
Complexity of Coverability in Depth-Bounded
Processes
A. R. Balasubramanian #Ñ

Technische Universität München, Germany

Abstract
We consider the class of depth-bounded processes in π-calculus. These processes are the most
expressive fragment of π-calculus, for which verification problems are known to be decidable. The
decidability of the coverability problem for this class has been achieved by means of well-quasi
orders. (Meyer, IFIP TCS 2008; Wies, Zufferey and Henzinger, FoSSaCS 2010). However, the precise
complexity of this problem has not been known so far, with only a known EXPSPACE-lower bound.

In this paper, we prove that coverability for depth-bounded processes is Fϵ0 -complete, where Fϵ0

is a class in the fast-growing hierarchy of complexity classes. This solves an open problem mentioned
by Haase, Schmitz, and Schnoebelen (LMCS, Vol 10, Issue 4) and also addresses a question raised
by Wies, Zufferey and Henzinger (FoSSaCS 2010).

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Distributed computing models

Keywords and phrases π-calculus, Depth-bounded processes, Fast-growing complexity classes

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2022.17

Funding A. R. Balasubramanian: Supported by funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 787367 (PaVeS).

Acknowledgements I am grateful to the reviewers and Prof. Javier Esparza for their useful comments
and suggestions.

1 Introduction

The π-calculus [21, 22] is a well-known formalism for describing concurrent message-passing
systems admitting unbounded process creation and mobility of agents. Intuitively speaking,
a configuration of such a system is a graph in which each vertex is a process labelled by
its current state and there is an edge between two processes if they share a channel using
which they can pass messages. The flexibility of π-calculus lies in the fact that processes
can transmit the names of channels using channels themselves, allowing reconfiguration of
channels using process definitions itself. Due to its immense expressive power, all interesting
verification problems quickly become undecidable for π-calculus processes.

Consequently, research on π-calculus has been focused on finding fragments for which
certain problems are decidable. The most expressive fragment of π-calculus for which some
verification problems still remain decidable is the class of depth-bounded processes [20].
Intuitively, depth-bounded processes are those in which the length of simple paths in the
set of reachable configurations is bounded by a constant. It is known that depth-bounded
processes can be viewed as well-structured transition systems (WSTS) [20]. This implies
that the coverability problem for such systems is decidable [20, 27]. Intuitively, coverability
consists of deciding if a given system can reach a configuration where some process is in an
error state.

However, despite the positive decidability results known regarding this problem, the
exact complexity of this problem has remained open so far. To the best of our knowledge,
only an EXPSPACE-hardness result is known for this problem [27]. In this paper, we

© A. R. Balasubramanian;
licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Sławomir Lasota, and Anca Muscholl; Article No. 17; pp. 17:1–17:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bala.ayikudi@tum.de
https://arbalan96.github.io/
https://orcid.org/0000-0002-7258-5445
https://doi.org/10.4230/LIPIcs.CONCUR.2022.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Complexity of Coverability in Depth-Bounded Processes

provide complexity-theoretic completeness results for this problem. More specifically, we
prove that the coverability problem for depth-bounded processes is Fϵ0-complete, where
Fϵ0 is a complexity class in the fast-growing hierarchy of complexity classes [24]. This is a
hierarchy of complexity classes which allows for a finer classification of problems that do not
admit any elementary-time algorithms, i.e., problems which do not have algorithms whose
running times can be upper bounded by a fixed tower of exponentials in the input size. In
particular, our result proves that the coverability problem for depth-bounded processes is not
primitive-recursive and indeed is harder than even problems complete for the Ackermann
complexity class.

The complexity-theoretic classification of problems which are non-elementary has attracted
a lot of attention in the recent years, with various techniques developed for proving both
lower and upper bounds [13, 6, 25, 24, 1, 23, 8, 19, 7, 18]. While these results are obviously
negative from a tractability perspective, understanding the precise complexity of a problem
may help us to solve it in practice by reducing it to other well-studied problems for which
tools and heuristics have been developed, like the satisfiability problem for weak S1S or
the Petri net reachability problem [3, 12, 15, 4, 5, 16, 10]. The fast-growing hierarchy is of
great assistance in this task. Adding new complete problems for classes in this hierarchy can
help us prove hardness results for other problems in the future, without having to resort to
coming up with reductions from scratch, i.e., from Turing machines or counter machines.

Our result significantly improves upon the existing lower bound of EXPSPACE-hardness,
which is inherited from the coverability problem for Petri nets. Further, it settles a conjecture
raised by Hasse, Schmitz and Schnoebelen (Section 8.3 of [17]) and also addresses a question
raised by Wies, Zufferey and Henzinger (Section 5 of [27]).1 To prove the lower bound, we
introduce a new model of computation called nested counter systems with levels, which (in a
manner) simplifies the already existing model of nested counter systems [8], while preserving
the hardness of that model.

The techniques used in this paper are similar to the ones presented in [2], in order to prove
Fϵ0 -completeness for parameterized coverability of bounded-depth broadcast networks. While
some of the ideas between these two papers are similar, there are some differences between
the models considered in these two papers. First, as the name suggests, broadcast networks
allow for a process to broadcast to its set of neighbors, whereas processes in π-calculus
interact in a manner akin to rendez-vous communication. One might expect that there is a
drop in complexity when the communication mechanism goes from broadcast to rendez-vous.
For instance, as mentioned in [11], coverability for networks with (unrestricted) broadcast
communication is Ackermann-complete, while the same problem for rendez-vous networks
is (only) EXPSPACE-complete. Our result suggests that this drop in complexity need
not always be the case. Further, in broadcast networks, there is no process creation nor
dynamic reconfiguration of channels, whereas π-calculus has both. Finally, for the lower
bound construction in this paper, we also need to prove depth-boundedness of any reachable
configuration in the process constructed for the reduction, whereas no such property needs
to be proven for the lower bound construction for broadcast networks. We also believe that
the newly introduced model of nested counter systems with levels (whose hardness we prove
by using ideas from [2]), makes the proof of the lower bound for π-calculus cleaner when
compared with giving a direct reduction from nested counter systems as was done in [2].

1 The version of the problem that the authors of [27] consider does not assume that a bound on the depth
of the process is given as part of the input, whereas in our setting we take this to be the case, in order
to prove the upper bound. However, our lower bound result does not require this assumption.

A. R. Balasubramanian 17:3

2 Preliminaries

We first present the syntax and the semantics of the version of π-calculus that we will use .
The definitions here are taken from the ones given in [27].

2.1 The π-calculus
We assume that there is a countable collection of names (denoted by x, y, . . .) and a countable
collection of process identifiers (denoted by A, B, . . .). Each name and identifier has an
associated arity in N. We use boldface letters like x, y to denote (possibly empty) vectors over
names and denote substitution of names by [x/y], i.e., if x = x1, . . . , xn and y = y1, . . . , yn,
then [x/y] denotes a mapping in which each yi is mapped to xi and every other name is
mapped to itself.

A process term (or simply a term) P is either the unit process 0, or a parameterized process
identifier A(x), or any term obtained by the standard operations of parallel composition
P1 | P2, external choice π1 · P1 + π2 · P2 and name restriction (νx)P1. Here P1 and P2 are
themselves terms and π1 and π2 are prefixes which can either be an input prefix x(y) or an
output prefix x̄(y) or the empty string. All parameter vectors occuring in a parameterized
process identifier or a prefix must respect the arity of the names and identifiers. A thread
is a term of the form A(x). We use Π and Σ to denote (indexed) parallel composition and
external choice. We further use (νx) to denote (νx1)(νx2) . . . (νxn) where x = x1, . . . , xn.
The application of a substitution of names σ to a term P , denoted by σ(P), is defined in the
usual way.

An occurrence of a name x in a term P is called free if it is not below a (νx) or an input
prefix y(x). We let fn(P) denote the set of free names of P . A bound name of P is a name
of P which is not free. We say that P is closed if fn(P) = ∅. We use the usual structural
congruence relation P ≡ Q on process terms, i.e., P ≡ Q if P is syntactically equal to Q

upto renaming and reordering of bound names, associativity and commutativity of parallel
composition and external choice, elimination of units ((P | 0) ≡ P, (νx)0 ≡ 0) and scope
extrusion ((νx)(P | Q) ≡ (νx)P | Q if x /∈ fn(Q)).

