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Abstract
A central question in the theory of two-player games over graphs is to understand which objectives
are half-positional, that is, which are the objectives for which the protagonist does not need memory
to implement winning strategies. Objectives for which both players do not need memory have already
been characterized (both in finite and infinite graphs); however, less is known about half-positional
objectives. In particular, no characterization of half-positionality is known for the central class of
ω-regular objectives.

In this paper, we characterize objectives recognizable by deterministic Büchi automata (a class of
ω-regular objectives) that are half-positional, in both finite and infinite graphs. Our characterization
consists of three natural conditions linked to the language-theoretic notion of right congruence.
Furthermore, this characterization yields a polynomial-time algorithm to decide half-positionality of
an objective recognized by a given deterministic Büchi automaton.
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1 Introduction

Graph games and reactive synthesis. We study zero-sum turn-based games on graphs
confronting two players (a protagonist and its opponent). They interact by moving a pebble
in turns through the edges of a graph for an infinite amount of time. Each vertex belongs
to a player, and the player controlling the current vertex decides on the next state of the
game. Edges of the graph are labeled with colors, and the interaction of the two players
therefore produces an infinite sequence of them. The objective of the game is specified by
a subset of infinite sequences of colors, and the protagonist wins if the produced sequence
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20:2 Half-Positional Objectives Recognized by Deterministic Büchi Automata

belongs to this set. We are interested in finding a winning strategy for the protagonist, that
is, a function indicating how the protagonist should move in any situation, guaranteeing the
achievement of the objective.

This game-theoretic model is particularly fitted to study the reactive synthesis problem [7]:
a system (the protagonist) wants to satisfy a specification (the objective) while interacting
continuously with its environment (the opponent). The goal is to build a controller for the
system satisfying the specification, whenever possible. This comes down to finding a winning
strategy for the protagonist in the derived game.

Half-positionality. In order to obtain a controller for the system that is simple to implement,
we are interested in finding the simplest possible winning strategy. Here, we focus on the
amount of information that winning strategies have to remember. The simplest strategies
are then arguably positional (also called memoryless) strategies, which do not remember
anything about the past and base their decisions solely on the current state of the game. We
intend to understand for which objectives positional strategies suffice for the protagonist to
play optimally (i.e., to win whenever it is possible) – we call these objectives half-positional.
We distinguish half-positionality from bipositionality (or memoryless-determinacy), which
refers to objectives for which positional strategies suffice to play optimally for both players.

Many natural objectives have been shown to be bipositional over games on finite and
sometimes infinite graphs: e.g., discounted sum [53], mean-payoff [28], parity [29], total
payoff [31], energy [9], or average-energy games [11]. Bipositionality can be established using
general criteria and characterizations, over games on both finite [31, 32, 3] and infinite [26]
graphs. Yet, there exist many objectives and combinations thereof for which one player, but
not both, has positional optimal strategies (Rabin conditions [35, 34], mean-payoff parity [22],
energy parity [20], some window objectives [21, 14], energy mean-payoff [15]. . . ), and to
which these results do not apply.

Various attempts have been made to understand common underlying properties of half-
positional objectives and provide sufficient conditions [36, 37, 38, 6], but little more was
known until the recent work of Ohlmann [48] (discussed below). These conditions are
not general enough to prove half-positionality of some very simple objectives, even in the
well-studied class of ω-regular objectives [6, Lemma 13]. Furthermore, multiple questions
concerning half-positionality remain open. For instance, in [38], Kopczyński conjectured that
prefix-independent half-positional objectives are closed under finite union (this conjecture
was recently refuted for games on finite graphs [39], but is still unsolved for games on infinite
graphs). Also, Kopczyński showed that given a deterministic parity automaton recognizing a
prefix-independent objective W , we can decide if W is half-positional [37]. However, the time
complexity of his algorithm is O(nO(n2)), where n is the number of states of the automaton.
It is unknown whether this can be done in polynomial time, and no algorithm exists in the
non-prefix-independent case.

ω-regular objectives and deterministic Büchi automata. A central class of objectives,
whose half-positionality is not yet completely understood, is the class of ω-regular objectives.
There are multiple equivalent definitions for them: they are the objectives defined, e.g.,
by ω-regular expressions, by non-deterministic Büchi automata [45], and by deterministic
parity automata [46]. These objectives coincide with the class of objectives defined by
monadic second-order formulas [17], and they encompass linear-time temporal logic (LTL)
specifications [50]. Part of their interest is due to the landmark result that finite-state
machines are sufficient to implement optimal strategies in ω-regular games [16, 33], implying
the decidability of the monadic second-order theory of natural numbers with the successor
relation [17] and the decidability of the synthesis problem under LTL specifications [51].
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In this paper, we focus on the subclass of ω-regular objectives recognized by determin-
istic Büchi automata (DBA), that we call DBA-recognizable. DBA-recognizable objectives
correspond to the ω-regular objectives that can be written as a countable intersection of
open objectives (for the Cantor topology, that is, that are Gδ-sets of the Borel hierarchy); or
equivalently, that are the limit of a regular language of finite words [42, 49]. Deciding the
winner of a game with a DBA-recognizable objective is doable in polynomial time in the size
of the arena and the DBA (by solving a Büchi game on the product of the arena and the
DBA [7]).

We now discuss two technical tools at the core of our approach: universal graphs and
right congruences.

Universal graphs. One recent breakthrough in the study of half-positionality is the intro-
duction of well-monotonic universal graphs, combinatorial structures that can be used to
provide a witness of winning strategies in games with a half-positional objective. Recently,
Ohlmann [48] has shown that the existence of a well-monotonic universal graph for an
objective W exactly characterizes half-positionality (under minor technical assumptions
on W ). Moreover, under these assumptions, a wide class of algorithms, called value iteration
algorithms, can be applied to solve any game with a half-positional objective [24, 48].

