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Abstract
In this paper, we develop a novel verification technique to reason about programs featuring con-
currency, pointers and randomization. While the integration of concurrency and pointers is well
studied, little is known about the combination of all three paradigms. To close this gap, we combine
two kinds of separation logic – Quantitative Separation Logic and Concurrent Separation Logic –
into a new separation logic that enables reasoning about lower bounds of the probability to realise a
postcondition by executing such a program.
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1 Introduction and Related Work

In this paper, we aim to provide support for formal reasoning about concurrent imperative
programs that are extended by two important features: dynamic data structures and
randomisation. In other words, it deals with the analysis and verification of concurrent
probabilistic pointer programs. This problem is of practical interest as many concurrent
algorithms operating on data structures use randomisation to reduce the level of interaction
between threads. For example, probabilistic skip lists [48] work well in the concurrent
setting [17] because threads can independently manipulate nodes in the list without much
synchronisation. In contrast, scalability of traditional balanced tree structures is difficult to
achieve, since re-balancing operations may require locking access to large parts of the data
structure. Bloom filters are another example of a probabilistic data structure supporting
parallel access [8]. A further aspect is that stochastic modelling naturally arises when
analysing faulty behaviour of (concurrent) software systems, as we later demonstrate in
Section 5.

However, the combination of these features poses severe challenges when it comes to
implementing and reasoning about concurrent randomised algorithms that operate on dynamic
data structures. To give a systematic overview of related approaches, we mention that a
number of program logics for reasoning about concurrent software have been developed
[13, 14, 18, 30, 32, 43]. Next, we will address the programming-language extensions in
isolation and then consider their integration. An overview is shown in Figure 1.

Pointers. Pointers constitute an essential concept in modern programming languages,
and are used for implementing dynamic data structures like lists, trees etc. However, many
software bugs can be traced back to the erroneous use of pointers by e.g. dereferencing
null pointers or accidentally pointing to wrong parts of the heap, creating the need for
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Figure 1 Overview of programming language features and formal approaches (CQSL denotes our
concurrent extension of QSL).

computer-aided verification methods. The most popular formalism for reasoning about
such programs is Separation Logic (SL) [26, 50], which supports Hoare-style verification of
imperative, heap-manipulating and, possibly, concurrent programs. Its assertion language
extends first-order logic with connectives that enable concise specifications of how program
memory, or other resources, can be split-up and combined. In this way, SL supports local
reasoning about the resources employed by programs. Consequently, program parts can be
verified by considering only those resources they actually access – a crucial property for
building scalable tools including automated verifiers [7, 28, 42, 47], static analysers [6, 10, 20],
and interactive theorem provers [31].

The notion of resources, and in particular their controlled access, becomes even more
important in a concurrent setting. Therefore, SL has been extended to Concurrent Separation
Logic (CSL) [45] to enable reasoning about resource ownership, where the resource typically
is dynamically allocated memory (i.e., the heap). The popularity of CSL is evident by the
number of its extensions [9]. Of particular importance to our work is [53], which presents a
soundness result for CSL that is formulated in an inductive manner, matching the “small-step”
operational style of semantics. Here, we will employ a similar technique that also takes
quantitative aspects (probabilities) into account.

Randomisation. Probabilistic programs (i.e., programs with the ability to sample from
probability distributions) are increasingly popular for implementing efficient randomised
algorithms [41] and describing uncertainty in systems [11, 19], among other similar tasks. In
such applications, the purely qualitative (true vs. false) approach of classical logic is obviously
not sufficient. The method advocated by us is based on weakest precondition reasoning as
established in a classical setting by Dijkstra [12]. It has been extended to provide semantic
foundations for probabilistic programs by Kozen [34, 35] and McIver & Morgan [39]. The
latter also coined the term “weakest preexpectation” for random variables that take over the
role of logical formulae when doing quantitative reasoning about probabilistic programs –
the quantitative analogue of weakest preconditions. Their relation to operational models is
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studied in [21]. Moreover, weakest preexpectation reasoning has been shown to be useful for
obtaining bounds on the expected resource consumption [44] and, especially, the expected
run-time [33] of probabilistic programs.

However, verification techniques that support reasoning about both randomisation and
dynamic data structures are rare – a surprising situation given that randomised algorithms
typically rely on such data structures. One notable exception is the extension of SL to
Quantitative Separation Logic (QSL) [4, 5], which marries SL and weakest preexpectations.
QSL has successfully been applied to the verification of randomised algorithms, and QSL
expectations have been formalised in Isabelle/HOL [24]. The present work builds on these
results by additionally taking concurrency into account.

A prior program logic designed for reasoning about programs that are both concurrent and
randomised but do not maintain dynamic data structures is the probabilistic rely-guarantee
calculus developed by McIver et al. [40], which extends Jones’s original rely-guarantee
logic [30] by probabilistic constructs.

Later, Tassarotti & Harper [51] address the full setting of concurrent probabilistic pointer
programs by combining CSL with probabilistic relational Hoare logic [3] to obtain Polaris, a
Concurrent Separation Logic with support for probabilistic reasoning. Verification is thus
understood as establishing a relation between a program to be analysed and a program which
is known to be well-behaved. Programs which do not almost surely terminate, however, are
outside the scope of their approach. In contrast, the goal of our method is to directly measure
quantitative program properties on source-code level using weakest liberal preexpectations
defined by a set of proof rules, including possibly non-almost surely terminating programs.
Since the weakest liberal preexpectation includes non-termination probability, we can use
invariants to bound the weakest liberal preexpectation of loops from below.