A configuration is a closed term of the form (νx) (Πi∈IAi(xi)). A process P is a pair
(I, E) where I is an initial configuration and E is a set of parametric equations of the form
A(x) = P where A is an identifier and P is a term such that 1) every identifier in P is
defined by exactly one equation in E and 2) if A(x) = P is an equation, then fn(P) ⊆ {x}.
We assume that all the equations are given in the following form:

A(x) =
∑
i∈I

πi.(νxi)

∏
j∈Ji

Aj(xj)


Operational semantics

Let P = (I, E) be a process. We define a transition relation on the set of configurations using
E as follows. Let P and Q be configurations. Then P −→ Q iff the following conditions are
satisfied:

P ≡ (νu)(A(v) | B(w) | P ′),
The defining equation of A in E is of the form A(x) = x(x′).(νx′′)(M) + M ′,
The defining equation of B in E is of the form B(y) = ȳ(y′).(νy′′)(N) + N ′,
σ = [v/x, w/y, w′/x′, zA/x′′, zB/y′′] where zA, zB are fresh names and w′ is the set of
names assigned to y′ under the mapping [w/y].
σ(x) = σ(y) and
Q ≡ (νu, zA, zB)(σ(M) | σ(N) | P ′)

CONCUR 2022

17:4 Complexity of Coverability in Depth-Bounded Processes

We denote such a step by P
A(v),σ(x),B(w)−−−−−−−−−−→ Q or simply by P −→ Q. We can then define

the reachability relation ∗−→ as the reflexive and transitive closure of −→. We say that a
configuration P is reachable in P iff I

∗−→ P . We further say that P is coverable if P ≡ (νx)P ′

and there exists Q ≡ (νx)(P ′ | R) such that I
∗−→ Q. The coverability problem is to decide if

a given configuration P is coverable in a given process P.

Depth-bounded processes

We now define the class of depth-bounded processes. The nesting of restrictions nest of a
term P is defined inductively as follows: nest(0) = nest(A(x)) = nest(π1 · P1 + π2 · P2) = 0,
nest((νx)P) = 1 + nest(P) and nest(P1 | P2) = max{nest(P1), nest(P2)}. The depth of a
term P is the minimal nesting of restrictions of terms in the congruence class of P :

depth(P) := min{nest(Q) : Q ≡ P}

▶ Definition 1. A set of configurations C is called k-depth-bounded if the depth of all
configurations in C is at most k. C is called depth-bounded if there is some k such that it is
k-depth-bounded. A process P is called (k-)depth-bounded if its set of reachable configurations
is (k-)depth-bounded.

▶ Example 2. The following example intuitively demonstrates a system in which there is
one “level 0” thread which can spawn “level 1” threads by using a “New1” thread. Then,
each level 1 thread can itself spawn “level 2” threads by using their own “New2” threads.

Level0(x) = x̄().Level0(x) New1(x) = x().((νy)(New1(x) | Level1(x, y) | New2(y)))

Level1(x, y) = ȳ().Level1(x, y) New2(y) = y().((νz)(New2(y) | Level2(y, z) | New3(z)))

Level2(y, z) = z̄().Level2(y, z) New3(z) = z().New3(z)

Suppose we set I = (νx)(Level0(x) | New1(x)). Then the following is a valid run:

I −→ (νx)(Level0(x) | New1(x) | (νy)(Level1(x, y) | New2(y)))
−→ (νx)(Level0(x) | New1(x) | (νy)(Level1(x, y) | New2(y) | (νz)(Level2(y, z) | New3(z))))

We note that the depth of the last configuration in this run is 3. Indeed, we can show
that the depth of any reachable configuration from I is at most 3. Later on, we will see that
some of the ideas behind this example are relevant to our lower bound construction.

Our main theorem of the paper is that,

▶ Theorem 3. The coverability problem for depth-bounded processes is Fϵ0-complete.

Here, we assume that the input consists of a process P and a number k such that P
is k-depth-bounded. Further, Fϵ0 is a complexity class in the fast-growing hierarchy of
complexity classes [24]. Due to lack of space, we do not define it here. The lower bound
behind this theorem is accomplished by giving a log-space reduction from a Fϵ0 -hard problem.
The upper bound is obtained by using results on the length of controlled bad sequences over
a suitable well-quasi ordering.

We first explain the proof of the lower bound. To do this, we first introduce a model
called nested counter systems with levels (NCSL) and show that the coverability problem
for this model is Fϵ0-hard. We then give a reduction from this problem to the coverability
problem for depth-bounded processes, thereby proving the lower bound of Theorem 3.

A. R. Balasubramanian 17:5

3 Nested counter systems with levels (NCSL)

We now introduce a new model of computation called nested counter systems with levels
(NCSL) and prove Fϵ0-hardness of coverability for this model. NCSL are closely related to
the so-called nested counter systems (NCS) [8]. Indeed, in Section 4, we will recall NCS and
prove the hardness result for NCSL by giving a reduction from the coverability problem for
NCS.

Before describing NCSL in a formal manner, we give some intuition. A k-NCSL is
a generalisation of a usual counter system with higher-order counters. Intuitively, a 1-
dimensional counter is a usual counter which can add or subtract 1. A 2-dimensional counter
can add or subtract 1-dimensional counters, a 3-dimensional counter can add or subtract
2-dimensional counters and so on. A k-NCSL can produce up to k-dimensional counters
and then manipulate these counters using “local” rules, i.e., rules which update at most 2
counters at a time. Later on, we will consider the NCS model [8], which allows to update
mutliple counters in a single step.

Formally, a k-nested counter system with levels (k-NCSL) is a tuple N =
(Q, δ0, . . . , δk−1, δk) where Q is a finite set of states and each δl is a set of level-l rules
such that δl ⊆

⋃
1≤i≤j≤2(Qi × Qj). We further enforce that if l = k then δl ⊆ Q × Q. The

set CN of configurations of N is defined to be the set of all labelled rooted trees of height at
most k, with labels from the set Q.

The operational semantics of N is defined in terms of the following transition relation
→⊆ CN × CN on configurations: Let r := ((q0, . . . , qi), (q′

0, . . . , q′
j)) ∈ δl be a level-l rule with

l ≤ k and 0 ≤ i ≤ j ≤ 1. We say that a configuration C can move to the configuration C ′

using the rule r (denoted by C
r−→ C ′) if there is a node v0 at depth l in C with label q0 and

the following holds.
Creation. Suppose r = ((q0), (q′

0, q′
1)). Then C ′ is obtained from C by changing the

label of v0 to q′
0, creating a new vertex v1 with label q′

1 and adding it as child to v0.
1-Preservation. Suppose r = ((q0), (q′

0)). Then C ′ is obtained from C by changing
the label of v0 to q′

0.
2-Preservation. Suppose r = ((q0, q1), (q′

0, q′
1)). Then there is a child v1 of v0 in C

with label q1 and C ′ is obtained from C by changing the labels of v0 and v1 to q′
0 and q′

1
respectively.

▶ Example 4. Let us consider the 2-NCSL N given by the states Q = {pi, p′
i, qi, q′

i : 0 ≤ i ≤ 4}
and consisting of the rules r0 ∈ δ0, r1 ∈ δ1, r2 ∈ δ2 where r0 = ((q0, q1), (q′

0, q′
1)), r1 =

((p1), (p′
1, p2)), r2 = ((p2), (p′

2)). In Figure 1, we illustrate the application of these rules to a
configuration of N .

q0

q1 p1

r0

q′
0

q′
1 p1

r1

q′
0

q′
1 p′

1

p2

r2

q′
0

q′
1 p′

1

p′
2

Figure 1 Application of the rules r0, r1 and r2 to a configuration of N , which is described in
Example 4.