Although it brings insight on the structure of half-positional objectives, showing half-
positionality through the use of universal graphs is not always straightforward, and has not
yet been applied in a systematic way to ω-regular objectives.

Right congruence. Given an objective W , the right congruence ∼W of W is an equivalence
relation on finite words: two finite words w1 and w2 are equivalent for ∼W if for all infinite
continuations w, w1w ∈ W if and only if w2w ∈ W . There is a natural automaton classifying
the equivalence classes of the right congruence, which we refer to as the prefix-classifier [54, 44].

In the case of languages of finite words, a straightforward adaptation of the right congru-
ence recovers the known Myhill-Nerode congruence. This equivalence relation characterizes
the regular languages (a language is regular if and only if its congruence has finitely many
equivalence classes), and the prefix-classifier is exactly the smallest deterministic finite
automaton recognizing a language – this is the celebrated Myhill-Nerode theorem [47].

Objectives are languages of infinite words, for which the situation is not so clear-cut. In
particular, an ω-regular objective may not always be recognized by its prefix-classifier along
with a natural acceptance condition (Büchi, coBüchi, parity, Muller. . . ) [44, 4].

Contributions. Our main contribution is a characterization of half-positionality for DBA-
recognizable objectives through a conjunction of three easy-to-check conditions (Theorem 10).
(1) The equivalence classes of the right congruence are totally ordered w.r.t. inclusion of

their winning continuations.
(2) Whenever the set of winning continuations of a finite word w1 is a proper subset of the

set of winning continuations of a concatenation w1w2, the word w1(w2)ω produced by
repeating infinitely often w2 is winning.

(3) The objective has to be recognizable by a DBA using the structure of its prefix-classifier.

A few examples of simple DBA-recognizable objectives that were not encompassed by
previous half-positionality criteria [36, 6] are, e.g., reaching a color twice [6, Lemma 13] and
weak parity [55]. We also refer to Example 7, which is half-positional but not bipositional,
and whose half-positionality is straightforward using our characterization.

Various corollaries with practical and theoretical interest follow from our characterization.

CONCUR 2022
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We obtain a painless path to show (by checking each of the three conditions) that given
a deterministic Büchi automaton, the half-positionality of the objective it recognizes is
decidable in time O(k2 · n4), where k is the number of colors and n is the number of
states of the DBA (Section 3.3).
Prefix-independent DBA-recognizable half-positional objectives are exactly the very simple
Büchi conditions, which consist of all the infinite words seeing infinitely many times some
subset of the colors (Proposition 11). In particular, Kopczyński’s conjecture trivializes
for DBA-recognizable objectives (the union of Büchi conditions is a Büchi condition).
We obtain a finite-to-infinite and one-to-two-player lift result (Proposition 14): in order
to check that a DBA-recognizable objective is half-positional over arbitrary – possibly
two-player and infinite – graphs, it suffices to check the existence of positional optimal
strategies over finite graphs where all the vertices are controlled by the protagonist.

Other related works. We have discussed the relevant literature on half-positionality [36,
37, 6, 48] and bipositionality [31, 32, 26, 3]. A more general quest is to understand memory
requirements when positional strategies are not powerful enough: e.g., [43, 10, 12, 13].

Memory requirements have been precisely characterized for some classes of ω-regular
objectives (not encompassing the class of DBA-recognizable objectives), such as Muller
conditions [27, 57, 18, 19] and safety specifications, i.e., objectives that are closed for the
Cantor topology [25]. The latter also uses the order of the equivalence classes of the right
congruence as part of its characterization.

Recently, a link between the prefix-classifier, the memory requirements, and the rec-
ognizability of ω-regular objectives was established [13]. However, this result does not
provide optimal bounds on the strategy complexity, and is thereby insufficient to study
half-positionality.

Structure of the paper. Notations and definitions are introduced in Section 2. Our main
contributions are presented in Section 3: we introduce and discuss the three conditions used in
our results, then we state our main characterization (Theorem 10) and some corollaries, and
we end with an explanation on how to use the characterization to decide half-positionality of
DBA-recognizable objectives in polynomial time. Due to space constraints, we only provide
high-level details about proofs in this version of the article: a proof sketch for Theorem 10 is
provided in Section 4. Complete proofs, as well as additional details and examples, can be
found in the extended version of the article [8].

2 Preliminaries

In the whole article, letter C refers to a (finite or infinite) non-empty set of colors. Given
a set A, we write respectively A∗, A+, and Aω for the set of finite, non-empty finite, and
infinite sequences of elements of A. We denote by ε the empty word.

2.1 Games and positionality
Graphs. An (edge-colored) graph G = (V, E) is given by a non-empty set of vertices V

(of any cardinality) and a set of edges E ⊆ V × C × V . We write v
c−→ v′ if (v, c, v′) ∈ E.

We assume graphs to be non-blocking: for all v ∈ V , there exists (v′, c, v′′) ∈ E such that
v = v′. We allow graphs with infinite branching. For v ∈ V , an infinite path of G from v is
an infinite sequence of edges π = (v0, c1, v′

1)(v1, c2, v′
2) . . . ∈ Eω such that v0 = v and for all

i ≥ 1, v′
i = vi. A finite path of G from v is a finite prefix in E∗ of an infinite path of G from
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v. For convenience, we assume that there is a distinct empty path λv for every v ∈ V . If
γ = (v0, c1, v1) . . . (vn−1, cn, vn) is a non-empty finite path of G, we define last(γ) = vn. For an
empty path λv, we define last(λv) = v. An infinite (resp. finite) path (v0, c1, v1)(v1, c2, v2) . . .

is sometimes represented as v0
c1−→ v1

c2−→ . . .. A graph G = (V, E) is finite if both V and E

are finite. A graph is strongly connected if for every pair of vertices (v, v′) ∈ V × V there is a
path from v to v′. A strongly connected component of G is a maximal strongly connected
subgraph.

