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—— Abstract

We consider the problems of language inclusion and language equivalence for Vector Addition Systems

with States (VASSes) with the acceptance condition defined by the set of accepting states (and
more generally by some upward-closed conditions). In general the problem of language equivalence
is undecidable even for one-dimensional VASSes, thus to get decidability we investigate restricted
subclasses. On one hand we show that the problem of language inclusion of a VASS in k-ambiguous
VASS (for any natural k) is decidable and even in Ackermann. On the other hand we prove that
the language equivalence problem is Ackermann-hard already for deterministic VASSes. These two
results imply Ackermann-completeness for language inclusion and equivalence in several possible
restrictions. Some of our techniques can be also applied in much broader generality in infinite-state
systems, namely for some subclass of well-structured transition systems.
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1 Introduction

Vector Addition Systems (VASes) together with almost equivalent Petri Nets and Vector
Addition Systems with States (VASSes) are one of the most fundamental computational
models with a lot of applications in practice for modelling concurrent behaviour. There
is also an active field of theoretical research on VASes, with a prominent example being
the reachability problem whose complexity was established recently to be Ackermann-
complete [23, 11] and [24]. An important type of questions that can be asked for any pair
of systems is whether they are equivalent in a certain sense. The problem of language
equivalence (acceptance by configuration) was already proven to be undecidable in 1975 by
Araki and Kasami [1] (Theorem 3). They also have shown that the language equivalence
(acceptance by configuration) for deterministic VASes is reducible to the reachability problem,
thus decidable, as the reachability problem was shown to be decidable by Mayr a few years
later in 1981 [25]. The equality of the reachability sets of two given VASes was also shown
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undecidable in the 70-ties by Hack [16]. Jancar has proven in 1995 that the most natural
behavioural equivalence, namely the bisimilarity equivalence is undecidable for VASSes [19].
His proof works for only two dimensions (improving the previous results [1]) and is applicable
also to language equivalence (this time as well for acceptance by states). A few years
later in 2001 Jancar has shown in [20] that any reasonable equivalence in-between language
equivalence (with acceptance by states) and bisimilarity is undecidable (Theorem 3) and
Ackermann-hard even for systems with finite reachability set (Theorem 4). For the language
equivalence problem the state-of-the-art was improved a few years ago. In [17] (Theorem 20)
it was shown that already for one-dimensional VASSes the language equivalence (and even the
trace equivalence, namely language equivalence with all the states accepting) is undecidable.

As the problem of language equivalence (and similar ones) is undecidable for general
VASSes (even in very small dimensions) it is natural to search for subclasses in which the
problem is decidable. Decidability of the problem for deterministic VASSes [1, 25] suggests
that restricting nondeterminism might be a good idea. Recently a lot of attention was drawn
to unambiguous systems [6], namely systems in which each word is accepted by at most one
accepting run, but can potentially have many non-accepting runs. Such systems are often
more expressive than the deterministic ones however they share some of their good properties,
for example [5]. In particular many problems are more tractable in the unambiguous case
than in the general nondeterministic case. This difference is already visible for finite automata.
The language universality and the language equivalence problems for unambiguous finite
automata are in NC? [32] (so also in PTime) while they are in general PSpace-complete for
nondeterministic finite automata. Recently it was shown that for some infinite-state systems
the language universality, equivalence and inclusion problems are much more tractable in the
unambiguous case than in the general one. There was a line of research investigating the
problem for register automata [26, 2, 10] culminating in the work of Bojanczyk, Klin and
Moerman [3]. They have shown that for unambiguous register automata with guessing the
language equivalence problem is in ExpTime (and in PTime for a fixed number of registers).
This result is in a sheer contrast with the undecidability of the problem in the general case
even for two register automata without guessing [27] or one register automata with guessing
(the proof can be obtained following the lines of [12] as explained in [10]). Recently it was
also shown in [7] that the language universality problem for VASSes accepting with states
is ExpSpace-complete in the unambiguous case in contrast to Ackermann-hardness in the
nondeterministic case (even for one-dimensional VASSes) [18].

Our contribution. In this article we follow the line of [7] and consider problems of language
equivalence and inclusion for unambiguous VASSes and also for their generalisations k-
ambiguous VASSes (for k € N) in which each word can have at most k accepting runs. The
acceptance condition is defined by some upward-closed set of configurations which generalises
a bit the acceptance by states considered in [7]. Notice that the equivalence problem can
be easily reduced to the inclusion problem, so we prove lower complexity bounds for the
equivalence problem and upper complexity bounds for the inclusion problem.
Our main lower bound result is the following one.

» Theorem 1. The language equivalence problem for deterministic VASSes is Ackermann-
hard.

Our first important upper bound result is the following one.

» Theorem 2. The inclusion problem of a nondeterministic VASS language in an unambigu-
ous VASS language is in Ackermann.
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The proof of Theorem 2 is quite simple, but it uses a novel technique. We add a regular
lookahead to a VASS and use results about regular-separability of VASSes from [9] to reduce
the problem, roughly speaking, to the deterministic case. This technique can be applied
to more general systems namely well-structures transition-systems [14]. We believe that it
might be interesting on its own and reveal some connection between separability problems
and the notion of unambiguity.

Our main technical result concerns VASSes with bounded ambiguity.

» Theorem 3. For each k € N the language inclusion problem of a VASS in a k-ambiguous
VASS is in Ackermann.

Notice that Theorem 3 generalises Theorem 2. We however decided to present separately
the proof of Theorem 2 because it presents a different technique of independent interest,
which can be applied more generally. Additionally it is a good introduction to a more
technically challenging proof of Theorem 3. The proof of Theorem 3 proceeds in three steps.
First we show that the problem for k-ambiguous VASS can be reduced to the case when the
control automaton of the VASS is k-ambiguous. Next, we show that the control automaton
can be even made k-deterministic (roughly speaking for each word there are at most k runs).
Finally we show that the problem of inclusion of a VASS language in a k-deterministic VASS
can be reduced to the reachability problem for VASSes which is in Ackermann [24].

On a way to show Theorem 3 we also prove several other lemmas and theorems, which
we believe may be interesting on their own. Theorems 1 and 3 together easily imply the
following corollary.

» Corollary 4. The language equivalence problem is Ackermann-complete for:
deterministic VASSes
unambiguous VASSes
k-ambiguous VASSes for any k € N

Organisation of the paper. In Section 2 we introduce the needed notions. Then in Section 3
we present results concerning deterministic VASSes. First we show Theorem 1. Next, we
prove that the inclusion problem of a VASS language in a language of a deterministic VASS,
a k-deterministic VASS or a VASS with holes (to be defined) is in Ackermann. This is
achieved by a reduction to the VASS reachability problem. In Section 4 we define adding
a regular lookahead to VASSes. Then we show that with a carefully chosen lookahead we
can reduce the inclusion problem of a VASS language in an unambiguous VASS language

into the inclusion problem of a VASS language in language of deterministic VASS with holes.
This latter one is in Ackermann due to Section 3 so the former one is also in Ackermann.

In Section 5 we present the proof of Theorem 3 which is our most technically involved
contribution. We also use the idea of a regular lookahead and the result proved in Section 3
about k-deterministic VASSes. Many of the technically involved proofs are moved to the
appendix.

2 Preliminaries

Basic notions. For a,b € N we write [a, b] to denote the set {a,a+1,...,b—1,b}. For a
vector v € N and i € [1,d] we write v[i] to denote the i-th coordinate of vector v. By 0¢ we
denote the vector v € N¢ with all the coordinates equal to zero. For a word w =aq - ... - an
and 1 <14 < j <n we write wli..j] =a; - ... - a; for the infix of w starting at position ¢ and
ending at position j. We also write w[i] = a;. For any 1 <i < d by e; € N? we denote the

vector with all coordinates equal zero except of the i-th coordinate, which is equal to one.