The main contributions of this paper are:
the definition of a concurrent heap-manipulating probabilistic guarded command language
(chpGCL) and its operational semantics in terms of Markov Decision Processes (MDP);
a formal framework for reasoning about quantitative properties of chpGCL programs,
which is obtained by extending classical weakest liberal preexpectations by resource
invariants;
a sound proof system that supports backward reasoning about such preexpectations; and
the demonstration of our verification method on a (probabilistic) producer-consumer
example.

The remainder of this paper is organised as follows. Section 2 introduces QSL as
an assertion language for quantitative reasoning about (both sequential and concurrent)
probabilistic pointer programs. In Section 3, we present the associated programming language
(chpGCL) together with an operational semantics. Next, in Section 4 we develop a calculus for
reasoning about lower bounds of weakest liberal preexpectations. Its usage is demonstrated
in Section 5, and in Section 6 we conclude and explain further research directions. The
paper is accompanied by an extended version providing elaborated proofs and an appendix
providing additional details about the examples.

2 Quantitative Separation Logic

To reason about probability distributions over states of a program, we use Quantitative
Separation Logic (QSL) [5, 37]. QSL is an extension of classical (or qualitative) Separation
Logic in the sense that instead of mapping stack/heap pairs to booleans in order to gain a
set characterization of states, we assign probabilities to stack/heap pairs.
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25:4 Towards Concurrent Quantitative Separation Logic

▶ Definition 2.1 (Stack). Let Vars be a fixed set of variables. A stack s : Vars → Z is a
mapping from variable symbols to values. We denote the set of all stacks by Stacks.

When evaluating an (arithmetic or boolean) expression e with respect to a stack s, we write
e(s). In this sense, expressions are mappings from stacks to values. The stack that agrees
with a stack s except for the value of x, which is mapped to v, is denoted as s [x := v].

▶ Definition 2.2 (Heaps). A heap h : L → Z is a mapping from a finite subset of locations
L ⊂ N>0 to values. We denote the set of all heaps by Heaps.
We furthermore write dom (h) for the domain of h, h1 ⊥ h2 if and only if dom (h1)∩dom (h2) =
∅, and for disjoint heaps h1 ⊥ h2 we define the disjoint union of heaps h1 and h2 as

(h1 ⋆ h2)(ℓ) =


h1(ℓ) if ℓ ∈ dom (h1)
h2(ℓ) if ℓ ∈ dom (h2)
undef else .

A pair of a stack and a heap is a state of the program. The stack is used to describe the
variables of the program. The heap describes the addressable memory of the program.

▶ Definition 2.3 (Program States). A program state σ ∈ Stacks × Heaps is a pair consisting
of a stack and a heap. The set of all states is denoted by States.

Expectations are random variables that map states to non-negative reals. In this paper, we
only consider one-bounded expectations. These do not map states to arbitrary non-negative
reals, but only to reals between 0 and 1. The nomenclature of calling these expectations
rather than random variables is due to the weakest preexpectation calculus being used to
derive expectations.

▶ Definition 2.4 (Expectations). A (one-bounded) expectation X : States → [0, 1] is a mapping
from program states to probabilities. We write E≤1 for the set of all (one-bounded) expectations.
We call an expectation φ qualitative if for all (s, h) ∈ States we have that φ(s, h) ∈ {0, 1}.
We define the partial order (E≤1,≤) as the pointwise application of less than or equal, i.e.,
X ≤ Y if and only if ∀(s, h) ∈ States X(s, h) ≤ Y (s, h).

We use capital letters for regular (one-bounded) expectations and Greek letters for qualitative
expectations. As in [5], we choose to not give a specific syntax for QSL since the weakest liberal
preexpectation of a given postexpectation – for which we provide more detail in Section 3
– may not be expressible in a given syntax. Instead, we prefer to interpret expectations
as extensional objects that can be combined via various connectives. These connectives
include (but are not limited to) the pointwise-applied connectives of addition, multiplication,
exponentiation, maximum and minimum. As it is common in quantitative logics, the
maximum/minimum is the quantitative extension of disjunction/conjunction, respectively.
However, multiplication can be chosen as the quantitative extension of conjunction as well.
We denote the substitution of a variable x by the expression e in the expectation X as
X [x := e] and define it as X [x := e] (s, h) = X(s [x := e(s)] , h). When dealing with state
predicates, we use Iverson brackets [27] to cast boolean values into integers:

[b] (s, h) =
{

1 if (s, h) ∈ b

0 else

Note that we could also define predicates as mappings from states to 0 or 1. We refrain from
this, since (1) usage of Iverson brackets is standard in weakest preexpectation reasoning and
(2) we may use QSL inside of Iverson brackets.
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For a state (s, h), the empty heap predicate emp holds if and only if dom (h) = ∅, the
points-to predicate e 7→ e0, . . . , en holds if and only if dom (h) = {e(s) + 0, . . . , e(s) + n}
and ∀i ∈ {0, . . . , n} h(e(s) + i) = ei(s), the allocated predicate e 7→ − holds if and only if
dom (h) = {e(s)}, and the equality predicate e = e′ holds if and only if e(s) = e′(s).

We also use quantitative extensions of two separation connectives – the separating
conjunction and the magic wand. The quantitative extension of the separating conjunction,
which we call separating multiplication, maximises the value of the product of its arguments
applied to separated heaps:

(X ⋆ Y )(s, h) = sup {X(s, h1) · Y (s, h2) | h1 ⋆ h2 = h }

The definition of separating multiplication is similar to the classical separating conjunction:
the existential quantifier is replaced by a supremum and the conjunction by a multiplication.
Note that the set over which the supremum ranges is never empty.