CONCUR 2022

17:6 Complexity of Coverability in Depth-Bounded Processes

We say that C −→ C ′ if C
r−→ C ′ for some rule r. We can then define the reachability

relation ∗−→ in a standard manner. Given two states qin, qf ∈ Q, we say that qin can cover qf

if the (unique) configuration consisting of the single root vertex labelled with qin (also called
the initial configuration of N) can reach some configuration where the root is labelled by qf .
The coverability problem for an NCSL is then the following: Given an NCSL N and two
states qin, qf , can qin cover qf ? We prove that

▶ Theorem 5. The coverability problem for NCSL is Fϵ0-hard, even when restricted to NCSL
which only have creation and 2-preservation rules.

The proof of Theorem 5 is deferred to Section 4. We shall assume this theorem and first
prove the main result of this paper (Theorem 3), i.e., that coverability for depth-bounded
π-calculus processes is Fϵ0 -hard.

3.1 Hardness of coverability for depth-bounded π-calculus processes
Throughout this subsection, we let N = (Q, δ0, . . . , δk−1, δk) be a fixed k-NCSL which only
has creation and 2-preservation rules. Note that since there are no 1-preservation rules, by
definition of a k-NCSL, δk is empty and so we will ignore δk everywhere in this section. Let
qin and qf be two fixed states of N . We will now construct a depth-bounded process P and
a configuration C of P such that C can be covered in P iff qf can be covered from qin in N .

Process identifiers, names and the initial configuration
To construct P, we have to define an initial configuration and a set of parametric equations.
We begin by specifying the set of names and the process identifiers that we shall use in
the equations. Based on these names and identifiers, we define the initial configuration
and also introduce an injective mapping B from the set of configurations of N to the set of
configurations of P. This map will be useful to prove the correctness of our reduction.

Process identifiers and names. For each 1 ≤ i ≤ k, we will have a process identifier start[i].
For each 0 ≤ i ≤ k and each state q of N , we will have an identifier q[i]. Notice that each
process identifier is of the form a[b] where a ∈ Q ∪ {start} and 0 ≤ b ≤ k. The first part “a”
will be called the base of the identifier and the second part “b” will be called the grade of the
identifier. The arities of the identifiers are as follows: The arity of each start[i] will be |δi−1|.
For every state q of N , the arity of q[0] will be |δ0|, the arity of q[k] will be |δk−1| and the
arity of every other q[i] will be |δi−1| + |δi|.

The set of names that we will be using in the equations will be the set of rules of N ,
i.e., δ0 ∪ δ1 ∪ · · · ∪ δk−1. For each δi, we let ni denote some fixed vector comprising all the
names from δi. We also assume that there is another countably infinite set of names needed
to describe the configurations of P. We note that this latter set is not part of the input.

A mapping. We now introduce an injective map from the set of configurations of N to
the set of configurations of P. Let C be a configuration of the NCSL N . To C, we assign
a unique configuration of P (denoted by B(C)) as follows: Let the set of vertices of C be
V and let the set of internal vertices of C (the root and the other non-leaf vertices) be IV .
B(C) is then defined as the configuration

(νz) (Πv∈V Av(xv, yv) | Πv∈IV Bv(yv))

where {z} = ∪v∈V {xv, yv} and for each v,

A. R. Balasubramanian 17:7

{xv} ∩ {yv} = ∅,
If the label of v in C is q and v is at depth l, then Av = q[l] and Bv = start[l + 1],
If v is the root, then xv is the empty vector. If v is a leaf, then yv is the empty vector.
Otherwise, if v is at depth l, then xv is of size |δl−1| and yv is of size |δl|.
For any v′, if v′ is a child of v, then xv′ = yv and {yv′} ∩ {xv} = ∅; if v′ is a sibiling of v,
then xv′ = xv and {yv′} ∩ {yv} = ∅; otherwise, {xv, yv} ∩ {xv′ , yv′} = ∅.

To give an intuition behind this mapping, let us look at B(C) from the perspective of
graphs. We construct a graph where there is a vertex for each Av(xv, yv) and each Bv(yv)
and we connect two such vertices by an edge if they share at least one free name and the
corresponding identifiers have different grades. By the requirements given above, this would
imply that the graph that we get is a tree which has a “copy” of C as a subgraph, along
with a new leaf vertex added to every internal vertex of C. Ignoring the new leaf vertices for
now, this means that B(C) can be thought of as a “representation” of C in the process P.
The parametric equations that we shall construct will make sure that if B(C) can move to a
new configuration P , then P will be a representation of C ′ for some C ′ such that C −→ C ′ in
the NCSL N .

We now have the following lemma which proves depth-boundedness of any configuration
of the form B(C). The intuition behind this lemma is that the “graph” of B(C) contains a
copy of C as a subgraph along with some other additional leaf vertices. Hence, since the
depth of C is bounded by k, we can expect that the depth of B(C) is also bounded.

▶ Lemma 6 (Depth-boundedness). For any configuration C, the depth of B(C) is at most∑k−1
l=0 |δl|.

Proof. Let V and IV be the set of vertices and internal vertices of C respectively. For any
vertex n, let Cn be the (labelled) subtree of C rooted at n and let Vn and IVn be the set of
vertices and internal vertices of Cn respectively.

We know that B(C) is of the form (νz) (Πv∈V Av(xv, yv) | Πv∈IV Bv(yv)). Let B(Cn)
be the sub-process term of B(C) given by Πv∈VnAv(xv, yv) | Πv∈IVnBv(yv) and let {zn} =
∪v∈Vn{xv, yv}.

By induction on the height h of the vertex n in the tree C, we will now show that the
depth of (νzn) B(Cn) is at most

∑k−1
l=max{k−1−h,0} |δl|. For the base case, when n is a leaf

and Cn is a tree with a single node, we have that (νzn) B(Cn) ≡ (νxn) q[k](xn) for some q

and some vector xn of size |δk−1|. This shows that the claim is true for the base case.
For the induction step, let Ch(n) be the children of n. By the requirements

imposed upon B(C), we can use the scope extrusion rule to write (νzn) B(Cn) as
(νxn, yn) (An(xn, yn) | Bn(yn) |
Πv∈Ch(n)(ν(zv \ yn)) B(Cv)). By induction hypothesis, we have that the depth
of each (νzv) B(Cv)) is

∑k−1
l=k−h |δl|. This then implies that the depth of

(νxn, yn) (An(xn, yn) | Bn(yn) |
Πv∈Ch(n)(ν(zv \ yn)) B(Cv)) is at most

∑k−1
l=k−1−h |δl| if n is not the root. If n is the root,

then the depth becomes at most
∑k−1

l=0 |δl| because xn = ∅. Hence, the induction step is
complete.

Since B(C) ≡ (νzn) B(Cn) where n is the root, it follows that the depth of B(C) is at
most

∑k−1
l=0 |δl|. ◀

Initial configuration. Recall that for each i ∈ {0, . . . , k − 1}, we let ni denote some fixed
vector comprising all the names from δi. We then take the initial configuration of P to be
(νn0)(qin[0](n0) | start[1](n0)). Note that the initial configuration of P is the image of the
initial configuration of N under the B mapping.

CONCUR 2022

17:8 Complexity of Coverability in Depth-Bounded Processes

Parametric equations

Before we describe the parametric equations, we set up some notation. Let r =
((q0, . . . , qi), (q′

0,

. . . , q′
j)) be a rule of the NCSL N . By definition of creation and 2-preservation rules, it has

to be the case that i ≤ 1 and j = 1. In the sequel, for the sake of uniformity across all rules,
we adopt the following nomenclature: If i = 0, we let q1 = start. In this way, we can always
associate a (unique) tuple ((q0, q1), (q′

0, q′
1)) with any rule r.

Let r = ((p, q), (p′, q′)) be a rule of N . We say that the tuple (p, q) (resp. (p′, q′)) is the
precondition (resp. postcondition) of r and we let prer

fi := p, prer
se := q, postr

fi := p′ and
postr

se := q′.
We will set up the parametric equations in such a way so that C −→ C ′ is a step in N iff

B(C) −→ B(C ′). Intuitively this is accomplished by ensuring that if r = ((p, q), (p′, q′)) ∈ δl is
a rule of N , then a thread with identifier p[l] can output along a name and go to p′[l] and a
thread with identifier q[l + 1] can receive along the same name and go to q′[l + 1].