For a finite alphabet ¥ we denote X, = ¥ U {e¢} the extension of ¥ by the empty word e.
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Upward and downward-closed sets. For two vectors u,v € N% we say that u < v if for all
i € [1,d] we have u[i] < v[i]. A set S C N? is upward-closed if for each u,v € N it holds
that v € S and v < v implies v € S. Similarly a set S C N is downward-closed if for each
u,v € N it holds that v € S and v < u implies v € S. For u € N? we write ut = {v | u < v}
for the set of all vectors bigger than u w.r.t. < and ul = {v | v < u} for the set of all
vectors smaller than v w.r.t. <. If an upward-closed set is of the form w1 we call it an
up-atom. Notice that if a one-dimensional set S C N is downward-closed then either S = N
or S = [0,n] for some n € N. In the first case we write S = w| and in the second case
S = nl. If a downward-closed set D C N% is of a form D = D; x ... x Dy, where all D;
for i € [1,d] are downward-closed one dimensional sets then we call D a down-atom. In the
literature sometimes up-atoms are called principal filters and down-atoms are called ideals.
If D; = (n;)} then we also write D = (ny,n2,...,n4)}. In that sense each down-atom is of a
form u| for u € (NU {w})?. Notice that a down-atom does not have to be of a form u/ for
u € N4, for example D = N9 is not of this form, but D = (w,...,w)|.
The following two propositions will be helpful in our considerations.

» Proposition 5 ([9] Lemma 17, [21], [13]). Each downward-closed set in N is a finite union
of down-atoms. Similarly, each upward-closed set in N¢ is a finite union of up-atoms.

We represent upward-closed sets as finite unions of up-atoms and downward-closed sets
as finite unions of down-atoms, numbers are encoded in binary. The size of representation
of upward- or downward-closed set S is denoted ||S||. The following proposition helps to
control the blowup of the representations of upward- and downward-closed sets.

» Proposition 6. Let U C N be an upward-closed set and D C N be downward-closed set.
Then the size of representation of their complements U = N4\ U and D = N%\ D is at most
exponential wrt. the sizes ||U|| and ||D||, respectively and can be computed in exponential
time.

We prove the Proposition 6 in the appendix. For a more general study (for arbitrary
well-quasi orders) see [15].

Vector Addition Systems with States. A d-dimensional Vector Addition System with
States (d-VASS or simply VASS) V cousists of a finite alphabet 3, a finite set of states Q, a
finite set of transitions T C @ x ¥ x Z% x Q, a distinguished initial configuration c; € Q x N,
and a set of distinguished final configurations F C Q x N%. We write V = (%,Q, T, ¢, F).
Sometimes we ignore some of the components in a VASS if they are not relevant, for example
we write V = (Q,T) if X, ¢;, and F do not matter. Configuration of a d-VASS is a pair
(g,v) € Q x N% we often write it g(v) instead of (g,v). We write state(q(v)) = ¢q. The set of
all the configurations is denoted Conf = @Q x N¢. For a state ¢ € Q and a set U C N we write
q(U) ={q(u) | w € U}. A transition ¢t = (p,a,u,q) € T can be fired in a configuration r(v) if
p=rand u+v € N We write then p(v) LN q(u +v). We say that the transition ¢t € T
is over the letter a € ¥ or the letter a labels the transition t. We write p(v) — q(u + v)
slightly overloading the notation, when we want to emphasise that the transition is over the
letter a. The effect of a transition ¢t = (p, a,u, q) is vector u, we write eff(t) = u. The size
of VASS V is the total number of bits needed to represent the tuple (X,Q,T, ¢, F), we do
not specify here how we represent F' as it may depend a lot on the form of F. A sequence
p = (c1,t1,¢)), (ca,ta,ch), ..., (Cn,tn,c,) € Conf x T x Conf is a run of VASS V = (Q,T)
if for all ¢ € [1,n] we have ¢; N ¢; and for all i € [1,n — 1] we have ¢, = ¢;11. We write
trans(p) =1 - ... - t,. We extend the notion of the labelling to runs, labelling of a run p is
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the concatenation of labels of its transitions. Such a run p is from the configuration ¢; to
the configuration ¢}, and configuration ¢}, is reachable from configuration ¢; by the run p.
We write then ¢; —2» e, e = ¢, if w labels p slightly overloading the notation or simply
¢1 —> ¢, if the run p is not relevant, we say that the run p is over the word w.

VASS languages. A run p is accepting if it is from the initial configuration to some final
configuration. For a VASS V = (3, Q, T, ¢, F) we define the language of V as the set of all
labellings of accepting runs, namely

L(V)={w e ¥* | ¢; = cF for some cp € F}.

For any configuration ¢ of V' we define the language of configuration ¢, denoted L.(V) to
be the language of VASS (2,Q,T, ¢, F), namely the language of VASS V with the initial
configuration ¢y substituted by ¢. Sometimes we simply write L(c) instead of L.(V) if V
is clear from the context. Further, we say that the configuration ¢ has the empty language
if L(c) = 0. For a VASS V = (2,Q, T, cy, F) its control automaton is intuitively VASS V/
after ignoring its counters. Precisely speaking, the control automaton is (X, Q, T, qr, F')
where q; = state(cy), F' = {q € Q | yene ¢(v) € F} and for each (¢,a,v,¢") € T we have
(¢,0,q) € T".

Notice that a 0-VASS, namely a VASS with no counters is just a finite automaton, so
all the VASS terminology works also for finite automata. In particular, a configuration of a
0-VASS is simply an automaton state. In that special case for each state ¢ € Q we call the
L(q) the language of state q.

A VASS is deterministic if for each configuration ¢ reachable from the initial configuration
cr and for each letter a € ¥ there is at most one configuration ¢ such that ¢ — ¢/. A VASS

is k-ambiguous for k € N if for each word w € ¥* there are at most k accepting runs over w.

If a VASS is 1-ambiguous we also call it unambiguous.

Note that, the set of languages accepted by unambiguous VASSes is a strict superset of the
languages accepted by deterministic VASSes. To see that unambiguous VASSes can indeed
accept more consider a language (a*b)*a™c¢™ where n > m. On one hand, an unambiguous
VASS that accepts the language guesses where the last block of letter a starts, then it counts
the number of a’s in this last block, and finally, it counts down reading c’s. As there is
exactly one correct guess this VASS is indeed unambiguous. On the other hand, deterministic
system can not accept the language, as intuitively speaking it does not know whether the
last block of a’s has already started or not. To formulate the argument precisely one should
use rather easy pumping techniques.

The following two problems are the main focus of this paper, for different subclasses of
VASSes:

Inclusion problem for VASSes Equivalence problem for VASSes
Input Two VASSes V; and V5. Input Two VASSes V7 and V5.
Question Does L(Vy) C L(V3)? Question Does L(V;) = L(V3)?

In the sequel, we are mostly interested in VASSes with the set of final configurations
F of some special form. We extend the order < on vectors from N? to configurations from
Q x N% in a natural way: we say that ¢;(v1) < q2(v2) if ¢1 = ¢2 and v; < vo. We define the

notions of upward-closed, downward-closed, up-atom and down-atom the same as for vectors.

As Proposition 5 holds for any well quasi-order, it applies also to @ x N?. Proposition 6

applies here as well, as the upper bound on the size can be shown separately for each state.

Let the set of final configurations of VASS V be F. If F' is upward-closed then we call V'
an upward-VASS. If F' is downward-closed then we call V' a downward-VASS. For two sets
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A C N B C N’ and a subset of coordinates J C [1,a + b] by A x; B we denote the set
of vectors in N®*® which projected into coordinates in J belong to A and projected into
coordinates outside J belong to B. If F' = (1, 4:(U; %, D;) where for all i € [1,n] we
have J; C [1,d], U; C NI/l are up-atoms and D; C Ne-Iil are down-atoms then we call V
an updown-VASS. In the sequel we write simply x instead of X ;, as the set of coordinates
J is never relevant. If F' = {cp} is a singleton then we call V' a singleton-VASS. As in
this paper we mostly work with upward-VASSes we often say simply a VASS instead of an
upward-VASS. In other words, if not indicated otherwise we assume that the set of final
configurations F' is upward-closed.

For the complexity analysis we assume that whenever F' is upward- or downward-closed
then it is given as a union of atoms. If F' = J;cy ) @(Ui X D;) then in the input we get a
sequence of ¢; and representations of atoms U, D; defining individual sets ¢;(U; x D;).

Language emptiness problem for VASSes. The following emptiness problem is the central
problem for VASSes.

Emptiness problem for VASSes
Input A VASSV = (2,Q,T, ¢y, F)
Question Does ¢; — ¢ in V for some cp € F?