Arenas and strategies. We consider two players P1 and P2. An arena is a tuple A =
(V, V1, V2, E) such that (V, E) is a graph and V is the disjoint union of V1 and V2. Intuitively,
vertices in V1 are controlled by P1 and vertices in V2 are controlled by P2. An arena
A = (V, V1, V2, E) is a one-player arena of P1 (resp. of P2) if V2 = ∅ (resp. V1 = ∅). Finite
paths of (V, E) are called histories of A. For i ∈ {1, 2}, we denote by Histsi(A) the set of
histories γ of A such that last(γ) ∈ Vi.

Let i ∈ {1, 2}. A strategy of Pi on A is a function σi : Histsi(A) → E such that for all
γ ∈ Histsi(A), the first component of σi(γ) coincides with last(γ). Given a strategy σi of
Pi, we say that an infinite path π = e1e2 . . . is consistent with σi if for all finite prefixes
γ = e1 . . . ei of π such that last(γ) ∈ Vi, σi(γ) = ei+1. A strategy σi is positional (also called
memoryless in the literature) if its outputs only depend on the current vertex and not on
the whole history, i.e., if there exists a function f : Vi → E such that for γ ∈ Histsi(A),
σi(γ) = f(last(γ)).

Objectives. An objective is a set W ⊆ Cω (subsets of Cω are sometimes also called languages
of infinite words, ω-languages, or winning conditions in the literature). When an objective
W is clear in the context, we say that an infinite word w ∈ Cω is winning if w ∈ W , and
losing if w /∈ W . We write W for the complement Cω \ W of an objective W . An objective
W is prefix-independent if for all w ∈ C∗ and w′ ∈ Cω, w′ ∈ W if and only if ww′ ∈ W . An
objective that we will often consider is the Büchi condition: given a subset F ⊆ C, we denote
by Büchi(F ) the set of infinite words seeing infinitely many times a color in F . Such an
objective is prefix-independent. A game is a tuple (A, W ) of an arena A and an objective W .

Optimality and half-positionality. Let A = (V, V1, V2, E) be an arena, (A, W ) be a game,
and v ∈ V . We say that a strategy σ1 of P1 is winning from v if for all infinite paths
v0

c1−→ v1
c2−→ . . . from v consistent with σ1, c1c2 . . . ∈ W .

A strategy of P1 is optimal for P1 in (A, W ) if it is winning from all the vertices from
which P1 has a winning strategy. We often write optimal for P1 in A if the objective W is
clear from the context. We stress that this notion of optimality requires a single strategy to
be winning from all the winning vertices (a property sometimes called uniformity).

An objective W is half-positional if for all arenas A, there exists a positional strategy of
P1 on A that is optimal for P1 in A. We sometimes only consider half-positionality on a
restricted set of arenas (typically, finite and/or one-player arenas). For a class of arenas X ,
an objective W is half-positional over X if for all arenas A ∈ X , there exists a positional
strategy of P1 on A that is optimal for P1 in A.

2.2 Büchi automata
Automaton structures and Büchi automata. A non-deterministic automaton structure (on
C) is a tuple S = (Q, C, Qinit, ∆) such that Q is a finite set of states, Qinit ⊆ Q is a non-empty
set of initial states and ∆ ⊆ Q × C × Q is a set of transitions. We assume that all states of
automaton structures are reachable from an initial state in Qinit by taking transitions in ∆.

CONCUR 2022



20:6 Half-Positional Objectives Recognized by Deterministic Büchi Automata

A (transition-based) non-deterministic Büchi automaton (NBA) is an automaton structure
S together with a set of transitions α ⊆ ∆. The transitions in α are called Büchi transitions.

Given an NBA B = (Q, C, Qinit, ∆, α), a (finite or infinite) run of B on a (finite or
infinite) word w = c1c2 . . . ∈ C∗ ∪ Cω is a sequence (q0, c1, q1)(q1, c2, q2) . . . ∈ ∆∗ ∪ ∆ω such
that q0 ∈ Qinit. An infinite run (q0, c1, q1)(q1, c2, q2) . . . ∈ ∆ω of B is accepting if for infinitely
many i ≥ 0, (qi, ci+1, qi+1) ∈ α. A word w ∈ Cω is accepted by B if there exists an accepting
run of B on w – if not, it is rejected. We denote the set of infinite words accepted by B
by L(B), and we then say that L(B) is the objective recognized by B. Here, we take the
definition of an ω-regular objective as an objective that can be recognized by an NBA. Given
an automaton structure S = (Q, C, Qinit, ∆), we say that an NBA B is built on top of S if
there exists α ⊆ ∆ such that B = (Q, C, Qinit, ∆, α).

Deterministic automata. An automaton structure S = (Q, C, Qinit, ∆) is deterministic if
|Qinit| = 1 and, for each q ∈ Q and c ∈ C, there is exactly one q′ ∈ Q such that (q, c, q′) ∈ ∆
(we remark that in this paper deterministic automata are complete). A deterministic Büchi
automaton (DBA) is an NBA whose underlying automaton structure is deterministic. For a
DBA B = (Q, C, {qinit}, ∆, α), we denote by qinit the unique initial state (and we will drop the
braces around qinit in the tuple), and by δ : Q × C → Q the update function that associates to
(q, c) ∈ Q × C the only q′ ∈ Q such that (q, c, q′) ∈ ∆. We denote by δ∗ the natural extension
of δ to finite words. As transitions are uniquely determined by their first two components,
we also assume for brevity that α ⊆ Q × C.