Equations for identifiers of grade 0. For any q ∈ Q, the equation for q[0] is,

q[0](n0) :=
∑

r∈δ0, prer
fi=q

r(). postr
fi[0](n0)

Intuitively, this equation corresponds to a thread with identifier q[0] trying to execute
some rule r ∈ δ0 for which q = prer

fi and then becoming postr
fi[0].

Equations for identifiers of grade 1 ≤ i ≤ k − 1. Recall that the arity of any such
identifier is |δi−1| + |δi|, except for identifiers with base start, for which it is |δi−1|.

For any q ∈ Q, we have

q[i](ni−1, ni) :=
∑

r∈δi, prer
fi=q

r(). postr
fi[i](ni−1, ni) +

∑
r∈δi−1, prer

se=q

r(). postr
se[i](ni−1, ni)

Intuitively, the first summand of the equation corresponds to to a thread with identifier
q[i] trying to execute some rule r ∈ δi for which q = prer

fi and then becoming postr
fi[i].

The second summand corresponds to a thread with identifier q[i] trying to execute some
rule r ∈ δi−1 for which q = prer

se and then becoming postr
se[i].

For the start base, we have

start[i](ni−1) :=
∑

r∈δi−1, prer
se=start

r().

(
(νni) start[i](ni−1) | postr

se[i](ni−1, ni) | start[i+1](ni)

)

Intuitively, this equation is responsible for spawning new threads of grade i with base
in Q, when an appropriate output action is taken by some thread of grade i − 1 with
base in Q. First, if a thread with identifier start[i] receives a message along some channel
corresponding to some rule r ∈ δi−1 with prer

se = start, then a fresh set of names (denoted
by ni) are created. After that, the thread retains its identifier and two new threads are
spawned, postr

se[i](ni−1, ni) and start[i + 1](ni). We note that these equations have a
similar flavor to that of the equations for New1 and New2 given in Example 2.

A. R. Balasubramanian 17:9

Equations for identifiers of grade k. Recall that the arity of any identifier with grade k is
|δk−1|.

For any q ∈ Q, we have

q[k](nk−1) :=
∑

r∈δk−1, prer
se=q

r(). postr
se[k](nk−1)

For the start base, we have

start[k](nk−1) :=
∑

r∈δk−1, prer
se=start

r(). (postr
se[k](nk−1) | start[k](nk−1))

The intuitions behind these equations are the same as the one for the previous case.

3.2 Proof of correctness
We now formally show the proof of correctness of our reduction. We begin with a lemma
which shows that the constructed process P can simulate the NCSL N .

▶ Lemma 7 (P simulates N). Suppose C −→ C ′ is a step in N . Then B(C) −→ B(C ′).

Proof. Let r = ((p, q), (p′, q′)) ∈ δl for some 0 ≤ l ≤ k − 1 such that C
r−→ C ′. Let V be the

set of vertices of C and let IV be the set of internal vertices of C. This means that there is
a vertex n in C at depth l such that the label of n in C is p.

Let B(C) ≡ (νz) (Πv∈V Av(xv, yv) | Πv∈IV Bv(yv)). By definition of the map B, it has to
be the case that An = p[l]. We have two cases:

Suppose q ̸= start. Then there has to be a child n′ of n in C such that its label in C is q.
Hence, An′ = q[l + 1]. Further, yn = xn′ . By construction of the parametric equations,
this means that B(C) can reach P where

P ≡ (νz) (Πv∈V \{n,n′}Av(xv, yv) | p′[l](xn, yn) | q′[l + 1](xn′ , yn′) | Πv∈IV Bv(yv))

It is then easy to see that P ≡ B(C ′).
Suppose q = start. Then Bn(yn) = start[l + 1](yn). By construction of the parametric
equations, this means that B(C) can reach P given by

P ≡ (νz, z′) (Πv∈V \{n}Av(xv, yv) | p′[l](xn, yn) | Πv∈IV Bv(yv) | q′[l+1](yn, z′) | start[l+2](z′))

where the last term start[l + 2](z′) is not present if l = k − 1. It is then easy to see that
P ≡ B(C ′). ◀

Next we show that N can also simulate P.

▶ Lemma 8 (N simulates P). Suppose B(C) −→ P . Then there exists a configuration C ′ of
N such that C −→ C ′ and P ≡ B(C ′).

Proof. Let V be the vertices of C and let IV be the set of internal vertices of C. Let
B(C) ≡ (νz) (Πv∈V Av(xv, yv) | Πv∈IV Bv(yv)) and let B(C) Tv(wv),c,Tv′ (wv′)−−−−−−−−−−−−→ P .

By construction of the parametric equations, it must be the case that Tv(wv) = An(xn, yn)
for some node n and c must belong to {yn}. Let An = p[l]. Since c ∈ {yn}, by definition
of B(C), c can only be shared among the free names of the threads in {An′(xn′ , yn′) :
n′ is a child of n} ∪ {Bn(yn)}. We now consider two cases:

CONCUR 2022

17:10 Complexity of Coverability in Depth-Bounded Processes

Suppose Tv′(wv′) = An′(xn′ , yn′) for some n′ which is a child of n. Let An′ = q[l + 1].
Since we have B(C) Tv(wv),c,Tv′ (wv′)−−−−−−−−−−−−→ P , by construction of the equations it has to be the
case that there is a rule r ∈ δl of N such that prer

fi = p, prer
se = q and

P ≡ (νz) (Πv∈V \{n,n′}Av(xv, yv) | p′[l](xn, yn) | q′[l + 1](xn′ , yn′) | Πv∈IV Bv(yv))

where p′ = postr
fi and q′ = postr

se respectively. Since An = p[l] and An′ = q[l + 1], it
must be the case that the depth of n in C is l and the labels of n and n′ in C are p and q

respectively. It follows that there exists C ′ such that C
r−→ C ′. It is then easy to verify

that B(C ′) ≡ P .
Suppose Tv′(wv′) = Bn(yn). We know that Bn = start[l + 1]. Since it is the case that
B(C) Tv(wv),c,Tv′ (wv′)−−−−−−−−−−−−→ P , by construction of the parametric equations it must be that
there is a rule r ∈ δl of N such that prer

fi = p, prer
se = start and

P ≡ (νz, z′) (Πv∈V \{n}Av(xv, yv) | p′[l](xn, yn) | Πv∈IV Bv(yv) | q′[l+1](yn, z′) | start[l+2](z′))

where the last term start[l + 2](z′) is not present if l = k − 1 and p′ = postr
fi, q′ = postr

se
respectively. Since An = p[l], it must be the case that the depth of n in C is l and the
label of n in C is p. It follows then that there exists C ′ such that C

r−→ C ′. It is then easy
to verify that B(C ′) ≡ P . ◀

Note that the initial configuration I of P is simply the image of the initial configuration
of N under the map B. Hence, using Lemmas 6 and 8, we can conclude that

▶ Corollary 9. The process P is K-depth-bounded where K =
∑k−1

l=0 |δl|.

We then get the following theorem, whose proof follows in a straightforward manner by
combining Lemmas 7 and 8.

▶ Theorem 10. C
∗−→ C ′ is a run in N iff B(C) ∗−→ B(C ′) is a run in the process P.

Consequently qin can cover qf in N iff (νn0) (qf [0](n0)) can be covered from the initial
configuration I of P.

Hence, we have

▶ Corollary 11. Coverability of depth-bounded processes is Fϵ0-hard.

4 Nested counter systems (NCS)

We now prove Theorem 5, by giving a reduction from the coverability problem for nested
counter systems (NCS) which is known to be Fϵ0 -hard. We first recall the definition of NCS,
which we present in a way that is akin to [2].