Observe that the emptiness problem is not influenced in any way by labels of the
transitions, so sometimes we will not even specify transition labels when we work with the
emptiness problem. If we want to emphasise that labels of transitions do not matter for some
problem then we write V = (Q, T, ¢, F) ignoring the ¥ component. In such cases we also
assume that transitions do not contain the ¥ component, namely 7' C Q x Z¢ x Q.

Note also that the celebrated reachability problem and the coverability problem for
VASSes are special cases of the emptiness problem. The reachability problem is the case
when F' is a singleton set {cp}, classically it is formulated as the question whether there is a
run from ¢y to cp. The coverability problem is the case when F' is an up-atom cp, classically
it is formulated as the question whether there is a run from c¢; to any c such that cp < c.
Recall that the reachability problem, so the emptiness problem for singleton-VASSes is in
Ackermann [24] and actually Ackermann-complete [23, 11].

A special case of the emptiness problem is helpful for us in Section 3.

» Lemma 7. The emptiness problem for VASSes with the acceptance condition F = qp(U x D)
where D is a down-atom and U is an up-atom is in Ackermann.

We prove Lemma 7 in the appendix. The following is a simple and useful corollary of
Lemma 7.

» Corollary 8. The emptiness problem for updown-VASSes is in Ackermann.

Proof. Recall that for updown-VASSes the acceptance condition is a finite union of ¢(U x D)
for some up-atom U C N and down-atom D C N% where d; and ds sums to the dimension
of the VASS V. Thus emptiness of the updown-VASS can be reduced to finitely many
emptiness queries of the form ¢(U x D) which can be decided in Ackermann due to Lemma 7.
Notice that the number of queries is not bigger than the size of the representation of F' thus
the emptiness problem for updown-VASSes is also in Ackermann. <

By Proposition 5 each downward-VASS is also an updown-VASS, thus Corollary 8 implies
the following one.

» Corollary 9. The emptiness problem for downward-VASSes is in Ackermann.
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Recall that the coverability problem in VASSes is in ExpSpace [29], and the coverability
problem is equivalent to the emptiness problem for the set of final configurations being an
up-atom. By Proposition 5 we have the following simple corollary which creates an elegant
duality for the emptiness problems in VASSes.

» Corollary 10. The emptiness problem for upward-VASSes is in ExpSpace.

Actually, even the following stronger fact is true and helpful for us in the remaining part
of the paper, it is shown in [22].

» Proposition 11. For each upward-VASS the representation of the downward-closed set of
configurations with the empty language can be computed in doubly-exponential time.

3 Deterministic VASSes

3.1 Lower bound
First we prove a lemma, which easily implies Theorem 1.

» Lemma 12. For each d-dimensional singleton-VASS V with final configuration being
cr = qr(0%) one can construct in polynomial time two deterministic (d + 1)-dimensional
upward-VASSes Vi and Vy such that

L(Vi) = L(Va) <= L(V)=0.

The sketch of the proof. To prove the lemma we take V' and we add to it one transition
labelled with a new letter. In V; the added transition can be performed if we have reached
a configuration bigger than or equal to cp. In V5 the added transition can be performed
only if we have reached a configuration strictly bigger than cp. Now it is easy to see that
L(V1) # L(V) if and only if ¢y can be reached. Detailed proof is in the appendix.

Notice that Lemma 12 shows that the emptiness problem for a singleton-VASS with the
final configuration having zero counter values can be reduced in polynomial time to the
language equivalence for deterministic VASSes. This proves Theorem 1 as the emptiness

problem, even with zero counter values of the final configuration is Ackermann-hard [23, 11].

3.2 Upper bounds

In this Section we prove three results of the form: if V; is a VASS and V5 is a VASS of
some special type then deciding whether L(V;) C L(V3) is in Ackermann. Our approach
to these problems is the same, namely we first prove that complement of L(V3) for Vo of
the special type is also a language of some VASS V. Then to decide the inclusion problem
it is enough to construct VASS V such that L(V) = L(Vy) N L(Vy) = L(V1) \ L(V2) and
check it for emptiness. In the description above using the term VASS we do not specify the
form of its set of accepting configurations. Starting from now on we call upward-VASSes
simply VASSes and for VASSes with other acceptance conditions we use their full name
(like downward-VASSes or updown-VASSes) to distinguish them from upward-VASSes. The
following lemma is very useful in our strategy of deciding the inclusion problem for VASS
languages.

» Lemma 13. For a VASS Vi and a downward-VASS V, one can construct in polynomial
time an updown-VASS V' such that L(V') = L(Vy) N L(V2).

The proof is in the appendix.
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Deterministic VASSes. We first show the following theorem that will be generalised by the
other results in this section. We aim to prove it independently in order to mildly introduce
our techniques.

» Theorem 14. For a deterministic VASS one can build in exponential time a downward-
VASS which recognises the complement of its language.

Sketch of the proof. A word may be in the complement of our VASS language for the
following reasons: (1) the run reaches a configuration that is not accepted, (2) the run does
not exist as one of the counters would drop below zero, (3) the run is not possible due to the
structure of the control automaton. For each case we separately design a part of a downward-
VASS accepting it. Cases (1) and (3) are simple. For the case (2) we nondeterministically
guess the moment when the run would go below zero and freeze the configuration at that
moment. Then at the end of the word we check if our guess was correct. Notice that the set
of configurations from which a step labelled with a letter a would take a counter below zero
is downward-closed, so we can check the correctness of our guess using a downward-closed
accepting condition. Detailed proof is in the appendix.

The following theorem is a simple corollary of Theorem 14, Lemma 13 and Corollary 8.

» Theorem 15. The inclusion problem of a VASS language in a deterministic VASS language
is in Ackermann.

Deterministic VASSes with holes. We define here VASSes with holes, which are a useful
tool to obtain our results about unambiguous VASSes in Section 4. A d-VASS with holes
(or shortly d-HVASS) V is defined exactly as a standard VASS, but with an additional
downward-closed set H C @ x N¢ which affects the semantics of V. Namely the set of
configurations of V is @ x N¢\ H. Thus each configuration on a run of V needs not only
to have nonnegative counters, but in addition to that it can not be in the set of holes H.
Additionally in HVASSes we allow for transitions labelled by the empty word &, in contrast
to the rest of our paper. Due to that fact in this paragraph we often work also with VASSes
having e-labelled transitions, we call such VASSes the e-VASSes. As an illustration of the
HVASS notion let us consider the zero-dimensional case. In that case the set of holes is just a
subset of states. Therefore HVASSes in dimension zero are exactly VASSes in dimension zero,
so finite automata. However, for higher dimensions the notions of HVASSes and VASSes
differ.

We present here a few results about languages for HVASSes. First notice that for
nondeterministic HVASSes it is easy to construct a language equivalent e-VASS.

» Lemma 16. For each HVASS one can compute in exponential time a language equivalent
e-VASS.

Sketch of the proof. First we observe that the complement of the set of holes is an
upward-closed set U. The idea behind the construction is that after every step we test if
the current configuration is in U. We nondeterministically guess a minimal element x; of U
above which the current configuration is, then we subtract x; and add it back. If our guess
was not correct then the run is blocked.

It is important to emphasise that the above construction applied to a deterministic
HVASS does not give us a deterministic VASS, so we cannot simply reuse Theorem 14. Thus
in order to prove the decidability of the inclusion problem for HVASSes we need to generalise
Theorem 14 to HVASSes.
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» Theorem 17. For a deterministic HVASS one can compute in exponential time a downward-
e-VASS which recognises the complement of its language.

Sketch of the proof. The proof is very similar to the proof of Theorem 14. In the case (1)
we have to check if the accepting run stays above the holes, do perform it we use the trick
from Lemma 16. In the case (2) we freeze the counter when the run would have to drop
below zero or enter the hole. The case (3) is the same as in Theorem 14.

Now the following theorem is an easy consequence of the shown facts. We need only to
observe that proofs of Lemma 13 and Corollary 8 work as well for e-VASSes.

» Theorem 18. The inclusion problem of an HVASS language in a deterministic HVASS
language is in Ackermann.

Boundedly-deterministic VASSes. We define here a generalisation of a deterministic VASS,
namely a k-deterministic VASS for k£ € N. Such VASSes are later used as a tool for deriving
results about k-ambiguous VASSes in Section 5.