The (guarded) quantitative magic wand is defined for a qualitative first argument and a
quantitative second argument. We minimise the value of the second argument applied to the
original heap joined with a heap that evaluates the first argument to 1, i.e., for qualitative
expectation φ and expectation Y we have:

(φ−−⋆ Y )(s, h) = inf {Y (s, h′′) | φ(s, h′) = 1, h′′ = h ⋆ h′ }

If the set is empty, the infimum evaluates to the greatest element of all probabilities, which
is 1. Although it is also possible to allow expectations in both arguments (cf. [5]), we restrict
ourselves to the guarded version of the magic wand. This restriction allows us to exploit the
superdistributivity of multiplication, i.e., φ−−⋆ (X · Y ) ≥ (φ−−⋆ X) · (φ−−⋆ Y ).

▶ Example 2.5. To illustrate separating operations and lower bounding in QSL, we consider
X = [x 7→ − ] ⋆ ([x 7→ y] −−⋆ (0.5 · [x 7→ − ])), Y = 0.5 · [x 7→ − ] and Z = 0.5 · [x 7→ y]. Let
us consider the semantics of X in more detail. X is non-zero only for states that allocate
exactly x. In this case, after changing the value pointed to by x to y, 0.5 is returned if x is
still allocated (which obviously holds). Thus, the combination of separating multiplication
and magic wand realises a change of value: First a pointer is removed from the heap by using
separating multiplication, and afterwards we add it back with a different value using the
magic wand. Note that [x 7→ y] is qualitative, which is required for our version of the magic
wand. Then we have X = Y and Z ≤ X.

3 Programming Language and Operational Semantics

Our programming language is a concurrent extension of the heap-manipulating and prob-
abilistic guarded command language [5]. Our language features both deterministic and
probabilistic control flow, atomic regions, concurrent threads operating on shared memory,
variable-based assignments, and heap manipulations. Although our language allows arbitrary
shared memory, we will later only be able to reason about shared memory in the heap.
Conditional choice without an else branch is considered syntactic sugar. Atomic regions
consist of programs without memory allocation or concurrency. However, probabilistic choice
is admitted. Programs that satisfy this restriction are called tame.

The reason to restrict the program fragment within atomic regions is that non-tame
statements introduce non-determinism (as addresses to be allocated and schedulings of
concurrent programs are chosen non-deterministically), which would increase the semantics’
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complexity while providing only little benefit (we refer to [1] regarding the handling of
non-tame probabilistic programs in atomic regions). If an atomic region loops with a certain
probability p, we instead transition to a non-terminating program with probability p.

▶ Definition 3.1 (Concurrent Heap-Manipulating Probabilistic Guarded Command Language).
The concurrent heap-manipulating probabilistic guarded command language chpGCL is gener-
ated by the grammar

C −→ ↓ (terminated program)
| diverge (non-terminating program)
| x := e (assignment)
| {C } [ ep ] {C } (prob. choice)
| C ; C (seq. composition)
| atomic {C } (atomic region)
| if ( b ) {C } else {C } (conditional choice)
| while ( b ) {C } (loop)
| C ∥ C (concurrency)
| x := new (e0, . . . , en) (allocation)
| free(e), (disposal)
| x := < e > (lookup)
| < e > := e′ (mutation)

where x is a variable, e, e′, ei : Stacks → Z are arithmetic expressions, ep : Stacks → [0, 1] is
a probabilistic arithmetic expression and b ⊆ Stacks is a guard.

▶ Example 3.2. We consider as running example a little program with two threads synchro-
nizing over a randomised value:

< r > := −1 ;

{ < r > := 0 } [ 0.5 ] { < r > := 1 }

∥∥∥∥∥ y := < r > ;
while ( y = −1 ) { y := < r > } ;

We first initialise our resource r with some integer that stands for an undefined value (here
−1). The first thread now either assigns 0 or 1 with probability 0.5 to r. As soon as r has a
new value, the second thread receives this value and terminates as r is not −1 any more.

We define the operational semantics of our programming language chpGCL in the form of a
Markov Decision Process (MDP for short). An MDP allows the use of both non-determinism,
which we need for interleaving multiple threads, and probabilities, which are used for encoding
probabilistic program commands. A transition between states is thus always annotated with
two parameters: (1) an action that is taken non-deterministically and (2) a probability to
transition to a state given the aforementioned action.

▶ Definition 3.3 (Markov Decision Process). A Markov Decision Process M = (U,Act,P)
consists of a countable set of states U , a mapping from states to enabled actions Act : U → 2A

for a countable set of actions A, and a transition probability function P : (U×A) → U → [0, 1]
where for all σ ∈ U and a ∈ Act(σ) we require