For a DBA B, a state q ∈ Q and a word w = c1c2 . . . ∈ C∗ ∪ Cω, we denote by
B(q, w) = (q, c1, q1)(q1, c2, q2) . . . ∈ ∆∗ ∪ ∆ω the only run on w starting from q.

An objective W is DBA-recognizable if there exists a DBA B such that W = L(B).
For F ⊆ C, notice that Büchi(F ) is DBA-recognizable: it is recognized by the DBA
({qinit}, C, qinit, ∆, α) with a single state such that (qinit, c) ∈ α if and only if c ∈ F .

▶ Remark 1. The fact that a single state suffices for recognizing Büchi(F ) relies on the
assumption that our DBA are transition-based and not state-based (α is a set of transitions,
not of states). Indeed, apart from the trivial cases F = ∅ and F = C, a state-based DBA
recognizing Büchi(F ) requires two states. The third condition of our upcoming characteriza-
tion (Theorem 10) would therefore not apply to this simple example if we only considered
state-based DBA. ⌟

▶ Remark 2. DBA recognize a proper subset of the ω-regular objectives [56]. ⌟

Let B = (Q, C, qinit, ∆, α) be a DBA. We say that a finite run ϱ ∈ ∆∗ of B is α-free if it
does not contain any transition from α. For q ∈ Q, we define

α-FreeB(q) = {w ∈ C∗ | B(q, w) is α-free},

α-FreeCyclesB(q) = {w ∈ C∗ | w ∈ α-FreeB(q) and δ∗(q, w) = q}.

We call the words in the first set the α-free words from q, and the words in the second set
the α-free cycles from q.

Right congruence. Let W ⊆ Cω be an objective. For a finite word w ∈ C∗, we write
w−1W = {w′ ∈ Cω | ww′ ∈ W} for the set of winning continuations of w. We define the
right congruence ∼W ⊆ C∗ × C∗ of W as w1 ∼W w2 if w−1

1 W = w−1
2 W . Relation ∼W is an

equivalence relation. When W is clear from the context, we write ∼ for ∼W . For w ∈ C∗,
we denote by [w] ⊆ C∗ its equivalence class for ∼.
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When ∼ has finitely many equivalence classes, we can associate a natural deterministic
automaton structure S∼ = (Q∼, C, q̃init, ∆∼) to ∼ such that Q∼ is the set of equivalence
classes of ∼, q̃init = [ε], and δ∼([w], c) = [wc] [54, 44]. The transition function δ∼ is well-
defined since if w1 ∼ w2, then for all c ∈ C, w1c ∼ w2c. We call the automaton structure S∼
the prefix-classifier of W .

▶ Remark 3. Equivalence relation ∼W has only one equivalence class if and only if W is
prefix-independent. In particular, an objective has a prefix-classifier with a single state if
and only if it is prefix-independent. ⌟

We define the prefix preorder ⪯W of W : for w1, w2 ∈ C∗, we write w1 ⪯W w2 if
w−1

1 W ⊆ w−1
2 W (meaning that any continuation that is winning after w1 is also winning

after w2). Intuitively, w1 ⪯W w2 means that a game starting with w2 is always preferable to
a game starting with w1 for P1, as there are more ways to win after w2. When W is clear
from the context, we write ⪯ for ⪯W . Relation ⪯ ⊆ C∗ × C∗ is a preorder. Notice that ∼ is
equal to ⪯ ∩ ⪰. We also define the strict preorder ≺ = ⪯ \ ∼.

Given a DBA B = (Q, C, qinit, ∆, α) recognizing the objective W , observe that for w, w′ ∈
C∗ such that δ∗(qinit, w) = δ∗(qinit, w′), we have w ∼ w′. In this case, equivalence relation ∼
has at most |Q| equivalence classes. For q ∈ Q, we write abusively q−1W for the objective
recognized by the DBA (Q, C, q, ∆, α). Objective q−1W equals w−1W for any word w ∈ C∗

such that δ∗(qinit, w) = q. We extend the equivalence relation ∼ and preorder ⪯ to elements
of Q (we sometimes write ∼B and ⪯B to avoid any ambiguity).

3 Half-positionality characterization for DBA-recognizable objectives

In this section, we present our main contribution in Theorem 10, by giving three conditions
that exactly characterize half-positional DBA-recognizable objectives. These conditions are
presented in Section 3.1. Theorem 10 and several consequences of it are stated in Section 3.2.
In Section 3.3, we use this characterization to show that we can decide the half-positionality
of a DBA in polynomial time. Missing proofs for this section are in [8, Section 3], except for
the proof of Theorem 10, which is in [8, Sections 4 & 5].

3.1 Three conditions for half-positionality
We define the three conditions on objectives at the core of our characterization.

▶ Condition 1 (Total prefix preorder). We say that an objective W ⊆ Cω has a total prefix
preorder if for all w1, w2 ∈ C∗, w1 ⪯W w2 or w2 ⪯W w1.

An objective W recognized by a DBA B has a total prefix preorder if and only if the
(reachable) states of B are totally ordered for ⪯B.

▶ Example 4 (Not total prefix preorder). Let C = {a, b}. We consider the objective W

recognized by the DBA B depicted in Figure 1 (left). It consists of the infinite words starting
with aa or bb. This objective does not have a total prefix preorder: words a and b are
incomparable for ⪯W . Indeed, aω is winning after a but not after b, and bω is winning after
b but not after a. In terms of automaton states, we have that qa and qb are incomparable for
⪯B. This objective is not half-positional, as witnessed by the arena on the right of Figure 1.
In this arena, P1 is able to win when the game starts in v1 by playing a in v3, and when the
game starts in v2 by playing b. However, no positional strategy wins from both v1 and v2. ⌟

▶ Remark 5. The prefix preorder of an objective W is total if and only if the prefix preorder
of its complement W is total. ⌟

CONCUR 2022
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qinit

qa

qb

qwin

qlose

a

b

a

b

a

b

a, b•

a, b

v1

v2

v3

a

b

a

b

Figure 1 DBA B recognizing objective W = (aa + bb)Cω (left), and an arena in which positional
strategies do not suffice for P1 to play optimally for this objective (right). Transitions labeled with
a • symbol are the Büchi transitions. In figures, diamonds represent automaton states and circles
represent arena vertices controlled by P1.