AVASSV = (3,Q,T,cy, F) is k-deterministic if for each word w € ¥* there are at most
k mazimal runs over w. We call a run p a mazimal run over w if either (1) it is a run over
w or (2) w = uav for u,v € ¥*, a € 3 such that the run p is over the prefix u of w but
there is no possible way of extending p by any transition labelled with the letter a € 3. Let
us emphasise that here we count runs in a subtle way. We do not count only the maximal
number of active runs throughout the word but the total number of different runs which
have ever been started during the word. To illustrate the difference better let us consider an
example 0-VASS (a finite automaton) V over ¥ = {a, b} with two states p, g and with three
transitions: (p,a,p), (p,a,q) and (q,b,q). Then V has n 4+ 1 maximal runs over the word a"
although only two of these runs actually survive till the end of the input word. So V' is not
2-deterministic even though for each input word it has at most two runs.

» Theorem 19. For a k-deterministic d-VASS one can build in exponential time a (k- d)-
dimensional downward-VASS which recognises the complement of its language.

Sketch of the proof. In the construction (k - d)-dimensional downward-VASS V'’ simulates
k copies of V' which take care of at most k different maximal runs of V. The accepting
condition F” of V' verifies whether in all the copies there is a reason that the simulated
maximal runs do not accept. The reasons why each individual copy do not accepts are the
same as in Theorem 14.

Theorem 19 together with Lemma 13 and Corollary 8 easily implies (analogously as in
the proof of Theorem 18) the following theorem.

» Theorem 20. The inclusion problem of a VASS language in a k-deterministic VASS
language is in Ackermann.

4  Unambiguous VASSes

In this section we aim to prove Theorem 2. However, possibly a more valuable contribution
of this section is a novel technique which we introduce in order to show Theorem 2. The
essence of this technique is to introduce a regular lookahead to words, namely to decorate
each letter of a word with a piece of information regarding some regular properties of the
suffix of this word. For technical reasons we realise it by the use of finite monoids.

The high level intuition behind the proof of Theorem 2 is the following. We first introduce
the notion of (M, h)-decoration of words, languages and VASSes, where M is a monoid
and h : ¥* — M is a homomorphism. Proposition 23 states that language inclusion of
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two VASSes can be reduced to language inclusion of its decorations. On the other hand
Theorem 26 shows that for appropriately chosen pair (M, h) the decorations of unambiguous
VASSes are deterministic HVASSes. Theorem 25 states that such an appropriate pair can
be computed quickly enough. Thus language inclusion of unambiguous VASSes reduces to
language inclusion of deterministic HVASSes, which is in Ackermann due to Theorem 18.

Recall that a monoid M together with a homomorphism h : ¥* — M and an accepting
subset F' C M recognises a language L if L = h=1(F). In other words L is exactly the set
of words w such that h(w) € F. The following proposition is folklore, for details see [2§]
(Proposition 3.12).

» Proposition 21. A language of finite words is reqular if and only if it is recognised by
some finite monoid.

For that reason monoids are a good tool for working with regular languages. In particular
Proposition 21 implies that for each finite family of regular languages there is a monoid,
which recognises all of them, this fact is useful in Theorem 26. Let us fix a finite monoid
M and a homomorphism h : ¥* — M. For a word w = a1 - ... a, € X* we define its
(M, h)-decoration to be the following word over an alphabet ¥, x M:

(e,h(ay ... ap)) (a1, h(ag ... ap)) ...  (an_1,h(ay)) - (an, h(e)).

In other words, the (M, h)-decoration of a word w of length n has length n + 1, where the
i-th letter has the form (a;—1,h(a; - ... a)). We denote the (M, h)-decoration of a word w
as wipr,p)- If h(w) = m then we say that word w has type m € M. The intuition behind the
(M, h)-decoration of w is that for each language L which is recognised by the pair (M, h)
the i-th letter of w is extended with an information whether the suffix of w after this letter
belongs to L or does not belong. This information can be extracted from the monoid element
h(a;41-. .. an) by which letter a; is extended. As an illustration consider words over alphabet
Y = {a, b}, monoid M = Z, counting modulo two and homomorphism h : ¥ — M defined
as h(a) =1, h(b) = 0. In that case for each w € ¥* the element h(w) indicates whether
the number of letters a in the word w is odd or even. The decoration of w = aabab is then

wky = (€,1)(a,0)(a, 1)(b,1)(a,0)(b,0).

We say that a word u € (X x M)* is well-formed if u = (g, mp) - (a1, m1) « ... (An, My)
such that all a; € 3, and for each i € [0,n] the type of a;y1 - ... ay is m; (in particular type
of € is m,). We say that such a word u projects into word a; - ... - a,. It is easy to observe

that was ) is the only well-formed word that projects into w. The following proposition is
useful in Section 5, an appropriate finite automaton can be easily constructed.

» Proposition 22. The set of all well-formed words is regular.

A word is almost well-formed if it satisfies all the conditions of well-formedness, but the
first letter is not necessarily of the form (e, m) for m € M, it can as well belong to ¥ x M.

The (M, h)-decoration of a language L, denoted Ly ), is the set of all (M, h)-decorations
of all words in L, namely

Liavny = {wapy | w € L}

As the (M, h)-decoration is a function from words over X to words over ¥, X M we observe
that u = v iff u(ar,n) = v(ar,n) and clearly the following proposition holds.

» Proposition 23. For each finite alphabet X, two languages K, L C ¥*, monoid M and
homomorphism h : ¥* — M we have

KCL < K(M,h) - L(M,h)~
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Recall now that HVASS (VASS with holes) is a VASS with some downward-closed set

H of prohibited configurations (see Section 3, paragraph Deterministic VASSes with holes).

For each d-VASS V = (£,Q,T,cr, F), a monoid M and a homomorphism h : ¥* — M
we can define in a natural way a d-HVASS V() = (5. x M,Q',T',c}, F') accepting the
(M, h)-decoration of L(V). The set of states Q' equals @ x (M U {L}). The intuition is
that Viap) is designed in such a way that for any state (g,m) € Q x M and vector v € N¢

if (¢,m)(v) 'y F' then w' is almost well-formed and w’ projects into some w € ¥* such
that h(w) = m. If ¢; = gr(vy) then configuration ¢; = (gr, L)(vy) is the initial configuration

of Viar,ny- The set of final configurations F” is defined as F' = {(q,h(¢))(v) | q(v) € F}.

Finally we define the set of transitions T” of V' as follows. First, for each m € M we add the
following transition ((qr, L), (¢,m),0%, (gr,m)) to T’. Then for each transition (p,a,v,q) € T
and for each m € M we add to T” the transition (p’,d’,v,q’) where o/ = (a,m), ¢ = (¢, m)
and p’ = (p, h(a) - m). It is now easy to see that for any word w = aj - ... a, € X* we have

ar(vr) 5 (1) 22 T g1 (0nm1) 2 gn(vn)

if and only if

(e,m1) (a1,m2)

(qr, L)(vr) =" (qr,m1)(vr)  — (q1,m2)(v1

n—1s "1)
(@ ;;” (Qn—la mn)(vn—l

) (e2me)

(anymn )
) —>+1 (Qnamn—i-l)(vn)v

where m; = h(w[i..n]) for all ¢ € [1,n + 1], in particular m,+; = h(e). Therefore indeed
L(Viar,ny) = L(V)(as,n)- Till now the defined HVASS is actually a VASS, we have not defined
any holes. Our aim is now to remove configurations with the empty language, namely
(g,m)(v) for which there is no word w € (X, x M)* such that (g, m)(v) — ¢}, for some
cm € F'. Notice that as F’ is upward-closed we know that the set of configurations with
the empty language is downward-closed. This is how we define the set of holes H, it is
exactly the set of configurations with the empty language. We can compute the set of holes
in doubly-exponential time by Proposition 11.

By Proposition 23 we know that for two VASSes U,V we have L(U) C L(V) if and only
if L(Uar,ny) € L(Viar,py)- This equivalence is useful as we show in a moment that for an
unambiguous VASS V' and suitably chosen (M, h) the HVASS V{,; 5,) is deterministic.

Regular separability. We use here the notion of regular separability. We say that two
languages K, L C ¥* are reqular-separable if there exists a regular language S C 3* such that
K C Sand SNL =0. We say than that S separates K and L and S is a separator of K
and L. We recall here a theorem about regular-separability of VASS languages (importantly
upward-VASS languages, not downward-VASS languages) from [9].