∑
σ′∈U P(σ, a)(σ′) = 1. We also use the

shorthand notation σ
p−→
a

σ′ for P(σ, a)(σ′) = p in case p > 0.
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ASSIGN
x := e, (s, h) 1−−−−→

assign
↓ , (s [x := e(s)] , h)

e(s) ∈ dom (h)
LOOKUP

x := < e >, (s, h) 1−−−−→
lookup

↓ , (s [x := h(e(s))] , h)

e(s) ̸∈ dom (h)
LOOKUP-ABT

x := < e >, (s, h) 1−−−−−−−→
lookup-abt

abort

e(s) ∈ dom (h)
MUT

< e > := e′, (s, h) 1−−−−−−→
mutation

↓ , (s, h [e(s) := e′(s)])

e(s) ̸∈ dom (h)
MUT-ABT

< e > := e′, (s, h) 1−−−−−−−−→
mutation-abt

abort

e(s) ∈ dom (h) h′ = h \ {e(s) 7→ h(e(s))}
FREE

free(e), (s, h) 1−−→
free

↓ , (s, h′)

e(s) ̸∈ dom (h)
FREE-ABT

free(e), (s, h) 1−−−−−→
free-abt

abort

ℓ + 0, . . . ℓ + n ∈ N>0 \ dom (h) e0(s) = v0, . . . , en(s) = vn h′ = h ⋆ {ℓ + 0 7→ v1} ⋆ · · · ⋆ {ℓ + n 7→ vn}
ALLOC

x := new (e0, . . . , en) , (s, h) 1−−−−→
alloc-ℓ

↓ , (s [x := ℓ] , h′)

Figure 2 Operational semantics of basic commands in chpGCL.

C1, (s, h) p−→
a

C ′
1, (s′, h′)

SEQ
C1 ; C2, (s, h) p−→

a
C ′

1 ; C2, (s′, h′)

C2, (s, h) p−→
a

C ′
2, (s′, h′)

SEQ-END
↓ ; C2, (s, h) p−→

a
C ′

2, (s′, h′)

C1, (s, h) p−→
a

abort
SEQ-ABT

C1 ; C2, (s, h) p−→
a

abort

C2, (s, h) p−→
a

abort
SEQ-END-ABT

↓ ; C2, (s, h) p−→
a

abort

s ∈ b IF-T
if ( b ) {C1 } else {C2 } , (s, h) 1−−→

if-t
C1, (s, h)

s ̸∈ b
IF-F

if ( b ) {C1 } else {C2 } , (s, h) 1−−→
if-f

C2, (s, h)

s ∈ b WHILE-T
while ( b ) {C1 } , (s, h) 1−−−−→

loop-t
C1 ; while ( b ) {C1 }, (s, h)

s ̸∈ b
WHILE-F

while ( b ) {C1 } , (s, h) 1−−−→
loop-f

↓ , (s, h) DIV
diverge, (s, h) 1−−→

div
diverge, (s, h)

ep(s) = p
PROB-L

{C1 } [ ep ] {C2 } , (s, h) p−−−→
prob

C1, (s, h)

ep(s) = p
PROB-R

{C1 } [ ep ] {C2 } , (s, h) 1−p−−−→
prob

C2, (s, h)

Figure 3 Operational semantics of non-concurrent control-flow operations in chpGCL.

We define the operational semantics of chpGCL as an MDP. A state in this MDP consists
of a chpGCL program to be executed and a program state (s, h). The meaning of basic
commands, i.e., assignments, heap mutations, heap lookups, memory allocation and disposal,
is defined by the inference rules shown in Figure 2. An action is enabled if and only if an
inference rule for this action exists. We use an abort keyword to indicate that a memory
access error happened and terminate at this state. We consider aborted runs as undesired
runs. The condition

∑
σ′∈U P(σ, a)(σ′) = 1 holds for all states in a chpGCL program. States

with program ↓ or abort have no enabled actions, thus the condition holds trivially for all
enabled actions a; non-probabilistic programs only have actions with trivial distributions;
states with probabilistic choice only have a single action with a biased coin-flip distribution;
and other programs are composed of these.

Control-flow statements include while loops, conditional choice, sequential composition
and probabilistic choice, and we define their operational semantics in Figure 3. For the sake
of brevity, we do not include a command to sample from a distribution.

The remaining control-flow statements handle concurrency, i.e., the concurrent execution
of two threads and the atomic execution of regions. An atomic region may only terminate
with a certain probability. The notation C, (s, h) p−→∗ . . . denotes that program C does
not terminate on state (s, h) with probability p. As mentioned before, we will only allow
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C, (s, h) p−→∗ ↓ , (s′, h′) C is tame
ATOM-END

atomic {C } , (s, h) p−−−−→
atomic

↓ , (s′, h′)
C, (s, h) p−→∗ abort C is tame

ATOM-ABT
atomic {C } , (s, h) p−−−−→

atomic
abort

C, (s, h) p−→∗ . . . C is tame
ATOM-LOOP

atomic {C } , (s, h) p−−−−→
atomic

diverge, (s, h)

C1, (s, h) p−→
a

C ′
1, (s′, h′)

CON-L
C1 ∥ C2 , (s, h) p−−−→

C1,a
C ′

1
∥∥ C2 , (s′, h′)

C2, (s, h) p−→
a

C ′
2, (s′, h′)

CON-R
C1 ∥ C2 , (s, h) p−−−→

C2,a
C1
∥∥ C ′

2 , (s′, h′)

C1, (s, h) p−→
a

abort
CON-L-ABT

C1 ∥ C2 , (s, h) p−−−→
C1,a

abort

C2, (s, h) p−→
a

abort
CON-R-ABT

C1 ∥ C2 , (s, h) p−−−→
C2,a

abort

CON-END
↓ ∥ ↓ , (s, h) 1−−−−−→

con-end
↓ , (s, h)

Figure 4 Operational semantics of concurrent control-flow operations in chpGCL.

tame programs inside atomic regions. A tame program does not require any (scheduling)
actions since its Markov model is fully probabilistic. To formally define the syntax used in
the inference rules for atomic regions, we first need to introduce schedulers, which are used
to resolve non-determinism in an MDP. There are various classes of schedulers, and indeed
we will later allow the use of different classes. However, we do require that all schedulers are
deterministic and may have a history. This especially rules out any randomised scheduler,
which would be an interesting topic, but is out of scope for the results presented here. Our
schedulers use finite sequences of MDP states as histories.