▶ Remark 6. Having a total prefix preorder is equivalent to the strong monotony notion [6] in
general, and equivalent to monotony [32] for ω-regular objectives. We discuss in more depth
the relation between the conditions appearing in the characterization and other properties
from the literature studying half-positionality in [8, Appendix A]. ⌟

▶ Condition 2 (Progress-consistency). We say that an objective W is progress-consistent if
for all w1 ∈ C∗ and w2 ∈ C+ such that w1 ≺ w1w2, we have w1(w2)ω ∈ W .

Intuitively, this means that whenever a word w2 can be used to make progress after seeing
a word w1 (in the sense of getting to a position in which more continuations are winning),
then repeating this word has to be winning.

▶ Example 7 (Progress-consistent objective). We consider the DBA in Figure 2. This DBA
recognizes the objective W = Büchi({a}) ∪ C∗aaCω: W contains the words seeing a infinitely
often, or that see a twice in a row at some point. The equivalence classes for ∼W are
q−1

initW = W , q−1
a W = aCω ∪ W and q−1

aa W = Cω. This objective is progress-consistent: any
word reaching qaa is straightforwardly accepted when repeated infinitely often, and any word
w such that δ∗(qinit, w) = qa necessarily contains at least one a, and thus is accepted when
repeated infinitely often. Objective W is half-positional, which will be readily shown with
our upcoming characterization (Theorem 10).

Here, notice that the complement W of W is not progress-consistent. Indeed, a ≺W a(bab),
but a(bab)ω /∈ W . Unlike having a total prefix preorder, progress-consistency can hold for an
objective but not its complement.

Note that half-positionality of W cannot be shown using existing half-positionality
criteria [36, 6] (it is neither prefix-independent nor concave) nor bipositionality criteria, as it
is simply not bipositional. ⌟

qinit qa qaa

a•

b
•

a•b a, b•

Figure 2 A DBA recognizing the set of words seeing a infinitely many times, or aa at some point.

▶ Condition 3 (Recognizability by the prefix-classifier). Being recognized by a Büchi au-
tomaton built on top of the prefix-classifier is our third condition. In other words, for a
DBA-recognizable objective W ⊆ Cω and its prefix-classifier S∼ = (Q∼, C, q̃init, ∆∼), this
condition requires that there exists α∼ ⊆ Q∼ × C such that W is recognized by DBA
(Q∼, C, q̃init, ∆∼, α∼).
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We show an example of a DBA-recognizable objective that satisfies the first two conditions
(having a total prefix preorder and progress-consistency), but not this third condition, and
which is not half-positional.

▶ Example 8 (Not recognizable by the prefix-classifier). Let C = {a, b}. We consider the
objective W = Büchi({a}) ∩ Büchi({b}) recognized by the DBA in Figure 3. This objective
is prefix-independent: as such (Remark 3), there is only one equivalence class for ∼. This
implies that the prefix preorder is total, and that W is progress-consistent (the premise of
the progress-consistency property can never be true). This objective is not half-positional, as
witnessed by the arena in Figure 3 (right): P1 has a winning strategy from v, but it needs to
take infinitely often both a and b.

Any DBA recognizing this objective has at least two states, but all their (reachable)
states are equivalent for ∼ – no matter the state we choose as an initial state, the recognized
objective is the same (by prefix-independence). As it is prefix-independent, its prefix-classifier
S∼ has only one state. ⌟

qinit q2

b•

a
•

a b va b

Figure 3 DBA recognizing the objective Büchi({a}) ∩ Büchi({b}) (left), and an arena in which
positional strategies do not suffice for P1 to play optimally for this objective (right).

As will be shown formally, being recognized by a DBA built on top of the prefix-classifier
is necessary for half-positionality of DBA-recognizable objectives over finite one-player arenas.
The first two conditions are actually necessary for half-positionality of general objectives,
but this third condition is not, even for objectives recognized by other standard classes of
ω-automata.

▶ Example 9. We consider the complement W of the objective W = Büchi({a}) ∩ Büchi({b})
of Example 8, which consists of the words ending with aω or bω. Objective W is not
DBA-recognizable (a close proof can be found in [5, Theorem 4.50]). Still, it is recognizable
by a deterministic coBüchi automaton similar to the automaton in Figure 3, but which
accepts infinite words that visit transitions labeled by • only finitely often. This objective is
half-positional, which can be shown using [27, Theorem 6]. However, its prefix-classifier has
just one state, and there is no way to recognize W by building a coBüchi (or even parity)
automaton on top of it. ⌟

3.2 Characterization and corollaries
We have now defined the three conditions required for our characterization.

▶ Theorem 10. Let W ⊆ Cω be a DBA-recognizable objective. Objective W is half-positional
(over all arenas) if and only if

its prefix preorder ⪯ is total,
it is progress-consistent, and
it can be recognized by a Büchi automaton built on top of its prefix-classifier S∼.

High-level details about the proof of this theorem are provided in Section 4. The complete
proof of the necessity of the three conditions can be found in [8, Section 4]; the proof of the
sufficiency of the conjunction of the three conditions can be found in [8, Section 5].