» Theorem 24 (Theorem 24 in [9]). For any two VASS languages L1, Lo C3* if LiNLy =0
then Ly and Lo are regular-separable and one can compute the regular separator in elementary
time.
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Proof. Theorem 24 in [9] says that there exists a regular separator of L; and Ly of size at
most triply-exponential. In order to compute it we can simply enumerate all the possible
separators of at most triply-exponential size and check them one by one. For a given regular
language and a given VASS language by Proposition 10 one can check in doubly-exponential
time whether they nonempty intersect. |

For our purposes we need a bit stronger version of this theorem. We say that a family of
regular languages F separates languages of a VASS V if for any two configurations ci, ca
such that languages L(c1) and L(cg) are disjoint there exists a language S € F that separates
L(ey) and L(ces).

» Theorem 25. For any VASS one can compute in an elementary time a finite family of
regular languages which separates its languages.

Proof. Let usfixad-VASSV = (£,Q,T,cy, F). Let us define the set of pairs of configurations
of V with disjoint languages D = {(c1,¢2) | L(c1) N L(ca) = 0} € Q x N? x Q x N?. One
can easily see that the set D is exactly the set of configurations with empty language in the
synchronised product of VASS V' with itself. Thus by Proposition 11 we can compute in
doubly-exponential time its representation as a finite union of down-atoms D = A;U...UA,.
We show now that for each i € [1,n] one can compute in elementary time a regular language
S; such that for all (c1,c2) € A; the language S; separates L(cp) and L(cz). This will
finish the proof showing that one of Sy,..., S, separates L(c;) and L(cz) whenever they are
disjoint.

Let A C Q x N? x Q x N be a down-atom. Therefore A = Dy x Dy where Dy = py(uyl)
and Dy = pa(ugl) for some uy,up € (NU{w})?. Let Ly = U cp, L(c) and Ly = U, p, L(c).
Languages L; and Lo are disjoint as w € Ly N Ls would imply w € L(c1) N L(cg) for some
c1 € Dy and ¢y € Dy. Now observe that Lq is not only an infinite union of VASS languages
but also a VASS language itself. Indeed, let Vi = (X, Q, Ty, cr, Fy) be the VASS V' where all
coordinates i € [1,d] such that u;[i] = w are ignored. Concretely,

(p, a,v1,q) € T if there exists (p,a,v,q) € T such that for every ¢ holds either v [i] = v][i]

or v1[i] = 0 and w1 [i]| = w,

(¢,v1) € Fy if there exists (¢,v) € F such that for every i holds either v1[i] = v[i] or

up[i] = w.

Then it is easy to observe that V; accepts exactly the language L;. Similarly one can define
VASS V5 accepting the language Lo. By Theorem 24 we can compute in elementary time
some regular separator S of L(V}) and L(V3). It is now easy to see that for any configurations
¢1 € Dy and ¢y € Dy languages L(cy) and L(cy) are separated by S. <

Now we are ready to use the notion of (M, h)-decoration of a VASS language. Let us recall
that a regular language L is recognised by a monoid M and homomorphism h : ¥* — M if
there is F C M such that L = h=1(F).

» Theorem 26. Let V be an unambiguous VASS over ¥ and F be a finite family of
regular languages separating languages of V. Suppose M is a monoid with homomorphism
h:3* — M recognising every language in F. Then the HVASS Viar ) is deterministic.

Proof. Let V = (%,Q,T,cy, F) and let c; = q7(vr). We aim to show that HVASS Vip ) =
(X, Q" T',c}, F') is deterministic, where ¥’ =X, x M and Q' = Q x (M U {L}). It is easy
to see from the definition of V(s ;) that for each (a,m) € ¥’ and each ¢ € @ the state (g, L)
has at most one outgoing transition over (a,m). Indeed, there is exactly one transition over
(e, m) outgoing from (g7, L) and no outgoing transitions in the other cases. Assume now
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towards a contradiction that V(s ) is not deterministic. Then there is some configuration
¢ = (g,m)(v) with (¢,m) € Q x M such that ¢; — ¢ for some word u over ¥’ and a letter
(a,m’) € ¥/ such that a transition from ¢ over (a,m’) leads to some two configurations
c1 = (q1,m')(v1) and ca = (g2, m')(v2). Recall that a transition over (a,m’) has to lead to
some state with the second component equal m’. As configurations with empty language
are not present in V(s ) we know that there exist words wy € L(c1) and wy € L(cz). Recall
that as ¢; = (g1, m')(v1) and ¢3 = (g2, m')(v2) we have h(w;) = m' = h(wy). We show now
that L(c;) and L(cg) are disjoint. Assume otherwise that there exists w € L(c1) N L(cz).
Then there are at least two accepting runs over the word « - (a,m’) - w in Viar,ny- This means
however that there are at least two accepting runs over the projection of u - (a,m’) - w in
V', which contradicts unambiguity of V. Thus L(c1) and L(cg) are disjoint and therefore
separable by some language from F. Recall that all the languages in F are recognisable
by (M, h) thus words from L(c;) should be mapped by the homomorphism h to different
elements of M than words from L(cz). However h(wy) = m’ for wy € L(cy) and h(wz) = m’
for wy € L(cg) which leads to the contradiction. <

Now we are ready to prove Theorem 2. Let Vi be a VASS and V5 be an unambiguous
VASS, both with labels from ¥. We first compute a finite family F separating languages of
V5 which can be performed in elementary time by Theorem 25 and then we compute a finite
monoid M together with a homomorphism A : ¥X* — M recognising all the languages from F.
By Proposition 23 we get that L(V1) C L(V2) if and only if Lz (Vi) € Liarn)(V2). We
now compute HVASSes Vi = Vi, ., and Vy = Vy,, . By Theorem 26 the HVASS V7 is
deterministic. Thus it remains to check whether the language of a HVASS V7 is included in
the language of a deterministic HVASS V3, which is in Ackermann due to Theorem 18.

» Remark 27. We remark that our technique can be applied not only to VASSes but also
in a more general setting of well-structured transition systems. In [9] it was shown that for
any well-structured transition systems fulfilling some mild conditions (finite branching is
enough) disjointness of two languages implies regular separability of these languages. We
claim that an analogue of our Theorem 25 can be obtained in that case as well. Assume
now that Wi, W, are two classes of finitely branching well-structured transition systems,
such that for any two systems Vi € Wy, Vo € W5 where V; is deterministic the language
inclusion problem is decidable. Then this problem is also likely to be decidable if we weaken
the condition of determinism to unambiguity. More concretely speaking this seems to be the
case if it is possible to perform the construction analogous to Theorem 14 in Ws, namely if
one can compute the system recognising the complement of deterministic language without
leaving the class Ws. We claim that an example of such a class Ws is the class of VASSes
with one reset. The emptiness problem for VASSes with one zero-test (and thus also for
VASSes with one reset) is decidable due to [30, 4]. Then following our techniques it seems
that one can show that inclusion of a VASS language in a language of an unambiguous VASS
with one reset is decidable.

5 Boundedly-ambiguous VASSes

In this section we aim to prove Theorem 3. It is an easy consequence of the following theorem.

» Theorem 28. For any k € N and a k-ambiguous VASS one can build in elementary time
a downward-VASS which recognises the complement of its language.

Let us show how Theorem 28 implies Theorem 3. Let Vi be a VASS and V5 be a k-
ambiguous VASS. By Theorem 28 one can compute in elementary time a downward-VASS
V4 such that L(Vy) = £*\ L(V3). By Lemma 13 one can construct in time polynomial wrt.
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the size of V1 and V3 an updown-VASS V such that L(V) = L(Vy) N L(Vy) = L(V1) \ L(V3).
By Corollary 8 emptiness of V' is decidable in Ackermann which in consequence proves
Theorem 3.

Thus the rest of this section focuses on the proof of Theorem 28.

Proof of Theorem 28. We prove now Theorem 28 using Lemmas 29 and 30 stated below.
Then in Sections D and D in the appendix we prove the formulated lemmas. Let V be a
k-ambiguous VASS over an alphabet . In the proof we construct a sequence of VASSes
VI V2, ...,V related in various ways to V with the property that V' is a downward-VASS
and L(V9) is exactly the complement of L(V). More concretely L(V?!) equals L(V), L(V?)
is a decoration of L(V'), L(V3) is the complement of L(V?), while V%, V° recognise more
sophisticated languages related to L(V3).