A k-nested counter system (k-NCS) is a tuple N = (Q, δ) where Q is a finite set of states
and δ ⊆

⋃
1≤i,j≤k+1(Qi × Qj) is a set of rules. The set CN of configurations of N is defined

to be the set of all labelled rooted trees of height atmost k, with labels from the set Q.
The operational semantics of N is defined in terms of the following transition relation

→⊆ CN × CN on configurations: Let r := ((q0, . . . , qi), (q′
0, . . . , q′

j)) ∈ δ be a rule with
i ≤ j ≤ k. We say that a configuration C can move to the configuration C ′ using the rule r

(denoted by C
r−→ C ′), if there is a path v0, v1 . . . , vi in C starting at the root such that for

every 0 ≤ l ≤ i, the label of vl is ql and, C ′ is obtained from C by 1) for every 0 ≤ l ≤ i,
changing the label of each vl to q′

l and 2) for every i + 1 ≤ l ≤ j, creating a new vertex vl

with label q′
l and adding it as a child to vl−1.

A. R. Balasubramanian 17:11

Similarly, suppose r := ((q0, . . . , qi), (q′
0, . . . , q′

j)) ∈ δ is a rule with j < i ≤ k. Then
C

r−→ C ′ if there is a path v0, v1, . . . , vi in C starting at the root such that for every 0 ≤ l ≤ i,
the label of vl is ql and, C ′ is obtained from C by 1) for every 0 ≤ l ≤ j, changing the label
of each vl to q′

l and 2) removing the subtree rooted at the node vj+1.

▶ Example 12 (Example from [2]). Let us consider the NCS N given by the states Q =
{pi, p′

i, qi, q′
i : 0 ≤ i ≤ 4} and consisting of the following rules: r0 = ((q0, q1), (q′

0, q′
1, q′

2)), r1 =
((q′

0, q3, q2), (p0)), r2 = ((p0), (p′
0)). In Figure 2, we illustrate the application of these rules to

a configuration of N .

q0

q1 q3

q2

q4

q2

r0

q′
0

q′
1

q′
2

q3

q2

q4

q2

r1

p0

q′
1

q′
2

r2

p′
0

q′
1

q′
2

Figure 2 Application of the rules r0, r1 and r2 to a configuration of N , which is described in
Example 12.

Similar to NCSL, we can define the notions of C −→ C ′, C
∗−→ C ′ and a state qin covering

another state qf . It is known that the coverability problem for NCS is Fϵ0 -hard (Theorem 7
of [8]).

We note that the rules of an NCS act “globally”, in the sense that it allows to update
the value of (potentially) k many counters in one step. This is in contrast to NCSL, where
we can update the value of at most two counters at a time. While it is not particularly
surprising that this “global” update can be replaced by a series of “local” updates (hence
giving a reduction from NCS to NCSL), the construction is not entirely trivial and requires
some intricate arguments in order to prove its correctness.

A special case of NCS

We make a small remark which will help us simplify our reduction later on. Let N = (Q, δ)
be a k-NCS and let qin, qf ∈ Q. From N , we construct a new k-NCS N ′ as follows: First we
add a new state end. Then, if r = ((q0, . . . , qi), (q′

0, . . . , q′
j)) ∈ δ with j < i ≤ k, we replace

r with the rule r′ := ((q0, . . . , qi), (q′
0, . . . , q′

j , end, . . . , end︸ ︷︷ ︸
i−j times

)). Intuitively, we are replacing

all rules which destroy some counters with corresponding rules that simply convert those
counters to the state end. It can be easily verified that coverability of qf from qin is preserved
while doing this operation. Hence, from here on, we assume that whenever N = (Q, δ) is a
k-NCS and r = ((q0, . . . , qi), (q′

0, . . . , q′
j)) ∈ δ then i ≤ j.

4.1 Hardness of coverability for NCSL
We shall prove Theorem 5 by giving a reduction from the coverability problem for NCS. Let
k ≥ 1 and let N = (Q, δ) be a k-NCS with two fixed states qin and qf . By the argument
given in the previous paragraph, we can assume that if r = ((q0, . . . , qi), (q′

0, . . . , q′
j)) ∈ δ

CONCUR 2022

17:12 Complexity of Coverability in Depth-Bounded Processes

then i ≤ j. We shall now construct a k-NCSL N ′ = (Q′, δ′
0, . . . , δ′

k−1) and two states q′
in

and q′
f of N ′ such that q′

in can cover q′
f in N ′ iff qin can cover qf in N . This will then prove

Theorem 5. We begin by describing the states of N ′.

States of N ′. For every state q of N , we will have two states q[⊤] and q[⊥]. Further, for
every rule r of N , we will have four states recr[⊤], recr[⊥], fwdr[⊤] and fwdr[⊥]. Notice
that each state of N ′ is of the form a[b] where a ∈ Q ∪ {recr, fwdr : r ∈ δ} and b ∈ {⊤, ⊥}.
If a node v in a configuration C has as its label a[b], then ‘a’ will be called its base. Further,
if b = ⊤ (resp. b = ⊥), then v will be called as a leader node (resp. follower node).

Good configurations of N ′. A configuration C is called good if the root of C is a leader,
all other nodes are followers and the base of all the nodes of C belong to Q. Notice that
there is a straightforward bijection between the set of all configurations of N and the set of
all good configurations of N ′. This bijection will be denoted by M.

Rules of N ′. Before we describe the rules of N ′, we will state two invariants that will always
be maintained by our construction. The first one is that, in any configuration reachable from
a good configuration, exactly one node will be a leader. The second invariant is that, every
rule of N ′ will have a leader state in its precondition. Combined with the first invariant,
this will intuitively ensure that the rules that can be fired from reachable configurations are
limited and will help us simplify the proof of correctness of our reduction.

We now describe the rules of N ′. Let r = ((q0, . . . , qi), (q′
0, . . . , q′

j)) be a rule of N .
Corresponding to rule r, we will have the following set of rules in N ′. (In the following, we
adopt the convention that if the name of a rule has a subscript 0 ≤ l ≤ j, then that rule
belongs to δ′

l).

startr
0 := ((q0[⊤]), (recr[⊤])).

For every 0 ≤ l ≤ i − 1, we have a rule beginr
l := ((recr[⊤], ql+1[⊥]), (fwdr[⊥], recr[⊤])).

For every i ≤ l ≤ j − 1, we have a rule beginr
l := ((recr[⊤]), (fwdr[⊥], recr[⊤])).

middler
j := ((recr[⊤]), (fwdr[⊤])).

For every 0 ≤ l ≤ j − 1, we have a rule endr
l := ((fwdr[⊥], fwdr[⊤]), (fwdr[⊤], q′

l+1[⊥])).
finishr

0 := ((fwdr[⊤]), q′
0[⊤]).

4.2 Proof of correctness
The intuitive idea behind the above gadget is given by the run demonstrated in the following
lemma.

▶ Lemma 13 (N ′ simulates N). Suppose C
r−→ C ′ is a step in the NCS N . Then, there is a

run M(C) ∗−→ M(C ′) in the NCSL N ′.

Proof. Let r = ((q0, . . . , qi), (q′
0, . . . , q′

j)). Since C
r−→ C ′ is a step in N , it follows that there

is a path starting at the root of C labelled by q0, . . . , qi. It follows that in M(C) there is
a path P starting at the root labelled by q0[⊤], q1[⊥], q2[⊥], . . . , qi[⊥]. We now execute a
sequence of rules according to the gadget for r as follows:

First, using startr
0, we change the label of the root from q0[⊤] to recr[⊤].

Next, by firing beginr
0, . . . , beginr

i−1 in this order, we change the labels of the nodes in the
path P to fwdr[⊥], . . . , fwdr[⊥]︸ ︷︷ ︸

i times

, recr[⊤].

A. R. Balasubramanian 17:13

Then, by firing beginr
i , . . . , beginr

j−1 in this order, we add j − i new nodes to the path P

and get a new path P ′ of length j + 1 whose labels are fwdr[⊥], . . . , fwdr[⊥]︸ ︷︷ ︸
j times

, recr[⊤].

We use middler
j to change the label of the last node in P ′ from recr[⊤] to fwdr[⊤].