▶ Definition 3.4 (Scheduler). A scheduler is a mapping s : U+ → A from histories of states
to enabled actions, i.e., s(σ1 . . . σn) ∈ Act(σn). We denote the set of all schedulers by S.

For final states σ′ (i.e., with program ↓ or abort) and an MDP (U,Act,P), we define

reach(n, σ1, s, σ
′) =

∑[m−1∏
i=1

P(σi, s(σ1 . . . σi))(σi+1)∣∣∣∣ σ1 . . . σm ∈ Um, σm = σ′,m ≤ n

]
, (1)

σ
p−→
s

∗ σ′ iff p = lim
n→∞

reach(n, σ, s, σ′) , (2)

σ
1−p−−→
s

∗ . . . iff p =
∑

σ′ final
lim

n→∞
reach(n, σ, s, σ′) . (3)

For a function f and a predicate b, we write [f(x) | x ∈ b] for the bag consisting of the
values f(x) with x ∈ b. We use notation (1) to calculate the probability to reach the final
state σ′ from σ1 in at most n steps w.r.t s. We unroll the MDP here into the Markov
Chain induced by s after at most n steps (cf. [2, Definition 10.92]). With notation (2),
we define the reachability probability of a final state and with notation (3), we define the
probability of non-termination. We avoid reasoning about uncountable sets of paths in case of
non-termination by taking the probability to not reach a final state, i.e., a state with program
↓ or abort. A scheduler s is unique if for every state σ ∈ U there is at most one enabled
action s can map to, i.e., |Act(σ)| ≤ 1. In that case, we usually omit the corresponding
transition label.

To reason about the operational semantics using QSL, we use weakest liberal preexpecta-
tions [5, 38], which take the greatest lower bound of the expected value with respect to a
postexpectation together with the probability of non-termination for all schedulers that we
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want to consider. We allow subsets of schedulers S ⊆ S in order to apply fairness conditions.
Later, we only consider the complete set of schedulers. In that case, we omit the superscript
from the function wlp, which is defined in the following.

▶ Definition 3.5 (Weakest Liberal Preexpectation). For a program C and an expectation X,
we define the weakest liberal preexpectation with respect to a set of schedulers ∅ ≠ S ⊆ S as

wlpSJCK (X) (s, h) = inf
{∑[

p ·X(s′, h′) | C, (s, h) p−→
s

∗ ↓ , (s′, h′)
]

+ pdiv∣∣∣∣ s ∈ S and C, (s, h) pdiv−−−→
s

∗ . . .

}
.

▶ Example 3.6. For program C in Example 3.2, we evaluate (without proof)
wlpJCK ([y = 0]) = wlpSJCK ([y = 0]) = 0.5 ⋆ [r 7→ − ]. That is, if r is allocated, then the
likelihood of C terminating without aborting in a state in which y equals 0 is 0.5, and zero
otherwise. We will prove that this is a lower bound in Example 4.2.

4 Weakest Safe Liberal Preexpectations

For sequential probabilistic programs, a backwards expectation transformer can be defined
to compute wlp [5]. This is not feasible for concurrent programs due to the non-locality
of shared memory. Instead, we drop exact computation in our approach and reason about
lower bounds of wlp by using inference rules similar to Hoare triples. To support shared
memory, we furthermore introduce a modified version of wlp – the weakest resource-safe
liberal preexpectation. The general idea as inspired by [53] is to prove that the shared memory
is invariant with respect to a qualitative expectation, which we call a resource invariant. In
other words, the shared memory is proven to be safe with respect to the resource invariant.
We archive this by enforcing that at every point in the program’s execution (except for
executions in atom regions), some part of the heap is satisfied by the resource invariant.
In Example 4.2 we use the resource invariant max { [r 7→ 0], [r 7→ −1] } to prove the lower
bound from Example 3.6. We enforce that the program states do not include the shared
memory any more, the transitions however are taken with any possible shared memory.

▶ Definition 4.1 (Weakest Resource-Safe Liberal Preexpectation). We first consider the
expectation after one step with respect to a mapping from programs to expectations, that is,
for a program C and a mapping t : chpGCL → E≤1, we define

stepJCK (t) (s, h) = inf
{∑[

p · t(C ′)(s′, h′) | C, (s, h) p−→
a

C ′, (s′, h′)
]

∣∣∣∣ a ∈ Act(C, (s, h))
}
.

We define the weakest resource-safe liberal preexpectation after n steps for a program C, a
postexpectation X and a (qualitative) resource invariant ξ as

wrlpnJCK (X | ξ) =


1 if n = 0
X if n ̸= 0 and C = ↓
ξ −−⋆ stepJCK

(
λC ′. wrlpn−1JC

′K (X | ξ) ⋆ ξ
)

otherwise1.

1 We use λC′. X for the function which, when applied to the argument C, reduces to X in which every
occurrence of C′ in X is replaced by C.
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Finally, we define the weakest resource-safe liberal preexpectation for arbitrarily many steps as

wrlpJCK (X | ξ) = lim
n→∞

wrlpnJCK (X | ξ) .

