contains infinitely
many occurrences of actions from F' then I defines a prefix we are looking for. Otherwise
N\ I is infinite and there are infinitely many actions from F in N\ I. Consider the set of
processes P, such that there is an action b € N\ I with p in its domain. For every p € P
find the <-smallest j, € N\ I such that p € dom(b;,). We claim that there are finitely
many ¢ € I with 7 <, j,. Indeed i 4, j, implies ¢ < j in the standard order on natural
numbers. Let Iy contain all such 4 for all p € P. We claim that for i € I\ Iy we have i 4, j
for every j € N\ I. Hence Ip U (N\ I) is a prefix of T,,. Moreover, it contains infinitely
many occurrences of actions from F since I contains only finitely many of those and N has
infinitely many. If <-linearization of Iy U (N'\ I) has type w then we are done. If not then
we repeat the argument. Observe that this time we have fewer processes such that there are
infinitely many actions involving the process (none of the processes involved in actions from
I'\ Iy are there). Thus the argument must terminate giving us the desired prefix. |

B Appendix for Section 4

» Lemma 32. For all x € R\ Z, we have {—x} =1 — {«}.
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Proof. We have x = |z] + {2z} and —a = |—z| + {—z}. Therefore —(|z] + {z}) =
|—z| + {—z}. Secondly, |—z| = —|z| — 1 for all z € R\ Z. Plugging this into the previous
equation gives the required conclusion. |

» Lemma 33. For z,y,z € R such that z —x € R\ Z, we have {z — z} < {z —y} iff
-yl =l -2+ [z -y]+1

Proof.

rT—Y=Tr—2+z—yY
=lv—z+lz—yl+{z -z +{z -y}
=le—z+ -yl +1-{z-ap+{z -y}

This gives the statement of the lemma. <

» Lemma 34. Letx,y,z € R, such that {x—z} > 0 and {y—2z} > 0. Then, {x—2z} < {y—=z}
iff{z -2} = {z -y}

Proof. Follows by using {r —z} =1—{z—=a}and {y — 2} =1 — {2z — y} (Lemma 32). <«

» Lemma 35. Let v =* v'. Then, for variables z,y,z € X U X*, we have {v(z — x)} <

{o(z —y)} iff {v'(z —2)} < {v'(z —y)}
Proof. Follows from Lemma 33 and Definition 14. <

!

» Lemma 16. Let v =* v'. For every local delay v —6—>p u, there exists a &' such that

v’ 5—>p u’ where u ~* .
Proof. We assume that 0 < d < 1. If § > 1 then we can decompose it into its integral part

and fractional part and repeat the reasoning.
We divide the variable differences into three sets:

Ct={t,—z|ze X\ {tp}}
C={z—tp, | ze X\ {tp}}
C'={z—y|z,ye X\ {t}}

A local delay of § increases the value of differences in C*, decreases the ones in C~ and
leaves the C? differences unaltered. Consider an element ¢ € Ct. Based on the relation
between § and 1 — {v(¢)}, its value either stays in the same integer interval, or moves to the
next integer point, or to the next integer interval. A symmetric change happens in C~. We
now make this idea more precise.

u(ty —z) =v(ty —2)+9

= oty — 2)] +{v(tp —2)} + 0

=, —2)|+1—{v(z—1tp,)}+¢ when v(t, —2) # 0
u(z—t,) =v(z—1tp) =9

= vz =) +{v(z —tp)} =4

From the above calculations, we observe some properties:
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When {v(t, — 2)} # 0:

Lulty = 2)] = |v(t, = 2)] + 1iff 6 > {v(z = 1,)} (1)
lu(z = tp)] = [v(z = 1,)] = 1iff 6 > {u(z — 1)} (2)

Note that the difference in the inequalities (> in (1) and > in (2)) is expected, since for
any ¢ € R we have |—z] = —|z] if {#} =0, and |—z] = —|z] — 1 otherwise. Among the
ordering of fractional parts of differences in C'~ for v, consider (21 — t,), (22 — t,,) that are
consecutive in this ordering such that {v(z; —t,)} < ¢ < {v(22 —tp)}. Replace {v(z1 —tp,)}
with 0 if no such z; exists, and replace {v(zg — ¢,)} with 1 if no such z, exists.