Then, by firing endr
j−1, . . . , endr

0 in this order, we change the labels of the nodes in the
path P ′ to fwdr[⊤], q′

1[⊥], . . . , q′
j [⊥].

Finally, we use finishr
0 to change the label of the root from fwdr[⊤] to q′

0[⊤].
It can be easily verified that the resulting configuration D is such that D = M(C ′). ◀

We now present a converse to the above lemma which shows that a simulation in the
other direction is also possible.

▶ Lemma 14 (N simulates N ′). Suppose C
∗−→ C ′ is a path of non-zero length in N ′ such

that 1) C is a good configuration and 2) in all the configurations between C and C ′, the base
of the root is not in Q. Then, C ′ is a good configuration and there is a rule r such that
M−1(C) r−→ M−1(C ′).

Proof sketch. Let P := C −→ γ0 −→ γ1 . . . −→ C ′. The essential idea behind this lemma is
that since C is a good configuration, the root node is a leader node and by the construction
of the rules it must be the case that the first step must be of the form C

startr
0−−−−→ γ0 for some

rule r. Then, by using the invariant that exactly one node is leader at all times and by using
the construction of the rules, we can essentially show that P must be a path of the same
form as the one given in the proof of Lemma 13. Having proved that, we can then show that
in the NCS N , M−1(C) r−→ M−1(C ′). ◀

Because of these two “simulation” lemmas, we then get

▶ Theorem 15. qin can cover qf in N iff qin[⊤] can cover qf [⊤] in N ′.

4.3 Wrapping up
The previous theorem implies that coverability for NCSL is Fϵ0 -hard. To prove Theorem 5,
we need to show the same for NCSL with only creation and 2-preservation rules. We now show
that 1-preservation rules can be replaced with creation rules in an NCSL while maintaining
coverability.

Given a k-NCSL N with two states qin, qf , we can remove all 1-preservation rules whilst
preserving coverability as follows: We first add a new state end. Then if r = ((q0), (q′

0)) is a
1-preservation rule in N , we replace r with r = ((q0), (q′

0, end)). It can be easily seen that
doing this procedure gives us a (k + 1)-NCSL N ′ such that qin can cover qf in N ′ iff qin can
cover qf in N . Hence Theorem 5 follows.

5 Upper bound for coverability of depth-bounded processes

We now prove the upper bound claim made in Theorem 3. Let P = (I, E) be a fixed
k-depth-bounded process. By introducing new identifiers and equations if necessary, we can
assume that at most one name or thread is created during a step between two configurations
of P . Let us consider the following order on the set of configurations: P ⪯ Q iff P ≡ (νx)P ′

and Q ≡ (νx)(P ′ | R) for some term R. It is known that this is a well-quasi order (wqo)
for the set of all k-depth-bounded configurations [20, 27]. Using this fact, we can show that
the set of k-depth-bounded configurations of P, forms a well-structured transition system
(WSTS) under the ⪯ ordering and then apply the generic backward exploration algorithm for

CONCUR 2022

17:14 Complexity of Coverability in Depth-Bounded Processes

WSTS [13, 25]. Using the standard and generic complexity arguments for WSTS [26, 13, 25],
an upper bound on the the running time of this procedure simply boils down to estimating
the length of controlled bad sequences of k-depth-bounded configurations under the ⪯ order.

Let the size of a configuration C be the number of names and threads that appear in C.
Let H : N → N be the successor function and let n ∈ N. For each i ∈ N, we let Hi denote
the i-fold application of H to itself i times, with H0 being the identity function.

▶ Definition 16. A sequence C0, C1, . . . , of configurations is called (H, n)-controlled bad if
the size of each Ci is at most Hi(n) and Ci ⪯̸ Cj for any i < j.

To estimate an upper bound on the length of controlled bad sequences of configurations,
we first recall the induced subgraph ordering on bounded-depth trees.

▶ Definition 17. Let T1 = (V1, E1, L1) and T2 = (V2, E2, L2) be two labelled trees with
labelling functions L1 : V1 → A and L2 : V2 → A for some finite set A. We say that T1 is
an induced subgraph of T2, if there is a label preserving injection h from V1 to V2 such that
(v, v′) ∈ E1 ⇐⇒ (h(v), h(v′)) ∈ E2.

It is known that for any K ≥ 1 and for any finite set A, the set of all labelled trees of
depth at most K is well-quasi ordered under the induced subgraph relation (Theorem 2.2
of [9]). Similar to configurations, we can also define controlled bad sequences of labelled
bounded-depth trees.

By the arguments given in [20], it follows that the length of controlled bad sequences
of k-depth-bounded configurations of P under the ⪯ order can be upper bounded by the
length of controlled bad sequences of K-bounded-depth trees with labels from a set A, for
some A and K whose sizes are primitive recursive in the size of P . By the known bounds for
controlled bad sequences for labelled bounded-depth trees [2, 17], it follows that

▶ Theorem 18. The length of (H, n)-controlled bad sequences for k-depth-bounded configura-
tions of P is upper bounded by the function Fϵ0(p(|P|, k, n)).

Here Fϵ0 is the fast-growing function at level ϵ0 and p is some primitive recursive function.
For our purposes, we do not need the actual definition of Fϵ0 , but we only need to know that
Fϵ0 consists of problems whose running time is upper bounded by the function Fϵ0 composed
with any primitive recursive function (See [24]). It follows that,

▶ Theorem 19. The coverability problem for depth-bounded processes is in Fϵ0and hence
Fϵ0-complete.

6 Conclusion

We have shown that the coverability problem for depth-bounded processes in π-calculus
is Fϵ0-complete. This settles the complexity of the problem and solves an open problem
raised in [17] and also in [27]. However, our proof does not give any results regarding the
parameterized complexity of this problem when the depth k is taken as a parameter, which
we plan to investigate as part of future work.

References
1 Sergio Abriola, Santiago Figueira, and Gabriel Senno. Linearizing well quasi-orders and

bounding the length of bad sequences. Theor. Comput. Sci., 603:3–22, 2015. doi:10.1016/j.
tcs.2015.07.012.

https://doi.org/10.1016/j.tcs.2015.07.012
https://doi.org/10.1016/j.tcs.2015.07.012

A. R. Balasubramanian 17:15

2 A. R. Balasubramanian. Complexity of coverability in bounded path broadcast networks. In
Mikolaj Bojanczyk and Chandra Chekuri, editors, 41st IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science, FSTTCS 2021, December
15-17, 2021, Virtual Conference, volume 213 of LIPIcs, pages 35:1–35:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.FSTTCS.2021.35.

3 Michael Blondin. The ABCs of petri net reachability relaxations. ACM SIGLOG News,
7(3):29–43, 2020. doi:10.1145/3436980.3436984.

4 Michael Blondin, Alain Finkel, Christoph Haase, and Serge Haddad. The logical view on
continuous Petri nets. ACM Trans. Comput. Log., 18(3):24:1–24:28, 2017. doi:10.1145/
3105908.

5 Michael Blondin and Christoph Haase. Logics for continuous reachability in Petri nets and
vector addition systems with states. In 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE
Computer Society, 2017. doi:10.1109/LICS.2017.8005068.

6 Pierre Chambart and Philippe Schnoebelen. The ordinal recursive complexity of lossy channel
systems. In Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in Computer
Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, pages 205–216, 2008. doi:
10.1109/LICS.2008.47.

7 Wojciech Czerwinski and Lukasz Orlikowski. Reachability in vector addition systems is
Ackermann-complete. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1229–1240. IEEE, 2021. doi:
10.1109/FOCS52979.2021.00120.

8 Normann Decker and Daniel Thoma. On freeze LTL with ordered attributes. In Bart Jacobs
and Christof Löding, editors, Foundations of Software Science and Computation Structures -
19th International Conference, FOSSACS 2016, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8,
2016, Proceedings, volume 9634 of Lecture Notes in Computer Science, pages 269–284. Springer,
2016. doi:10.1007/978-3-662-49630-5_16.

9 Guoli Ding. Subgraphs and well-quasi-ordering. Journal of Graph Theory, 16(5):489–502,
1992. doi:10.1002/jgt.3190160509.