First due to Lemma 29 proved in Section D we construct a VASS V! which is language
equivalent to V' and additionally has the control automaton being k-ambiguous.

» Lemma 29. For each k-ambiguous VASS V one can construct in doubly-exponential time
a language equivalent VASS V' with the property that its control automaton is k-ambiguous.

Now our aim is to get a k-deterministic VASS V2 which is language equivalent to V1. We
are not able to achieve it literally, but using the notion of (M, h)-decoration from Section 4
we can compute a somehow connected k-deterministic VASS V2. We use the following lemma
which is proved in Section D.

» Lemma 30. Let A= (%,Q,T,q, F) be a k-ambiguous finite automaton for some k € N. Let
M be a finite monoid and h : ¥X* — M be a homomorphism recognising all the state languages
of the automaton A. Then the decoration A is a k-deterministic finite automaton.

Now we consider the control automaton A of VASS V!. We compute a monoid M
together with a homomorphism h : 3* — M which recognises all the state languages of A.
Then we construct the automaton Ay ). Note that the decoration of a VASS produces
an HVASS, but as we decorate an automaton i.e. 0-VASS we get a 0-HVASS which is
also a finite automaton. Based on Ay ) we construct a VASS V2. We add a vector to
every transition in A ) to produce a VASS that recognises the (M, h)-decoration of the
language of VASS V1. Precisely, if we have a transition ((p,m), (a,m’), (¢, m’)) in A
then it is created from the transition (p,a,q) in A, which originates from the transition
(p,a,v,q) in V1. Soin V2 we label ((p,m), (a,m’), (g, m’)) with v i.e. we have the transition
((p,m), (a,m’),v, (q,m")). Similarly, based on V!, we define initial and final configurations
in V2. It is easy to see that there is a bijection between accepting runs in V! and accepting
runs in V2. By Lemma 30 A(ar,ny is k-deterministic which immediately implies that V2is
k-deterministic as well.

Now by Theorem 19 we compute a downward-VASS V3 which recognises the complement
of L(V?). Notice that for each w € X* there is exactly one well-formed word in X, x M
which projects into w, namely the (M, h)-decoration of w. Therefore V3 accepts all the not
well-formed words and all the well-formed words which project into the complement of L(V).
By Proposition 22 the set of all well-formed words is recognised by some finite automaton B.
Computing a synchronised product of B and V3 one can obtain a downward-VASS V* which
recognises the intersection of languages L(B) and L(V3), namely all the well-formed words
which project into the complement of L(V). It is easy now to compute a downward-e-VASS
V" recognising the projection of L(V*) into the first component of the alphabet 3. x M.
We obtain V? just by ignoring the second component of the alphabet. Thus V° recognises
exactly the complement of L(V). However V° is not a downward-VASS as it contains a
few e-labelled transitions leaving the initial state. We aim to eliminate these e-labelled
transitions. Recall that in the construction of the (M, h)-decoration the (e, m)-labelled
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transitions leaving the initial configuration have effect 0. Thus it is easy to eliminate them
and obtain a downward-VASS V6 which recognises exactly the complement of L(V'), which
finishes the proof of Theorem 28. Let us remark here that even ignoring the last step of
elimination and obtaining a downward-e-VASS recognising the complement of L(V') would
be enough to prove Theorem 3 along the same lines as it is proved now. |

6  Future research

VASSes accepting by configuration. In our work we prove Theorem 28 stating that for a
k-ambiguous upward-VASS one can compute a downward-VASS recognising the complement
of its language. This theorem implies all our upper bound results, namely decidability
of language inclusion of an upward-VASS in a k-ambiguous upward-VASS and language
equivalence of k-ambiguous upward-VASSes. The most natural question which can be
asked in this context is whether Theorem 28 or some of its consequences generalises to
singleton-VASSes (so VASSes accepting by a single configuration) or more generally to
downward-VASSes. Our results about complementing deterministic VASSes apply also to
downward-VASSes. However generalising our results for nondeterministic (but k-ambiguous
or unambiguous) VASSes encounter essential barriers. Techniques from Section 4 do not
work as the regular-separability result from [9] applies only to upward-VASSes. Techniques
from Section 5 break as the proof of Lemma 29 essentially uses the fact that the acceptance
condition is upward-closed. Thus it seems that one would need to develop novel techniques to
handle the language equivalence problem for unambiguous VASSes accepting by configuration.

Weighted models. Efficient decidability procedures for language equivalence were obtained
for finite automata and for register automata with the use of weighted models [31, 3]. For
many kinds of systems one can naturally define weighted models by adding weights and
computing value of a word in the field (Q, +, ). Decidability of equivalence for weighted
models easily implies language equivalence for unambiguous models as accepted words always
have the output equal one while rejected words always have the output equal zero. Thus
one can pose a natural conjecture that decidability of language equivalence for unambiguous
models always comes as a byproduct of equivalence of the weighted model. Our results show
that this is however not always the case as VASSes are a counterexample to this conjecture.
In the case of upward-VASSes language equivalence for unambiguous models is decidable.
However equivalence for weighted VASSes is undecidable as it would imply decidability of
path equivalence (for each word both systems need to accept by the same number of accepting
runs) which is undecidable for VASSes [20].

Unambiguity and separability. Our result from Section 4 uses the notion of regular-
separability in order to obtain a result for unambiguous VASSes. This technique seems to
generalise for some other well-structured transition systems. It is natural to ask whether
there is some deeper connection between the notions of separability and unambiguity which
can be explored in future research.
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A Missing proofs from Section 2

We recall the statement of Proposition 6.

Proposition 6. Let U C N be an upward-closed set and D C N? be downward-closed set.
Then the size of representation of their complements U = N4\ U and D = N\ D is at most
exponential wrt. the sizes ||U|| and || D||, respectively and can be computed in exponential
time.

Proof of Proposition 6. Here we present only the proof for the complement of the upward-
closed set U as the case for downward-closed sets follows the same lines. Let U = u;TUusTU
...Uwuyp?T. Then

U=N\U=N\ (u1tUugtU...Uu,t)
= (NT\ w; 1) N (N upt) N ..o (NN wyt).

Thus in order to show that ||U|| is at most exponential wrt. ||U|| we need to face two
challenges. The first one is to show that representation of (N¢\ ut) for u € N is not too big
wrt. size of u and the second one is to show that the intersection of sets (N¢ \ u1) does not
introduce too big blowup.

Let us first focus on the first challenge. Let |u| be the biggest value that appear in u i.e.
|u| = max{uli] : i € [1,d]}. We claim that if v € N?\ ut and v[i] > |u| for i € [1,d] then
v+ e; € N9\ ut. Indeed, if v € N9\ ut then there is j € [1,d] such that v[j] < u[j]. Of
course i # j, s0 v + ¢; # u and thus v + e; € N?\ uf. But this means that if o € (NU {w})?
such that 9/ C N¢\ uf and 9 is maximal (namely its entries cannot be increased without
violating 9] C N9\ ut1) then 9 € ([0, |u|] U {w})¢. Thus there are only exponentially many
possibilities for © and the representation of N¢ \ u1 is at most exponentially bigger than the
representation of u.

Let us face now the second challenge. Let 91,92 € ([1,|u]] U {w})?. Observe that
v € 01) N ool if and only if v[i] < 01[i] and v[i] < 09[d] for all ¢ € [1,d]. But this means
that if & € (NU {w})? and 9] C 91 N 0] is maximal then & € ([0, |u|] U {w})?. Thus the
representation of N\ U is also only at most exponentially bigger than the representation
of U.

In order to compute the representation of U one can simply check for all & € ([0, |u|]u{w})?
whether 9 C N4\ U. <
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We recall the statement of Lemma 7.

Lemma 7. The emptiness problem for VASSes with the acceptance condition F' = ¢z (U x D)
where D is a down-atom and U is an up-atom is in Ackermann.