We now propose a ¢ as required. From Lemmas 34 and 35, we know that the fractional
parts of differences in C~ are ordered in the same way in v and v'. We take any ¢ with
{V'(z1 —tp)} <& < {v'(22 —t},)}, such that in addition ¢’ = {v'(z1 — )} if 6 = {v(z1 — )}
Let v’ =o' + §’. Since we started with v =* v/, from (1) to (4) we get u ~* v’ <

The following lemma shows that =2 equivalence is preserved by choosing appropriate

local delays.

» Lemma 36. Let v,v' be D-spread valuations such that v =2 v'. For every local delay A
such that v+ A is D-spread, there exists a local delay A" such that v' + A’ is D-spread and
v+ A=+ A

- M
Proof. Let A = {0, }pcproc. We can break the local delay A into a sequence of local delays

%% -+ happening one process at a time. Therefore it is sufficient to prove the lemma
for a local delay of one process, say ¢, at process p.

Consider the given valuations v,v’ which satisfy v =2 +'. By definition, we have
Bounded(v) = Bounded(v’) and v5 ~* v'| g, where B = Bounded(v). From Lemma 16, for
every local delay 6, there exists a delay 4, such that (v +,dp)|5 ~* (V' 4 0;,)| 5. Clocks
outside B are unbounded both in v 4, ¢, and v’ +, 51'9. Finally, we are interested only in
delays 6, such that v 4, d,, is D-spread. Since all the reference clocks are present in B, we
have | (v +p 0p)(tr — ts)] = [(v' +, 0,)(t — ts)]. This shows that v+, §;, is D-spread. All
these observations lead to v+, d, =5, v +, 0,,. <

» Lemma 17. Let v,v' be D-spread valuations such that v =2 v'. Let N be a network that

conforms to M. For every action transition (q,v) N (g1,v1) we have (g,v") N (g1,v7)
such that vi =2, v].

Proof. As (g,v) LN (q1,v1), we have v(t, —t,) = 0 for all p,q € dom(b). Since v =5 v/, we
also have v'(t, —t,) = 0 for p, g € dom(b). Secondly, v satisfies the guard g present in the b-
transition. As A conforms to M, every constraint in g is of the form z < ¢,z < corz > ¢,z >
¢ with 0 < ¢ < M(x). Hence, by definition of v = v’, valuation v’ satisfies g too. This shows
that b is enabled at (g, v’). Finally, resetting R from v sets differences ¢, —x with x € X, N R
to 0. It does not change the values of differences between reference clocks. Hence both
[R]v and [R]v" are D-spread. Moreover, Bounded([R](v)) = Bounded(v) U R, which equals
Bounded(v') U R and hence Bounded([R]v"). We need to show that [R](v)| 5, ~* [R](V')|p,
where B; = Bounded([R]v). So, we need to show that |[R](v)(z —y)| = [[R](V")(z —y)].
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This is direct when both z,y € R, or when both z,y ¢ R. Suppose = € R,y ¢ R. We have
[Rlv(x —y) = v(t, —y) when z € X,,. Since t, and y are already in Bounded(v), we have
lv(t, —y)] = |V (tp, —y)| and hence |[R](v)(z —y)] = [[R](v')(x —y)|. Symmetric reasoning
works when = ¢ R,y € R. <

» Theorem 20. Let N be a network that conforms to bounds function M. Then:

For every D-spread local run (qo, vo) LN (q1,v1) - -, there exists a run (qo, [vo]%) LI
(g1, [11]%) -+ in the (M, D)-region graph.

For every run (qo, [vo]%)) LN (g1, [11]%) -+ in the (M, D)-region graph, there exists a
D-spread local run (o, v() Losbo, (q1,v]) -~ such that v} € [v;]% for all i > 0.

The (M, D)-region graph is finite.

Proof.
Follows from definition of region graph.
Given a transition (g;, [v;]5)) N (Git1, [Vit1]s,), for every valuation u; € [v;]%)), there is a
transition (g;, u;) LN (Git1,uit1) with w; 41 € [v;41]%. This holds due to Corollary 18
and is sufficient to extract a run starting from some arbitrary initial configuration.
We claim that an (M, D) region is specified by the following information:
a subset B C Upe Proc Xp of bounded clocks,
for every process clock x € X, that is bounded, whether t, —z =core—-1<t,—z <e
forc€ {0,...M(z)} and e € {1,..., M(2)},
for every pair of reference clocks t,,t,, whether ¢, —t;, =core—1<t, —t, <e for
ce{-D,....,D}andee{-D+1,...,D}
for a pair of bounded process clocks z,y € B, whether t —y=core— 1<z —y<e
force {-M(z)-D,...,M(y)+ D} andee {-M(z) —D+1,... M(y) + D}.