An important observation is that for the special resource invariant [emp], wlp and wrlp
coincide (cf. [16]). This enables us to reason about lower bounds for probabilities of qualitative
preconditions (and in general lower bounds for the expected value of one-bounded random
variables). When reasoning about such probabilities, we first express a property for which
we aim to prove a lower bound on wlp, afterwards we can transform it into wrlp with the
resource invariant [emp] and use special rules to enrich the resource invariant with more
information. The resource invariant should always cover all possible states that the shared
memory may be in at any time during the program’s execution. It is fine if the resource
invariant is violated during executions of atomic regions, since we only care about safeness
during executions with inferences between threads.

We mention that wrlp is heavily inspired by [53]. We formalise the connection between
Vafeiadis’ Concurrent Separation Logic and our weakest resource-safe liberal preexpectation
below. In [53] a judgement is defined by a safe predicate that is similar to how we defined
wrlp.

▶ Definition 4.1 (Safe Judgements [53]). The predicate safen(C, s, h, ξ, φ) holds for qualitative
φ and ξ and non-probabilistic program C if and only if
1. if n = 0, then it holds always; and
2. if n > 0 and C = ↓ , then φ(s, h) = 1; and
3. if n > 0 and for all hξ and hF with ξ(s, hξ) = 1 and h ⊥ hξ ⊥ hF , then for all enabled

actions a ∈ Act(C, (s, h ⋆ hξ ⋆ hF )) we do not have C, (s, h ⋆ hξ ⋆ hF ) 1−→
a

abort; and
4. if n > 0 and for all hξ, hF , C

′, s and h, with ξ(s, hξ) = 1, and h ⊥ hξ ⊥ hF , and
C, (s, h ⋆ hξ ⋆ hF ) 1−→

a
C ′, (s′, h′), then there exists h′′ and h′

ξ such that h′ = h′′ ⋆ h′
ξ ⋆ hF

and ξ(s′, h′
ξ) = 1 and safen−1(C ′, s′, h′′, ξ, φ).

For qualitative φ, ψ and ξ, we say that ξ |= {ψ} C {φ} holds if and only if for all stack/heap
pairs s, h the statement ψ(s, h) = 1 ⇒ ∀n ∈ N. safen(C, s, h, ξ, φ) holds.

A program C is framing enabled2 if we can always extend the heap without changing the
behaviour of C.

▶ Definition 4.2 (Framing Enabledness). A non-probabilistic program C is framing enabled
if for all heaps hF with h ⊥ hF and all enabled actions a ∈ Act(C, (s, h ⋆ hF )), it holds: if
C, (s, h) 1−→

a
C ′, (s′, h′), then also C, (s, h ⋆ hF ) 1−→

a
C ′, (s′, h′ ⋆ hF ).

The next theorem states that wrlp is a conservative extension of safe.

▶ Theorem 4.1 (Conservative Extension of Concurrent Separation Logic). For a framing-enabled
non-probabilistic program C and qualitative expectations φ, ψ and ξ, we have

φ ≤ wrlpJCK (ψ | ξ) iff ξ |= {φ} C {ψ} .

Proof. See [16]. ◀

2 Indeed every non-probabilistic chpGCL program is framing enabled (cf. [16]).
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term
X ≤ wrlpJ ↓ K (X | ξ)

Y ≤ supv∈Z [e 7→ v] ⋆ ([e 7→ v] −−⋆ X [x := v])
look

Y ≤ wrlpJx := < e >K (X | ξ)

Y ≤ infv∈Z [v 7→ e1, . . . , en] −−⋆ X [x := v]
alloc

Y ≤ wrlpJx := new (e1, . . . , en)K (X | ξ)

Y ≤ X [x := e] assign
Y ≤ wrlpJx := eK (X | ξ)

Y ≤ [e 7→ − ] ⋆ (
[
e 7→ e′]−−⋆ X)

mut
Y ≤ wrlpJ< e > := e′K (X | ξ)

Y ≤ X ⋆ [x 7→ − ]
disp

Y ≤ wrlpJfree(x)K (X | ξ)

Figure 5 Proof rules for wrlp for basic commands.

X ≤ wrlpJC1K (Y | ξ) Y ≤ wrlpJC2K (Z | ξ) seq
X ≤ wrlpJC1 ; C2K (Z | ξ)

X1 ≤ wrlpJC1K (Y | ξ) X2 ≤ wrlpJC2K (Y | ξ)
if[b] · X1 + [¬b] · X2 ≤ wrlpJif ( b ) { C1 } else { C2 }K (Y | ξ)

I ≤ [b] · X + [¬b] · Y X ≤ wrlpJCK (I | ξ)
while

I ≤ wrlpJwhile ( b ) { C }K (Y | ξ)
div

X ≤ wrlpJdivergeK (Y | ξ)

X1 ≤ wrlpJC1K (Y | ξ) X2 ≤ wrlpJC2K (Y | ξ)
p-choice

ep · X1 + (1 − ep) · X2 ≤ wrlpJ{ C1 } [ ep ] { C2 }K (Y | ξ)
X ≤ wrlpJCK (Y ⋆ ξ | [emp])

atomic
X ≤ wrlpJatomic { C }K (Y | ξ)

X ≤ wrlpJCK (Y | ξ ⋆ π)
share

X ⋆ π ≤ wrlpJCK (Y ⋆ π | ξ)

X1 ≤ wrlpJC1K (Y1 | ξ) X2 ≤ wrlpJC2K (Y2 | ξ) ∀i ∈ {1, 2} Write(Ci) ∩ Vars (C3−i, Y3−i, ξ) = ∅
concur

X1 ⋆ X2 ≤ wrlpJC1 ∥ C2 K (Y1 ⋆ Y2 | ξ)

Figure 6 Proof rules for wrlp for control-flow commands.