Proof of Lemma 7. We provide a polynomial reduction of the problem to the emptiness
problem in singleton-VASSes which is in Ackermann. Let V = (Q, T, ¢, qr(U x D)) be a
d-VASS with up-atom U C N and down-atom D C N? such that d; +dy = d. Let U = u?
for some u € N4 and let D = v] for some v € (NU {w})92. Let us assume wlog of generality
that dy = dy + dp such that for 7 € [1,dy] we have v[i] = w and for i € [dy + 1, d2] we have
v[i] € N. Let a d-VASS V' be the VASS V slightly modified in the following way. First we
add a new state ¢} and a transition (¢r,0¢, ¢}). Next, for each dimension i € [1,d;] we add
a loop in state ¢f (transition from ¢} to ¢}) with the effect —e;, namely the one decreasing
the dimension i, these are the dimensions corresponding to the up-atom U. Similarly for
each dimension i € [d; + 1,d; + dy] we add in ¢ a loop with the effect —e;, these are
the unbounded dimensions corresponding to the down-atom D. Finally for each dimension
i € [d1 +dy +1,d] we add in ¢} a loop with the effect e; (notice that this time we increase
the counter values), these are the bounded dimensions corresponding to the down-atom D.
Let the initial configuration of V' be ¢; (the same as in V) and the set of final configurations
F' of V' be the singleton set containing ¢} (u, (0%, v[dy + 1], ..., v[dy + dp])). Clearly V' is
a singleton-VASS, so the emptiness problem for V'’ is in Ackermann. It is easy to see that
the emptiness problem in V' and in V' are equivalent which finishes the proof. <

B Missing proofs from Section 3.1

We recall the statement of Lemma 12.

Lemma 12. For each d-dimensional singleton-VASS V' with final configuration being cp =
qr(0%) one can construct in polynomial time two deterministic (d + 1)-dimensional upward-
VASSes V; and V5 such that

LW) = L(V2) <= L(V) =0.

Proof of Lemma 12. For a given V = (Q, T, cr,cp) we construct V; = (X =T U {a},QU
{q}?}le U {t1}, C/qu/F‘(Od+1T))7 and Vo = (¥ =T U{a},QU {qu}vT/ U {ta}, Cllvq%‘(od+11\))‘
Notice, V7 and V5 are pretty similar to each other and also to V. Both V; and V5 have
the same states as V' plus one additional state ¢=. Notice that the alphabet of labels of
V1 and V5 is the set of transitions T of V' plus one additional letter a. For each transition
t = (p,v,q) € T of V we create a transition (p,t,v’,q) € T’ where

for each i € [1,d] we have v'[i] = v[i]; and

V[d+ 1] =v[l] 4+ ...+ v][d],
so v is identical as v on the first d dimensions and on the last (d + 1)-th dimension it keeps
the sum of all the others. Notice that transitions in 7" are used both in V; and in V5.

We also add one additional transition ¢; to V; and one t; to V5. To V5 we add a new
a-labelled transition from g to ¢ with the effect equal 09+ for the additional letter a. To V5
we also add an a-labelled transition between gp and g%, but with an effect equal (04, —1). This
—1 on the last coordinate is the only difference between V; and V5. The starting configuration
in both V4 and V, is ¢f = qi(x1, 2, . . . 24, Zle x;) where ¢f = qr(x1,22,...24). The set of
accepting configurations is the same in both V3 and Vs, namely it is ¢/ (09+11) . Notice that
both V7 and V5 are deterministic upward-VASSes, as required in the lemma statement.
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Now we aim to show that L(Vy) = L(V3) if and only if L(V) = (. First observe that
L(V1) D L(V,). Clearly if w € L(V3) then w = ua for some u € T*, where T is the set of
transitions of V. For any word ua € L(V2) we have

;= qr(v) == qp(v — eat1)
in V5. But, then we have also
¢; = qr(v) = qp(v)

in V1. Thus ua € L(V4).

Now we show that, if L(V) # 0, so ey — qr(0?) in V then L(V;) # L(Vz). Let
the run p of V be such that ¢; 25 ¢r(0?) and let u = trans(p) € T*. Then clearly
;% qr(09tY) & ¢ (09F1) and wa € L(V;). However ua € L(Vz) as the last coordinate on
the run of V5 over ua corresponding to p would go below zero and this is the only possible
run of V5 over ua due to determinism of V5.

It remains to show that if L(V) = (), so c; -4 qr(0%) in V, then L(V;) C L(Vz). Let
w € L(V;). Then w = ua for some u € T*. Let ¢; % ¢ in V; such that trans(p) = u. As
ua € L(V}) we know that ¢ = gr(v). However as c; —/ qr(09) in V we know that v # 09+1.
In particular v[d + 1] > 0. Therefore w = ua € L(V3) as the last transition over a may
decrease the (d + 1)-th coordinate and reach an accepting configuration. This finishes the
proof. |

C Missing proofs from Section 3.2

We recall the statement of Lemma 13.

Lemma 13. For a VASS V; and a downward-VASS V5 one can construct in polynomial
time an updown-VASS V such that L(V) = L(Vy) N L(V3).

Proof of Lemma 13. We construct V as the standard synchronous product of V7 and V5.
The set of accepting configurations in V' is also the product of accepting configurations in V3
and accepting configurations in Va, thus due to Proposition 5 a finite union of ¢(U x D) for
a state ¢ of V, an up-atom U and a down-atom D. |

We recall the statement of Theorem 14.

Theorem 14. For a deterministic VASS one can build in exponential time a downward-VASS
which recognises the complement of its language.

Proof of Theorem 14. Let V = (2,Q, T, cr, F) be a deterministic d-VASS. We aim at con-
structing a d-dimensional downward-VASS V’ such that L(V’) = L(V). Before constructing
V' let us observe that there are three possible scenarios for a word w to be not in L(V'). The
first scenario (1) is that the only run over w in V finishes in a non-accepting configuration.
Another possibility is that there is even no run over w. Namely for some prefix va of w
where v € ¥* and @ € ¥ we have ¢; — ¢ for some configuration ¢ but there is no transition
from c over the letter a as either (2) a possible transition over a would decrease some of the
counters below zero, (3) there is no such transition possible in V' in the state of c.

We are ready to describe VASS V' = (X,Q’,T", ¢}, F'). Roughly speaking it consists of
|T|+|X| + 1 copies of V. Concretely the set of states Q' is the set of pairs @ x (TUXU{-}).
Let ¢; = ¢qr(vr). Then let ¢ € Q' be defined as ¢; = (g7, —) and we define the initial
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configuration of V' as ¢} = ¢;(vr). The set of accepting configurations F = Fy U Fo U F3
is a union of three sets Fj;, each set F; for ¢ € {1,2,3} is responsible for accepting words
rejected by VASS V because of the scenario (i) described above. We successively describe
which transitions are added to 7" and which configurations are added to F’ in order to
appropriately handle various scenarios.

We first focus on words fulfilling the scenario (1). For states of a form (¢, —) the VASS
V' is just as V. Namely for each transition (p,a,v,q) € T we add (p’,a,v,q") to T' where
p = (p,—) and ¢’ = (¢,—). We also add to F’ the following set Fi = {(¢,—)(v) | ¢(v) € F}.
It is easy to see that words that fulfil scenario (1) above are accepted in V' by the use of
the set Fi. The size of the description of Fj is at most exponential wrt. the size of the
description of F' by Proposition 6.

Now we describe the second part of V’ which is responsible for words rejected by V
because of the scenario (2). The idea is that we guess when the run over w is finished. For
each transition t = (p,a,v,q) € T we add (p’,a,0%,¢’) to T' where p’ = (p, —) and ¢’ = (q,1).
The idea is that the run reaches the configuration in which the transition ¢ cannot be fired.
Now we have to check that our guess is correct. In the state (g,t) for ¢t € T no transition
changes the configuration. Namely for each ¢’ = (¢,t) € @ X T and each a € ¥ we add to T”
transition (¢’,a,0%,¢’). We add now to F’ the set I, = {(q,t)(v) | v + eff(t) & N?}. Notice
that Fy can be easily represented as a polynomial union of down-atoms. It is easy to see
that indeed V' accepts by F» exactly words w such that there is a run of V' over some prefix
v of w but reading the next letter would decrease one of the counters below zero.