The claim gives a finite bound on the number of regions. It remains to prove the claim.
Consider an (M, D)-region [v]5. We have Bounded(v) = Bounded(v’) for every valuation
v" € [v]y. Hence the set B in the first item above is given by Bounded(v). The next
three items follow from v;p &~* v'|p and noticing the bounds on the differences: we
have 0 < v(t, —x) < M(z) for x € BN X, by definition of bounded clocks; we have
—D < w(t, —tqy) < D since v has spread D; finally for z,y € B, we have v(z —y) <
v(z —t,) +v(t, —tg) + v(ty — y) assuming = € X,,y € X,. Now, we use the inequalities:
—M(z) <v(x—1ty,) <0, =D < v(t, —t;) < D and 0 < v(t, —y) < M(y) to get
—M(z) — D <wv(zx—y) < M(y)+ D. <

C Appendix for Section 5

» Lemma 37. Let N be a deterministic D-spread network conforming to LU -bounds. For
every path of the form (o, Zo) % (a1, Z}) —e (a1, 21) 2> (g2, %) in eLZGZ;™(N) there

exists a path (q1, Z}) 2= (qo, Z5) in LZG(N).

Proof. Since (¢1,Z1) is a node of eLZG7;;"(N), it is reachable from (qo, Zp), and so is
(q1,77). Since C‘QLU(ZI) = aQw(Z{), Lemma 28 gives us a path (q1, Z7) = (g2, Z4) in
LZG(N). <

» Lemma 29. Let N be a deterministic D-spread network that conforms to a bounds
LU -bounds.

Let (qo, Zo) <5 (¢, Z) %5 (¢, Z) be a path in eLZGL:*™(N') which could potentially contain
equality edges. Then, there exists an infinite D-spread local run over the sequence o,(c.)“.
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Proof. Let M be defined as M (x) = max(L(z), U(z)) for every process clock z. Let k € N be
larger than the number of (M, D)-regions. Consider the finite path in eLZG?,(N) obtained
by the sequence o,(c.)*. By repeated use of Lemma 37, there is a path o,(0.)* in LZG(N).

By post-property of LZG(N), there is a local run (go,vp) 7, (g,v1) 7 (q,v2) 7oy

- =< (q,vk41). As N is D-spread, this run can be assumed to be D-spread. Due to
Theorem 20, there is a path o,(c.)* in the (M, D)-region graph: (qo, [v0]2) 22 (¢, [01]2) 2%
- 2% (q, [vk41]2). As k is larger than the number of regions, there exist i, such that
[v;]2 = [v;]2. This gives a path o,0i~!
is a cycle, which can be iterated infinitely often. Hence there is a path o,(0¢)* in the region
graph. By Theorem 20, there is an infinite local run over the sequence o,(0.)¥, whose

intermediate valuations are all D-spread. |

ol ~to**+1=J in the region graph where the part o7~

» Lemma 30. Let N be a D-spread network that conforms to a bounds function LU. Let
(g0, Zo) Lo, (q1,71) 2 be an infinite source path in LZG(N'). Then there is an infinite path

b b .
(90, Zo) ~> (q1, Z1) ~> - -+ in eLZG ;™ (N).

Proof. Let w; = b;b;y1 .... By induction on i we construct a path in eLZGZ;""(N)

b bi
(90, Zo) ~> (a1, Z1) -+ ~> (¢, Z))
such that in LZG(N) there is a path

(gi, Z}) Jit, (Git1,Zi11) itz (¢i+2,Z,5)... and enabled(q;, Z;) = enabled(g;, Z;).
The second item implies that the later path is a source path in LZG(N).

If (gi, Z!) is not covered in eLZG7;;™ then the induction step is direct.