We define wrlp inductively by means of a number of inference rules. We do not use classic
Hoare triples due to difficulties arising when interpreting a wrlp statement forward. These
difficulties are due to Jones’s counterexample [29, p. 135]: Given the constant preexpectation
0.5 and the program C : {x := 0 } [ 0.5 ] {x := 1 }, what is the postexpectation? Two possible
answers are 0.5 = wlpJCK ([x = 0]) and 0.5 = wlpJCK ([x = 1]), but a combination of both is
not possible. For this reason, we highlight the backwards interpretation of our judgements
by writing them as X ≤ wrlpJCK (Y | ξ), where X is a (lower bound for the weakest liberal)
preexpectation, C is the program, Y is the postexpectation and ξ is the resource invariant.

For basic commands, as shown in Figure 5, we can just re-use the QSL proof rules for
weakest liberal preexpectations (wlp) of non-concurrent programs, as given in [5]. However,
for wrlp these proof rules only allow lower bounding the preexpectation since we do not want
to reason about the resource invariant if not necessary.

For commands handling control flow, as shown in Figure 6, we use mostly standard rules.
Atomic regions regain access to the resource invariant. The share rule allows us to enrich the
resource invariant. The rule for concurrency enforces that only local variables or read-only
variables are used in each thread. One could as well allow shared variables that are owned
by the resource invariant. However, for the sake of brevity we do not include this here.

We also introduce several proof rules that make reasoning easier, see Figure 7. A program
is almost surely terminating with respect to a set of schedulers if the program terminates
with probability one for every initial state and every scheduler in this set. Even though there
is a plethora of work on almost-sure termination for (sequential) probabilistic programs (cf.
[25] for an overview), techniques for checking almost-sure termination in a concurrent setting
are sparse [22, 23, 36, 52]. Here, interpreting probabilistic choice as non-determinism and
proving sure termination instead using techniques such as [15, 49] is an alternative.
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X ′ ≤ wlpSJCK (X) Y ′ ≤ wlpSJCK (Y ) C is AST w.r.t. S a ∈ R≥0 superlin
a ·X ′ + Y ′ ≤ wlpSJCK (a ·X + Y )

X ≤ wrlpJCK (Y | [emp])
wlp-wrlp

X ≤ wlpSJCK (Y )
X ≤ wrlpJCK (Y | ξ) Write(C) ∩ Vars (Z) = ∅

frame
X ⋆ Z ≤ wrlpJCK (Y ⋆ Z | ξ)

X ⋆ ξ ≤ wrlpJCK (Y ⋆ ξ | [emp]) C is a terminating atom
atom

X ≤ wrlpJCK (Y | ξ)

X ≤ X ′ X ′ ≤ wrlpJCK
(
Y ′ | ξ

)
Y ′ ≤ Y

monotonic
X ≤ wrlpJCK (Y | ξ)

X ≤ wrlpJCK (Y | ξ) X ′ ≤ wrlpJCK
(
Y ′ | ξ

)
max

max
{
X, X ′ } ≤ wrlpJCK

(
max

{
Y, Y ′ } | ξ

)
X ≤ wrlpJCK (Y | ξ) X ′ ≤ wrlpJCK

(
Y ′ | ξ

)
ξ precise

min
min

{
X, X ′ } ≤ wrlpJCK

(
min

{
Y, Y ′ } | ξ

)
X ≤ wrlpJCK (Y | ξ) X ′ ≤ wrlpJCK

(
Y ′ | ξ

)
ξ precise Write(C) ∩ Vars (e) = ∅

convex
e ·X + (1 − e) ·X ′ ≤ wrlpJCK

(
e · Y + (1 − E) · Y ′ | ξ

)
Figure 7 Auxiliary proof rules for wrlp.

The first rule in Figure 7 uses superlinearity to split a given postexpectation into a sum
of postexpectations, for which proving a lower bound on the preexpectation might be easier.
We only allow the use of superlinearity for wlp (and not for wrlp) because we need a restricted
set of schedulers to enforce fairness conditions. Fairness conditions are required to reason
about termination for concurrent programs with some sort of blocking behaviour. We are
then able to transform wlp into wrlp by using the wlp-wrlp rule. Whether wrlp can also be
defined with fairness conditions in mind and thus applying superlinearity directly on wrlp, is
an open question. The frame rule is of central importance to the Separation Logic approach,
as it supports local reasoning about only the relevant part of the heap [46]. The atom rule
can be used similarly to the rule for atomic regions. Monotonicity is the quantitative version
of the rule of consequence and is used to reduce and increase the post- and preexpectation
respectively. The max, min and convex rules eliminate max, min and convex sum operations,
respectively. The min and convex rule require preciseness of the resource invariant – similarly
to how [53] required preciseness for the conjunction rule. An expectation is precise if for any
stack there is at most one heap for which the expectation is not zero. For the min rule, this
is not surprising as the minimum behaves like conjunction in case of qualitative expectations.
Requiring preciseness also for the convex rule is due to the missing superlinearity of the
separating multiplication for non-precise expectations.

▶ Theorem 4.2 (Soundness of proof rules). For every proof rule in Figures 5–7 it holds that
if their premises hold, the conclusion holds as well.