10 Jacob Elgaard, Nils Klarlund, and Anders Møller. MONA 1.x: New techniques for WS1S
and WS2S. In Alan J. Hu and Moshe Y. Vardi, editors, Computer Aided Verification, pages
516–520, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

11 Javier Esparza. Keeping a crowd safe: On the complexity of parameterized verification (invited
talk). In Ernst W. Mayr and Natacha Portier, editors, 31st International Symposium on
Theoretical Aspects of Computer Science (STACS 2014), STACS 2014, March 5-8, 2014, Lyon,
France, volume 25 of LIPIcs, pages 1–10. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2014. doi:10.4230/LIPIcs.STACS.2014.1.

12 Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp J. Meyer, and Filip
Niksic. An SMT-based approach to coverability analysis. In Armin Biere and Roderick
Bloem, editors, Computer Aided Verification - 26th International Conference, CAV 2014,
Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014.
Proceedings, volume 8559 of Lecture Notes in Computer Science, pages 603–619. Springer,
2014. doi:10.1007/978-3-319-08867-9_40.

13 Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. Ackermannian
and primitive-recursive bounds with Dickson’s lemma. In Proceedings of the 26th Annual IEEE
Symposium on Logic in Computer Science, pages 269–278, 2011. doi:10.1109/LICS.2011.39.

14 Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere! Theor.
Comput. Sci., 256(1-2):63–92, 2001. doi:10.1016/S0304-3975(00)00102-X.

15 Estíbaliz Fraca and Serge Haddad. Complexity analysis of continuous Petri nets. Fundam.
Informaticae, 137(1):1–28, 2015. doi:10.3233/FI-2015-1168.

CONCUR 2022

https://doi.org/10.4230/LIPIcs.FSTTCS.2021.35
https://doi.org/10.1145/3436980.3436984
https://doi.org/10.1145/3105908
https://doi.org/10.1145/3105908
https://doi.org/10.1109/LICS.2017.8005068
https://doi.org/10.1109/LICS.2008.47
https://doi.org/10.1109/LICS.2008.47
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1007/978-3-662-49630-5_16
https://doi.org/10.1002/jgt.3190160509
https://doi.org/10.4230/LIPIcs.STACS.2014.1
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1109/LICS.2011.39
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.3233/FI-2015-1168

17:16 Complexity of Coverability in Depth-Bounded Processes

16 Christoph Haase and Simon Halfon. Integer vector addition systems with states. In Joël
Ouaknine, Igor Potapov, and James Worrell, editors, Reachability Problems - 8th International
Workshop, RP 2014, Oxford, UK, September 22-24, 2014. Proceedings, volume 8762 of Lecture
Notes in Computer Science, pages 112–124. Springer, 2014. doi:10.1007/978-3-319-11439-2_
9.

17 Christoph Haase, Sylvain Schmitz, and Philippe Schnoebelen. The power of priority channel
systems. Log. Methods Comput. Sci., 10(4), 2014. doi:10.2168/LMCS-10(4:4)2014.

18 Slawomir Lasota. Improved Ackermannian lower bound for the petri nets reachability problem.
In Petra Berenbrink and Benjamin Monmege, editors, 39th International Symposium on
Theoretical Aspects of Computer Science, STACS 2022, March 15-18, 2022, Marseille, France
(Virtual Conference), volume 219 of LIPIcs, pages 46:1–46:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.STACS.2022.46.

19 Jérôme Leroux. The reachability problem for petri nets is not primitive recursive. In 62nd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022, pages 1241–1252. IEEE, 2021. doi:10.1109/FOCS52979.2021.00121.

20 Roland Meyer. On boundedness in depth in the pi-calculus. In Giorgio Ausiello, Juhani
Karhumäki, Giancarlo Mauri, and C.-H. Luke Ong, editors, Fifth IFIP International Conference
On Theoretical Computer Science – TCS 2008, IFIP 20th World Computer Congress, TC 1,
Foundations of Computer Science, September 7-10, 2008, Milano, Italy, volume 273 of IFIP,
pages 477–489. Springer, 2008. doi:10.1007/978-0-387-09680-3_32.

21 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Inf.
Comput., 100(1):1–40, 1992. doi:10.1016/0890-5401(92)90008-4.

22 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, II. Inf.
Comput., 100(1):41–77, 1992. doi:10.1016/0890-5401(92)90009-5.

23 Sylvain Schmitz. Complexity bounds for ordinal-based termination - (invited talk). In
Reachability Problems – 8th International Workshop, RP 2014, pages 1–19, 2014. doi:
10.1007/978-3-319-11439-2_1.

24 Sylvain Schmitz. Complexity hierarchies beyond elementary. ACM Trans. Comput. Theory,
8(1):3:1–3:36, 2016. doi:10.1145/2858784.

25 Sylvain Schmitz and Philippe Schnoebelen. Multiply-recursive upper bounds with Higman’s
lemma. In Automata, Languages and Programming – 38th International Colloquium, ICALP
2011, pages 441–452, 2011. doi:10.1007/978-3-642-22012-8_35.

26 Sylvain Schmitz and Philippe Schnoebelen. The power of well-structured systems. In Pedro R.
D’Argenio and Hernán C. Melgratti, editors, CONCUR 2013 – Concurrency Theory – 24th
International Conference, CONCUR 2013, Buenos Aires, Argentina, August 27-30, 2013.
Proceedings, volume 8052 of Lecture Notes in Computer Science, pages 5–24. Springer, 2013.
doi:10.1007/978-3-642-40184-8_2.

27 Thomas Wies, Damien Zufferey, and Thomas A. Henzinger. Forward analysis of depth-bounded
processes. In C.-H. Luke Ong, editor, Foundations of Software Science and Computational
Structures, 13th International Conference, FOSSACS 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28,
2010. Proceedings, volume 6014 of Lecture Notes in Computer Science, pages 94–108. Springer,
2010. doi:10.1007/978-3-642-12032-9_8.

A Appendix

A.1 Proofs for subsection 4.2
▶ Lemma 14 (N simulates N ′). Suppose C

∗−→ C ′ is a path of non-zero length in N ′ such
that 1) C is a good configuration and 2) in all the configurations between C and C ′, the base
of the root is not in Q. Then, C ′ is a good configuration and there is a rule r such that
M−1(C) r−→ M−1(C ′).

https://doi.org/10.1007/978-3-319-11439-2_9
https://doi.org/10.1007/978-3-319-11439-2_9
https://doi.org/10.2168/LMCS-10(4:4)2014
https://doi.org/10.4230/LIPIcs.STACS.2022.46
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1007/978-0-387-09680-3_32
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/10.1007/978-3-319-11439-2_1
https://doi.org/10.1007/978-3-319-11439-2_1
https://doi.org/10.1145/2858784
https://doi.org/10.1007/978-3-642-22012-8_35
https://doi.org/10.1007/978-3-642-40184-8_2
https://doi.org/10.1007/978-3-642-12032-9_8

A. R. Balasubramanian 17:17

Proof. Let P := C −→ γ0 −→ γ1 . . . −→ γm −→ C ′ be a path in N ′. We split the proof into
various steps.

Step 1. Since C is a good configuration, the only node which is a leader is the root, whose
base must belong to Q. By construction of the rules of N ′, this implies that the step C −→ γ0

must be of the form C
startr

0−−−−→ γ0 for some rule r of N . Let r = ((q0, . . . , qi), (q′
0, . . . , q′

j)).
This implies that the label of the root in C is q0[⊤] and its label in γ0 is recr[⊤].

Step 2. Now, for each 0 ≤ l ≤ i, we state two claims:
Claim Al: There is a path Pl := v0

l , . . . , vl
l starting at the root in C with labels

q0[⊤], q1[⊥], . . . , ql[⊥] such that γl is the same as C, except now the labels along Pl

are fwdr[⊥], . . . , fwdr[⊥]︸ ︷︷ ︸
l times

, recr[⊤].

Claim Bl: If l ̸= 0, then γl−1
beginr

l−1−−−−−→ γl.