CONCUR 2022
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This characterization is valuable to prove (and disprove) half-positionality of DBA-
recognizable objectives. Examples 4 and 8 are not half-positional, and they falsify respectively
the first and the third condition from the statement. On the other hand, Example 7 is half-
positional. We have already discussed its progress-consistency, but it is also straightforward
to verify that its prefix preorder is total and that it is recognizable by its prefix-classifier: the
right congruence has three totally ordered equivalence classes corresponding to the states of
the automaton of Figure 2.

We state two notable consequences of Theorem 10 and of its proof technique. The first
one is the specialization of Theorem 10 to objectives that are prefix-independent, a frequent
assumption in the literature [36, 26, 30, 24] – under this assumption, half-positionality of
DBA-recognizable objectives is very easy to understand and characterize.

▶ Proposition 11. Let W ⊆ Cω be a prefix-independent, DBA-recognizable objective. Objec-
tive W is half-positional if and only if there exists F ⊆ C such that W = Büchi(F ).

▶ Remark 12. A corollary of this result is that when W is prefix-independent, DBA-
recognizable and half-positional, we also have that W is half-positional. Indeed, the comple-
ment of objective W = Büchi(F ) is a so-called coBüchi objective, which is also known to be
half-positional (it is a special case of a parity objective [29]). This statement does not hold
in general when W is not prefix-independent, as was shown in Example 7. Moreover, the
reciprocal of the statement also does not hold, as was shown in Example 9. ⌟

▶ Remark 13. A second corollary is that prefix-independent DBA-recognizable half-positional
objectives are closed under finite union (since a finite union of Büchi conditions is a Büchi
condition). This settles Kopczyński’s conjecture for DBA-recognizable objectives. ⌟

A second consequence of Theorem 10 and its proof technique shows that half-positionality
of DBA-recognizable objectives can be reduced to half-positionality over the restricted class
of finite, one-player arenas. Results reducing strategy complexity in two-player arenas
to the easier question of strategy complexity in one-player arenas are sometimes called
one-to-two-player lifts and appear in multiple places in the literature [32, 10, 40, 13].

▶ Proposition 14 (One-to-two-player and finite-to-infinite lift). Let W ⊆ Cω be a DBA-
recognizable objective. If objective W is half-positional over finite one-player arenas, then it
is half-positional over all arenas (of any cardinality).

One-to-two-player lifts from the literature all require an assumption on the strategy
complexity of both players, and are either stated solely over finite arenas, or solely over
infinite arenas. Proposition 14, albeit set in the more restricted context of DBA-recognizable
objectives, therefore displays stronger properties than the known one-to-two-player lifts.

3.3 Deciding half-positionality in polynomial time
In this section, we assume that C is finite. We show that the problem of deciding, given
a DBA B = (Q, C, qinit, ∆, α) as an input, whether L(B) is half-positional can be solved in
polynomial time, and more precisely in time O(|C|2 · |Q|4).

We investigate how to verify each property used in the characterization of Theorem 10.
Let B = (Q, C, qinit, ∆, α) be a DBA (we assume w.l.o.g. that all states in Q are reachable
from qinit) and W = L(B) be the objective it recognizes. Our algorithm first verifies that the
prefix preorder is total and recognizability by S∼, and then, under these first two assumptions,
progress-consistency. For each condition, we sketch an algorithm to decide it, and we discuss
the time complexity of this algorithm.
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Total prefix preorder. To check that W has a total prefix preorder, it suffices to check
that the states of B are totally preordered by ⪯B. We start by computing, for each pair
of states q, q′ ∈ Q, whether q ⪯B q′, q′ ⪯B q, or none of these. This can be rephrased
as an inclusion problem for two DBA-recognizable objectives: if Bq = (Q, C, q, ∆, α) and
Bq′ = (Q, C, q′, ∆, α), we have that q ⪯B q′ if and only if L(Bq) ⊆ L(Bq′). Such a problem can
be solved in time O(|C|2 ·|Q|2) [23]. We can therefore know for all |Q|2 pairs q, q′ ∈ Q whether
q ⪯B q′, q′ ⪯B q, q′ ∼B q (as ∼B = ⪯B ∩⪰B), or none of these in time O(|Q|2 · (|C|2 · |Q|2)) =
O(|C|2 · |Q|4). In particular, the prefix preorder is total if and only if for all q, q′ ∈ Q, we
have q ⪯B q′ or q′ ⪯B q.

Recognizability by the prefix-classifier. After all the relations ⪯B and ∼B between pairs of
states are computed in the previous step, we can compute the states and transitions of the
prefix-classifier S∼ = (Q∼, C, q̃init, ∆∼) by merging all the equivalence classes for ∼B. We
assume for simplicity that Q∼ = Q

/
∼B .

We now wonder whether it is possible to recognize W by carefully selecting a set α∼ of
Büchi transitions in S∼. After a simple transformation of B (called saturation [8, Section 2]),
it actually suffices to try with the specific, easy-to-compute set of transitions of the prefix-
classifier such that all corresponding transitions in the original DBA were Büchi:

α∼ = {([q], c) ∈ Q∼ × C | ∀q′ ∈ [q], (q′, c) ∈ α}.

We then simply check whether W = L((Q∼, C, q̃init, ∆∼, α∼)), an equivalence query which,
as discussed above, can be performed in time O(|C|2 · |Q|2).

Progress-consistency. We assume that we have already checked that W is recognizable by
a Büchi automaton built on top of S∼, and that we know the (total) ordering of the states.
We show that checking progress-consistency, under these two hypotheses, can be done in
polynomial time. We state a lemma reducing the search for words witnessing that W is not
progress-consistent to a known problem on regular languages.

▶ Lemma 15. We assume that B is built on top of the prefix-classifier S∼ and that the prefix
preorder of W is total. Then, W is progress-consistent if and only if for all q, q′ ∈ Q with
q ≺B q′, {w ∈ C+ | δ∗(q, w) = q′} ∩ α-FreeCyclesB(q′) = ∅.