If (gi, Z)) is covered in eLZG[; ™ then there exists (q;, Z!) —e (¢, Z)) with (¢, Z))
uncovered and aZ,  (Z]) = a2, (Z]'). As (s, Z]') is reachable from (qo, Zo) in LZG(N) by

b;
the definition of eLZG?;:™, we can use Lemma 28. The lemma gives us a path (¢;, Z/) =—=

(Qit1, ij_'ll) LE-N (Qiva, Z?j_‘%) ... such that enabled(g;, Z}) = enabled(g;, Z;H). Thus we

also have enabled(g;, Z;) = enabled(g;, Z;H). We can prolong the finite prefix (g0, Zo) o,
bi, bi, 1
(a1, 21) - ~> (@i, Z0) by (a1, Z]) —ve (a5, Z]) == (i1, Zi40)- <

The local zone graph eLZG[; " (N) is finite. We will prove that for every zone Z, the
abstraction a2, (Z) is a union of (M, D)-regions. To prove this statement, we will need
to reason about canonical representations of zones. Zones are typically represented using
Difference-Bound-Matrices (DBMs) or distance graphs [21]. We will use the distance graph
representation for our analysis. A constraint  — y < ¢ of the zone is represented as an edge
y =% z. An arithmetic over weights of (<, ¢) can be suitably defined (see [21], [15]) for more
details. A canonical graph is one where the shortest path from y to = is given by the direct
edge y — x. We will write Z, to denote the weight of the y — z edge in the canonical
distance graph representing Z.

For convenience of presentation, we define two sets of clocks for a given local valuation v:

L-bounded(v) := T U U {re X, |v(t, —z) <L;}
p€E Proc

U -bounded(v) := T U U {zr e X, |v(ty —z) <Uz}
p€ Proc
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Notice that the reference clocks T are present in both L-bounded(v) and U -bounded(v).
Define (v)* := {v' | v 5}, v'}. We will now recall the distance graph representation of
(v)* and an important property of the intersection (v)* N Z for some arbitrary zone Z’.

» Definition 38 (Distance graph H [15]). Let z,y € X UX! be two clocks, possibly reference
clocks. Assume that y # x and y € XqU {ty} for some process q. The weight of the edge
x — y in the distance graph H" is given by:

(< o(y — ) if x € U -bounded(v),
y € L-bounded(v)
(<,0(tq — ) + (<,—Ly) if z € U-bounded(v),
y ¢ L-bounded(v), L, # —o0

(S,v(tg — x)) if x € U -bounded(v),
y ¢ L-bounded(v), L, = —o0
(<, 0) otherwise

» Proposition 39. [15] The intersection (v)* N Z is empty iff there are two variables x,y €
XUT s.t. z € U-bounded(v), L, # —oo when y is a process clock, and Hy, + Z,, < (<,0).

The above proposition gives a simple characterization for when the upward closure of a
valuation v wrt to the <7, simulation does not intersect zone Z. Using this, we can show
that when two valuations belong to the same (M, D)-region, then one of them satisfies this
characterization iff the other does so. Here, we will make use of the fact that our atomic
constraints involve integer constants, and hence all zones that appear in the local zone graph

computation will only involve integer constants.

» Lemma 40. Let L,U and M be bound functions such that for every process clock x, we
have M(x) > L(z) and M(x) > U(x). For every zone Z, the set aZ,  (spreadp(Z)) is a
finite union of (M, D)-regions.
Proof. We first remark that every valuation in a%,  (spread,(Z)) is D-spread. Let v be a
D-spread valuation. We have v € a%,  (spreadp,(2)) iff (v)* N Z is non-empty. Let v =}, v".
We will show that (v)* N Z is empty iff (v/)* N Z is empty. This will prove the lemma. Let
H" and H"" be the canonical distance graphs representing (v)* and (v’)* respectively.
From Proposition 39, (v)* N Z is empty iff there exist two variables x,y such that
x € U-bounded(v), and L, # —oc when y is a process clock, such that i}, + Z,, < (<,0).
As z € U-bounded(v), we also have z € Bounded(v), as M(z) = max(L(z),U(x)). Since
v =2 v, we have x € U-bounded(v) iff « € U-bounded(v’). When y € Bounded(v),
we have |H} | = LH;’?;J Since Z,, is of the form (<,c¢) with ¢ an integer, we have
HY, + Zye < (£,0) iff H;’?; + Zye < (<,0). When y ¢ Bounded(v), then in particular, y is
a process clock, y ¢ L-bounded(v) and we have H, = (<,v(t, — ) + (<, —L,) where ¢
is the process containing y. But, ¢, belongs to both Bounded(v) and Bounded(v’). Hence
lv(ty—x)| = |[v'(t—x)| and the lemma follows for this case using the previous argument. <«
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