We have already shown that claim A0 is true in step 1. Now, for each 0 ≤ l ≤ i − 1,
assuming claim Al is true, we shall prove that claims Al+1 and Bl+1 are true.

Because of claim Al and because C is a good configuration, it follows that the only node
which is a leader in γl is vl

l . Further, the base of vl
l is recr. By construction of the rules

in N ′, this implies that the only rule that can be fired from γl is beginr
l . Hence, it must be

the case that γl
beginr

l−−−−→ γl+1, proving claim Bl+1. Further, since vl
l is the only node which is

a leader, firing this rule transforms the state of vl
l to fwdr[⊥] and transforms the state of

a child of vl
l (say v′) from ql+1[⊥] to recr[⊤]. Taking Pl+1 to be v0

l , . . . , vl
l , v′ proves claim

Al+1.
In particular claim Ai implies that there is a path path := v0, . . . , vi starting at the root

such that γi is the same as C, except that the labels of path in C and γi are q0[⊤], . . . , qi[⊥]
and fwdr[⊥], . . . , fwdr[⊥]︸ ︷︷ ︸

i times

, recr[⊤] respectively.

Step 3. For each i ≤ l ≤ j, we state two claims:
Claim Al: γl is the same as γi, except that path is extended to include l − i new nodes
and the labels along this extended path in γl is fwdr[⊥], . . . , fwdr[⊥]︸ ︷︷ ︸

l times

, recr[⊤].

Claim Bl: If i ̸= l, then γl−1
beginr

l−1−−−−−→ γl.

We have already shown that claim Ai is true in step 2. Similar to the arguments given in
step 2, we can prove that these new claims are also true.

Step 4. By claim Aj it follows that there is a path ext-path := n0, . . . , nj starting at the
root in γj such that the labels along ext-path is fwdr[⊥], . . . , fwdr[⊥]︸ ︷︷ ︸

j times

, recr[⊤]. Further, nj

is the only node which is a leader in γj . Hence, the only rule which can be fired from γj

is middler
j and so we have γj

middler
j−−−−−→ γj+1. Notice that the only change that has occurred

because of this step is that the label of nj has been changed to fwdr[⊤].

CONCUR 2022

17:18 Complexity of Coverability in Depth-Bounded Processes

Step 5. For each 1 ≤ l ≤ j, we state two claims:
Claim A′

l: γj+l is the same as γj , except that the labels along ext-path in γj+l is
fwdr[⊥], . . . , fwdr[⊥]︸ ︷︷ ︸

j−l+1 times

, fwdr[⊤], q′
j−l+2[⊥], . . . , q′

j [⊥].

Claim B′
l: γj+l

endr
j−l−−−−→ γj+l+1.

The proof of this is accomplished by similar arguments as given in step 2.

Step 6. By claim A′
j , it follows that γ2j is the same as γj , except that the labels along

ext-path is now fwdr[⊤], q′
1[⊥], . . . , q′

j [⊥]. It follows that the only rule which can be fired

from γ2j is finishr
0, and so it follows that γ2j

finishr
0−−−−→ γ2j+1, where the only difference between

γ2j+1 and γ2j is that the label of the root in γ2j+1 is q′
0[⊤]. Hence, by assumption of the

run P , it follows that γ2j+1 = C ′.
By combining the arguments given above, it follows then that γ2j+1 is a good configuration

and also that M−1(C) r−→ M−1(C ′). ◀

▶ Theorem 15. qin can cover qf in N iff qin[⊤] can cover qf [⊤] in N ′.

Proof. Suppose qin can cover qf in N . Let C0 −→ C1 −→ . . . −→ Cm be a run in N where
C0 is the initial configuration and the root of Cm is qf . By Lemma 13, it follows that
M(C0) ∗−→ M(C1) ∗−→ . . .

∗−→ M(Cm) and so qin[⊤] can cover qf [⊤] in N ′.
Suppose C

∗−→ C ′ is a run in N ′ such that C is the (unique good) configuration consisting
of the single root vertex labelled by qin[⊤] and C ′ is some configuration where the root is
labelled by qf [⊤]. We split the run into parts of the form C = C0

∗−→ C1
∗−→ C2 . . .

∗−→ Cm = C ′

such that for each 1 ≤ l ≤ m, Cl is the first configuration after Cl−1 where the base of the
root is in Q. By Lemma 14, it follows that each Cl is a good configuration and also that
M−1(C0) −→ M−1(C1) −→ . . . −→ M−1(Cm). Hence, it follows that qin can cover qf in N . ◀

A.2 Proofs for Section 5
We now give a proof of Theorem 19. We recall the backward exploration algorithm for
well-structured transition systems (WSTS) here, adapted to the coverability problem for
depth-bounded processes. Let P = (I, E) be a k-depth-bounded process and let P be some
k-depth-bounded configuration, which we want to check is coverable in P. Without loss of
generality, we can assume that at most one name or thread is created during a step between
two configurations of P. Let Ck be the set of all k-depth-bounded configurations.

Given a set S of Ck we let ↑ S := {γ′ : ∃γ ∈ S, γ ⪯ γ′}. A set S is called upward-closed if
S =↑ S. Because ⪯ is a wqo and because of the definition of the operational semantics of P ,
we have that:

If S is upward-closed, then there exists a finite set B such that ↑ B = S. Such a B will
be called the basis of S.
If S is upward-closed and if Pre(S) is the set of all configurations γ′ ∈ Ck such that
there is a configuration γ ∈ S with γ′ −→ γ, then S ∪ Pre(S) is upward-closed. Moreover,
given a basis B of S, we can compute a basis B′ of S ∪ Pre(S) such that the size of each
configuration in B′ is at most one more than the maximum size of any configuration of B.

Hence, by the generic backward exploration algorithm for WSTS [14], we get that the
following algorithm terminates and decides coverability: Construct a sequence of finite sets
B0, B1, . . . , such that each Bi ⊆ Ck, B0 is simply {P} and Bi+1 is a basis for ↑ Bi ∪Pre(↑ Bi).

A. R. Balasubramanian 17:19

Then find the first m such that ↑ Bm =↑ Bm+1 and check if there is an initial configuration
in ↑ Bm. If it is true, then P is coverable; otherwise P is not coverable.

The running time complexity of the algorithm is mainly dominated by the length of the
sequence B0, B1, . . . , Bm. Since m is the first index such that ↑ Bm =↑ Bm+1, we can find a
minimal element γi ∈↑ Bi+1\ ↑ Bi for each i < m.

Consider the sequence γ0, . . . , γm−1. Notice that γi ̸⪯ γj for any j > i and further the
size of each γi is at most Hi(n), where H is the successor function and n is the size of P .
It follows that γ0, . . . , γm−1 is a (H, n)-controlled bad sequence. By the arguments given
in [20], it follows that the length of controlled bad sequences of Ck under the ⪯ order can be
upper bounded by the length of controlled bad sequences of K-bounded-depth trees with
labels from a set A, for some A and K whose sizes are primitive recursive in the size of P.
By the known bounds for controlled bad sequences for labelled bounded-depth trees [2, 17],
it follows that

▶ Theorem 18. The length of (H, n)-controlled bad sequences for k-depth-bounded configura-
tions of P is upper bounded by the function Fϵ0(p(|P|, k, n)).

Here Fϵ0 is the fast-growing function at level ϵ0 and p is some primitive recursive function.
For our purposes, we do not need the actual definition of Fϵ0 , but we only need to know that
Fϵ0 consists of problems whose running time is upper bounded by the function Fϵ0 composed
with any primitive recursive function (See [24]). Theorem 19 then follows.

CONCUR 2022

	1 Introduction
	2 Preliminaries
	2.1 The pi-calculus

	3 Nested counter systems with levels (NCSL)
	3.1 Hardness of coverability for depth-bounded pi-calculus processes
	3.2 Proof of correctness

	4 Nested counter systems (NCS)
	4.1 Hardness of coverability for NCSL
	4.2 Proof of correctness
	4.3 Wrapping up

	5 Upper bound for coverability of depth-bounded processes
	6 Conclusion
	A Appendix
	A.1 Proofs for subsection 4.2

	B Proofs for section 5