The last part of V' is responsible for the words w rejected by V' because of the scenario
(3), namely w has a prefix va such that there is a run over v € ¥* in V but then in the
state of the reached configuration there is no transition over the letter a € 3. To accept
such words for each state p € Q) and letter a € ¥ such that there is no transition of a form
(p,a,v,q) €T for any v € N and ¢ € Q we add to T” transition ((p, —), a, 0%, (p,a)). In each
state p’ = (p,a) € Q x ¥ we have a transition (p’,b,0%,p’) for each b € ¥. We also add to F'
the set 3 = {(p,a)(v) | v € N? and there is no (p,a,u,q) € T for u € N? and ¢q € Q}. Size
of F3 is polynomial wrt. T

Summarising V’ with the accepting downward-closed set F' = F; U Fy U F3 indeed satisfies
L(V") = L(V'), which finishes the construction and the proof. <

We recall the statement of Lemma 16.

Lemma 16. For each HVASS one can compute in exponential time a language equivalent
e-VASS.

Proof of Lemma 16. Let V = (X,Q, T, q;(vr), F, H) be a d-HVASS with the set of holes
H. We aim at constructing a d-VASS V' = (3,Q’,T", ¢}, F') such that L(V) = L(V'). By
Proposition 6 we can compute in exponential time an upward-closed set of configurations
U= (Q xN%)\ H. In order to translate V into a d-VASS V' intuitively we need to check
that each configuration on the run is not in the set H. In order to do this we use the
representation of U as a finite union U = Uie[l,k] ¢i(u;1) for ¢; € Q and u; € N¢. Now for
each configuration ¢ on the run of V' the simulating VASS V' needs to check that ¢ belongs
to gi(u;T) for some ¢ € [1,k]. That is why in V” after every step simulating a transition of V'
we go into a testing gadget and after performing the test we are ready to simulate the next
step. For that purpose we define Q' = (Q x {0,1}) U {r1,...,rr}. The states in @ x {0}
are the ones before the test and the states in @ x {1} are the ones after the test. States
r1,...,7 are used to perform the test. The initial configuration ¢ is defined as (gr, 0)(vy)
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and set of final configurations is defined as F’' = {(¢,1)(v) | ¢(v) € F}. For each transition
(p,a,v,q) in T we add a corresponding transition ((p,1),a, v, (g,0)) to T". In each reachable
configuration (g,0)(v) the VASS V' nondeterministically guesses for which i € [1, k] holds
gi(u;) = ¢(v) (which guarantees that indeed g(v) € U). In order to implement it for each
q € Q and each i € [1, k] such that ¢ = state(r;) we add two transitions to 7”: the one from
(¢,0) to r; subtracting u;, namely ((¢,0),e, —u;,7;) and the one coming back and restoring
the counter values, namely (74, ¢, u;, (g,1)). It is easy to see that (¢,0)(v) — (¢, 1)(v) if and
only if ¢(v) € U, which finishes the proof. <

We recall the statement of Theorem 17.

Theorem 17. For a deterministic HVASS one can compute in exponential time a downward-
e-VASS which recognises the complement of its language.

Proof of Theorem 17. The proof of Theorem 17 is very similar to the proof of Theorem 14
so we only sketch the key differences. Let V be a deterministic HVASS and let H C Q x N? be
the set of its holes. Let U = (Q x N¢)\ H, by Proposition 6 we know that U = Uie[l’k} qi(u; 1)
for some states ¢; € Q and vectors u; € N, and additionally ||U|| is at most exponential wrt.
the size ||H]||.

The construction of V' recognising the complement of L(V') is almost the same as in the
proof of Theorem 14, we need to introduce only small changes. The biggest changes are in
the part of V' recognising words rejected by V because of scenario (1). We need to check
that after each transition the current configuration is in U (so it is not in any hole from H).
We perform it here in the same way as in the proof of Lemma 16. Namely we guess to which
gi(u;T) the current configuration belongs and check it by simple VASS modifications (for
details look to the proof of Lemma 16). The size of this part of V' can have a blowup of at
most size of U times, namely the size can be multiplied by some number, which is at most
exponential wrt. the size ||H]|.

In the part recognising words rejected by V' because of scenario (2), we need only to
adjust the accepting set F>. Indeed, we need to accept now if we are in a configuration
(p,t)(v) € Q x T such that v+t &€ N? or v+t € H (in contrast to only v + ¢ ¢ N in the
proof of Theorem 14). This change does not introduce any new superlinear blowup.

Finally the part recognising words rejected by V' because of scenario (3) does not need
adjusting at all. It is not hard to see that the presented construction indeed accepts the
complement of L(V') as before. The constructed downward-VASS V' is of at most exponential
size wrt. the size V as explained above, which finishes the proof. <

We recall the statement of Theorem 18.

Theorem 18. The inclusion problem of an HVASS language in a deterministic HVASS
language is in Ackermann.

Proof of Theorem 18. Let V4 = (3,Q1,Th,ct, Fi, H1) be a di-HVASS with holes H; C
Q1 x N4 and let Vo = (X, Qq, Tz, %, Fz, Hy) be a deterministic do-HVASS with holes
Hy C Q3 x N2, By Lemma 16 an e-VASS V] equivalent to V; can be computed in
exponential time. By Theorem 17 a downward-e-VASS V3 can be computed in exponential
time such that L(Vy) = ¥*\ L(V2). It is enough to check now whether L(V{) N L(Vy) = 0.
By Lemma 13 (extended to e-VASSes) one can compute an updown-e-VASS V such that
L(V) = L(V{) N L(V4). Finally by Corollary 8 (also extended to e-VASSes) the emptiness
problem for updown-e-VASSes is in Ackermann which finishes the proof. <
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We recall the statement of Theorem 19.

Theorem 19. For a k-deterministic d-VASS one can build in exponential time a (k - d)-
dimensional downward-VASS which recognises the complement of its language.

Proof of Theorem 19. Before starting the proof let us remark that it would seem natural
to first build a (k - d)-VASS equivalent to the input k-deterministic d-VASS and then apply
construction from the proof of Theorem 14 to recognise the its complement. However, it
is not clear how to construct a (k- d)-VASS equivalent to k-deterministic d-VASS, thus we
compute directly a VASS recognising the complement of the input VASS language.

Let V = (%,Q,T,cr, F) be a k-deterministic d-VASS. We aim to construct (k - d)-
dimensional downward-VASS V' = (3,Q’,T", ¢}, F') such that L(V') = £* \ L(V). Also in
this proof we strongly rely on the ideas introduced in the proof of Theorem 14. The idea
of the construction is that V' simulates k copies of V' which take care of different maximal
runs of V. Then the accepting condition F’ of V"’ verifies whether in all the copies there is a
reason that the simulated maximal runs do not accept.

Recall that for a run there are three scenarios in which it is not accepted: (1) it reaches
the end of the word, but the reached configuration is not accepted, (2) at some moment it
tries to decrease some counter below zero, and (3) at some moment there is no transition
available over the input letter. In the proof of Theorem 14 it was shown how a VASS can
handle all the three reasons. In short words: in case (1) it simulates the run till the end of
the word and then checks that the reached configuration is not accepting and in cases (2)
and (3) it guesses the moment in which there is no valid transition available and keeps this
configuration untouched till the end of the run when it checks by the accepting condition
that the guess was correct. We only sketch how the downward-VASS V' works without
stating explicitly its states and transitions. It starts in the configuration ¢} which consists
of k copies of ¢;. Then it simulates the run in all the copies in the same way till the first
moment when there is a choice of transition. Then we enforce that at least one copy follows
each choice, but we allow for more than one copy to follow the same choice. In the state
of V' we keep the information which copies are following the same maximal run and which
have already split. Each copy is exactly as in the proof of Theorem 14, it realises one of
the scenarios (1), (2) or (3). As we know that V' is k-deterministic we are sure that all the
possible runs of V' can be simulated by V' under the condition the V”’ correctly guesses which
copies should simulate which runs. If guesses of V/ are wrong and at some point it cannot
send to each branch a copy then the run of V' rejects. At the end of the run over the input
word w VASS V' checks using the accepting condition F’ that indeed all the copies have
simulated all the possible maximal runs and that all of them reject. It is easy to see that F’
is a downward-closed set, as roughly speaking it is a product of k£ downward-closed accepting
conditions, which finishes the proof. <

D Missing proofs from Section 5

The proofs from this section are available only in the arxiv version of this paper because of
the space limitation. Please check https://arxiv.org/pdf/2202.08033.pdf.
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