Notice that for each pair of states q, q′ ∈ Q, the sets {w ∈ C+ | δ(q, w) = q′} and
α-FreeCyclesB(q′) are both regular languages recognized by deterministic finite automata
with at most |Q| states. The emptiness of their intersection can be decided in time O(|C|2 ·
|Q|2) [52]. By Lemma 15, we can therefore decide whether B is progress-consistent in time
O(|Q|2 · (|C|2 · |Q|2)) = O(|C|2 · |Q|4): for all |Q|2 pairs of states q, q′ ∈ Q, if q ≺ q′, we test
the emptiness of the intersection of these two regular languages.

4 Technical sketch

We discuss each direction of the proof of Theorem 10 (necessity and sufficiency of the
conditions), for which complete arguments can be found in [8, Sections 4 & 5].

4.1 Necessity of the three conditions
The necessity of the first two conditions (total prefix preorder and progress-consistency) is
relatively straightforward: by contrapositive, we can use the words witnessing that these
properties are not satisfied to build finite one-player arenas in which positional strategies do
not suffice to play optimally.
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For the third condition, we need to show the following statement.

▶ Proposition 16. Let W ⊆ Cω be a DBA-recognizable objective that is half-positional over
finite one-player arenas. Then, W is recognized by a Büchi automaton built on top of S∼.

The proof of Proposition 16 makes extensive use of a “normal form” of Büchi automata
verifying that any α-free path can be extended to an α-free cycle [8, Section 2]. Such a
normal form can be produced by saturating a given DBA B with Büchi transitions [41, 1, 2].
To do so, we add to α all transitions that do not appear in an α-free cycle of B. This can
be done by decomposing into strongly connected components the structure obtained by
removing the Büchi transitions from B.

In Figure 4, we show an intuitive example of the saturation process.

qinit qa qaa

a•

b

a
b a, b• qinit qa qaa

a•

b
•

a•b a, b•

Figure 4 A DBA (left) and its unique saturation (right).

The proof of Proposition 16 is split in two steps: we first give a proof for prefix-independent
objectives, and then build on it for the general case.

▶ Lemma 17. Let W ⊆ Cω be a prefix-independent DBA-recognizable objective that is half-
positional over finite one-player arenas. Then, there exists F ⊆ C such that W = Büchi(F ).

Proof sketch of Lemma 17. We assume that the objective W is recognized by a DBA
B = (Q, C, qinit, ∆, α) (which has been saturated) and is prefix-independent, so all the states
of B are equivalent for ∼. The goal is to find a suitable definition for F , so that W = Büchi(F ).
To do so, we exhibit a state qmax of B that is “the most rejecting state of the automaton”: it
satisfies that the set of α-free words from qmax contains the α-free words from all the other
states (qmax is then called an α-free-maximum) and that the set of α-free cycles on qmax
contains the α-free cycles on all the other states (it is also an α-free-cycle-maximum). We
define F as the set of colors c such that (qmax, c) ∈ α.

We first show that if an α-free-maximum exists, we can assume w.l.o.g. that it is unique.
Then, we show the existence of an α-free-cycle-maximum. This part of the proof relies on
the half-positionality over finite one-player arenas of W , as well as on the saturation of B.
Finally, defining F using qmax as explained above, we prove that W = Büchi(F ). ◀

We show how to reduce the general case to the prefix-independent case.

Proof sketch of Proposition 16. We now relax the prefix-independence assumption on W .
If B has exactly one state per equivalence class of ∼, it means that it is built on top of S∼,
and we are done. If not, let q∼ ∈ Q be a state such that |[q∼]| ≥ 2. Our proof shows how
to modify B by “merging” all states in equivalence class [q∼] into a single state, while still
recognizing the same objective W . The main technical argument is to build a variant W[q∼] of
objective W on a new set of colors C[q∼], that turns out to also be half-positional over finite
one-player arenas and DBA-recognizable, but which is prefix-independent. We can therefore
use the prefix-independent case and find F[q∼] ⊆ C[q∼] such that W[q∼] = Büchi(F[q∼]). Then,
we exhibit a state qmax ∈ [q∼] whose α-free words are tightly linked to the elements of F[q∼].
Finally, we show that it is still possible to recognize W while keeping only state qmax in [q∼].
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Once we know how to merge the equivalence class [q∼] into a single state, we can simply
repeat the operation for each equivalence class with multiple states, until we obtain a DBA
built on top of S∼. ◀

4.2 Sufficiency of the conditions
We now focus on the other direction of the proof of Theorem 10. We want to show the
following statement.

▶ Proposition 18. Let W ⊆ Cω be an objective that has a total prefix preorder, is progress-
consistent, and is recognizable by a DBA built on top of S∼. Then, W is half-positional.

The main technical tool to prove Proposition 18 is the notion of well-monotonic universal
graph for an objective W , whose existence is sufficient to prove the half-positionality of W [48].
We will show how to build such a graph in our case.

Well-monotonic universal graphs. Let G = (V, E) be a graph and W ⊆ Cω be an objective.
A vertex v of G satisfies W if for all infinite paths v0

c1−→ v1
c2−→ . . . from v, we have

c1c2 . . . ∈ W .
Given two graphs G = (V, E) and G′ = (V ′, E′), a (graph) morphism from G to G′ is a

function ϕ : V → V ′ such that (v1, c, v2) ∈ E implies (ϕ(v1), c, ϕ(v2)) ∈ E′. A morphism ϕ

from G to G′ is W -preserving if for all v ∈ V , v satisfies W implies that ϕ(v) satisfies W .
Notice that if ϕ(v) satisfies W , then v satisfies W , as any path v

c1−→ v1
c2−→ . . . of G implies

the existence of a path ϕ(v) c1−→ ϕ(v1) c2−→ . . . of G′ – there are “more paths” in G′.
A graph U is (κ, W )-universal if for all graphs G of cardinality ≤ κ, there is a W -preserving

morphism from G to U .
We consider a graph G = (V, E) along with a total order ≤ on its vertex set V . We say

that G is monotonic if for all v, v′, v′′ ∈ V , for all c ∈ C,
(v c−→ v′ and v′ ≥ v′′) =⇒ v

c−→ v′′, and
(v ≥ v′ and v′ c−→ v′′) =⇒ v

c−→ v′′.
This means that (i) whenever there is an edge v

c−→ v′, there is also an edge with color c from
v to all states smaller than v′ for ≤, and (ii) whenever v ≥ v′, then v has at least the same
outgoing edges as v′. Graph G is well-monotonic if it is monotonic and the total order ≤ is a
well-order (i.e., any set of vertices has a minimum). Graph G is completely well-monotonic if
it is well-monotonic and there exists a vertex ⊤ ∈ V maximum for ≤ such that for all v ∈ V ,
c ∈ C, ⊤ c−→ v.

▶ Theorem 19 (Consequence of [48, Theorem 1.1]). Let W ⊆ Cω be an objective. If for
all cardinals κ, there exists a completely well-monotonic (κ, W )-universal graph, then W is
half-positional (over all arenas).

The exact result [48, Theorem 1.1] can actually be instantiated on more precise classes of
arenas. However, we use it to prove here half-positionality of a family of objectives over all
arenas, so the above result turns out to be sufficient.

Universal graphs for Büchi automata. We show that for a DBA-recognizable objective W ,
the three conditions from Theorem 10 imply half-positionality of W by providing a completely
well-monotonic (κ, W )-universal graph for any κ.

Let W ⊆ Cω be an objective with a total prefix preorder, that is progress-consistent, and
that is recognized by a B = (Q, C, qinit, ∆, α) built on top of S∼. We assume w.l.o.g. that B
is saturated, as in Section 4.1. For θ an ordinal, we build a graph UB,θ as follows.
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We set the vertices as UB,θ = {(q, λ) | q ∈ Q, λ < θ} ∪ {⊤}.
For every transition δ(q, c) = q′ of B,

if (q, c) ∈ α, then for all ordinals λ, λ′, we define an edge (q, λ) c−→ (q′, λ′);
if (q, c) /∈ α, then for all ordinals λ, λ′ s.t. λ′ < λ, we define an edge (q, λ) c−→ (q′, λ′).
for q′′ ≺ q′, then for all ordinals λ, λ′′, we define an edge (q, λ) c−→ (q′′, λ′′).

For all c ∈ C, v ∈ UB,θ, we define an edge ⊤ c−→ v.

We order the vertices lexicographically: (q, λ) ≤ (q′, λ′) if q ≺ q′ or (q = q′ and λ ≤ λ′), and
we define ⊤ as the maximum for ≤ ((q, λ) < ⊤ for all q ∈ Q, λ < θ).

Graph UB,θ is built such that on the one hand, it is sufficiently large and has sufficiently
many edges so that there is a morphism from any graph G (of cardinality smaller than some
function of |θ|) to UB,θ. On the other hand, for the morphism to be W -preserving, at least
some vertices of UB,θ need to satisfy W , which imposes a restriction on the infinite paths
from vertices. Graph UB,θ is actually built so that for any automaton state q ∈ Q and
ordinal λ < θ, the vertex (q, λ) satisfies q−1W [8, Section 5]. The intuitive idea is that for
a non-Büchi transition (q, c) /∈ α of the automaton such that δ(q, c) = q′, a c-colored edge
from a vertex (q, λ) in the graph either (i) reaches a vertex with first component q′, in which
case the ordinal must decrease on the second component, or (ii) reaches a vertex with first
component q′′ ≺ q′, with no restriction on the second component, but therefore with fewer
winning continuations. Using progress-consistency and the fact that there is no infinitely
decreasing sequence of ordinals, we can show that this implies that no infinite path in UB,θ

corresponds to an infinite run in the automaton visiting only non-Büchi transitions.
We give an example of this construction.

▶ Example 20. We consider again the DBA B from Example 7, recognizing the words seeing
a infinitely many times, or a twice in a row at some point. We represent the graph UB,θ,
with θ = ω in Figure 5. ⌟

0 1 · · ·qinit 0 1 · · ·qa 0 1 · · ·qaa ⊤

aa a a
a, b a, b

b

a

b

a, b

a, b

a, b

a, b

Figure 5 The graph UB,ω, where B is the automaton from Example 7 (L(B) = Büchi({a}) ∪
C∗aaCω). The dashed edge with color b indicates that (qinit, λ) b−→ (qinit, λ′) if and only if λ′ < λ

(it corresponds to the only non-Büchi transition in B). Elsewhere, an edge between two rectangles
labeled q, q′ with color c means that for all ordinals λ, λ′, (q, λ) c−→ (q, λ′). Thick edges correspond
to the original transitions of B. There are edges from ⊤ to all vertices of the graph with colors a

and b. Vertices are totally ordered from left to right.

We show that the graph UB,θ is completely well-monotonic (Lemma 21) and, for any
cardinal κ, it is (κ, W )-universal for sufficiently large θ (Proposition 22) [8, Section 5].

▶ Lemma 21. Graph UB,θ is completely well-monotonic.

▶ Proposition 22. Let κ be a cardinal, and θ′ be an ordinal such that κ < |θ′|. Let θ = |Q| ·θ′.
Graph UB,θ is (κ, W )-universal.

Thanks to these two results, we can show Proposition 18 using Theorem 19.
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