Proof. See [16]. ◀

▶ Example 4.2. We are now able to establish the lower bound computed in Example 3.6 using
the proof rules. Instead of constructing a proof tree by composing inference rules, we annotate
program locations with their respective pre- and postexpectations. The interpretation is
standard; for preexpectation X, postexpectation Y , resource invariant ξ and program C:

( X | ξ

C

( Y | ξ

iff X ≤ wrlpJCK (Y | ξ)
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Proofs in this style should only be read backwards from bottom to top. They will not
include applications of the proof rules for atomic programs and of the share rule as this
may lead to incorrect interpretations. For our example, we use the resource invariant
ξ = max { [r 7→ 0], [r 7→ −1] }, which we guessed by collecting all possible values stored in
location r during executions yielding our postexpectation. We assume that the memory
of the initial heap h only contains a single location r with value −1. This assumption is
reflected by the resource invariant and will only allow us to reason about executions with
such an initial heap. The other possible value for the location r is 0, since the left program
may mutate the heap. Indeed, there are also executions where the value of location r is 1.
For these, the program only terminates in states violating the postexpectation [y = 0]. We
can further show:

( 0.5 ⋆ 1 | ξ

( 0.5 | ξ

{ < r > := 0 } [ 0.5 ] { < r > := 1 }
( 1 | ξ

∥∥∥∥∥∥∥∥∥∥∥∥

( 1 | ξ

y := < r > ;
( max { [y = 0], [y = −1] } | ξ

while ( y = −1 ) { y := < r > } ;
( [y = 0] | ξ

( 1 ⋆ [y = 0] | ξ

To handle concurrency, we separate our postexpectation into the expectation 1 for the left
program and the expectation [y = 0] for the right program. The left program includes a
probabilistic choice, for which we use the atom rule to infer that the preexpectation is 1 in
the left branch of the probabilistic choice, as the resource invariant allows mutating the value
of location r to 1 and the resource invariant can be re-established since we can lower bound
all possible values for the location r that are not −1 or 0 to zero. Moreover, we lower bound
the right branch of the probabilistic choice by zero, because zero is a lower bound of any
expectation. The right program iterates until the value of location r has been mutated. Our
resource invariant contains all possible values that the program can expect here. For the
loop invariant, we connect all possible values of y using a disjunction over 0 and −1, as we
disregard executions where y = 1. Lastly, we can apply the loop invariant to the lookup of r
and since this matches our resource invariant, the resulting preexpectation is one.

Thus, we have established that 0.5 ≤ wrlpJCK ([y = 0] | ξ). Using the share rule we
can further infer that 0.5 ⋆ ξ ≤ wrlpJCK ([y = 0] ⋆ ξ | [emp]). Lastly, we can clean up the
statement using monotonicity and the wlp-wrlp rule to obtain 0.5 ⋆ ξ ≤ wlpJCK ([y = 0]). For
details on the probabilistic choice and the loop invariant, we refer to Appendix A.1.

5 Example: A Producer, a Consumer and a Lossy Channel

A producer-consumer system is often used when presenting verification techniques for
concurrent programs. We continue this tradition, extending this example by probabilistic
elements, see Figure 8. Video and audio streaming is an example for such a system, where
data losses are acceptable if they do not exceed a certain limit. Moreover, by enriching the
resource invariant with a predicate defining an appropriate data structure, this example can
be used as a template to reason about systems communicating using a shared data structure.
We consider a producer that randomly generates data (1 or 2) and stores it in an array of
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l := 0 ;
y1, y2, y3 := k ;

while ( y1 ≥ 0 ) {
{ x1 := 1 } [ 0.5 ] { x1 := 2 } ;
< z1 + y1 > := x1 ;
y1 := y1 − 1

}

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

while ( y2 ≥ 0 ) {
x2 := < z1 + y2 > ;
if ( x2 ̸= 0 ) {

{< z2 + y2 > := x2}
[ p ]

{< z2 + y2 > := −1} ;
y2 := y2 − 1

}
}

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

while ( y3 ≥ 0 ) {
x3 := < z2 + y3 > ;
if ( x3 ̸= 0 ) {

if ( x3 ̸= −1 ) {l := l + 1} ;
y3 := y3 − 1

}
}

Figure 8 A program consisting of the tree threads: a producer (left), a consumer (right) and
lossy channel (middle) for communication between the prior threads.

size k indexed by z1. The data has to be transferred to a consumer. However, the consumer
does not have direct access to the array maintained by the producer. Instead a third party,
the lossy channel, transfers data from the array maintained by the producer to a different
k-sized array that is indexed by z2, and that can be accessed by the consumer. However,
the channel is not reliable. With a probability of 1 − p, it loses a value and instead stores
invalid data (encoded as −1) at the respective array position. The consumer discards invalid
data and counts in l how many valid elements it received until all array elements have been
attempted to be transmitted once. For the sake of brevity, we leave out the allocation of the
array index z1 and z2. Instead, we assume already allocated arrays as input.

We are interested in the probability that the data of a certain set of locations has
been successfully transmitted. If we additionally prove that the program is almost surely
terminating for some reasonable set of fair schedulers, we can use superlinearity to prove
lower bounds of probabilities for even more complex postconditions, e.g. the probability
that at least half of the data have been transmitted successfully. Indeed, the program is
almost surely terminating under a fairness condition. We denote the set of locations that we
want to be successfully transmitted as J . For the resource invariant, we use a big separating
multiplication. Its semantics is as expected: for a stack s, we connect all choices for the
index variable with regular separating multiplications. The resource invariant describes
the values we want to tolerate for every entry in both arrays. We join the tolerated values
by a disjunction (which is the maximum in our case). We now use the resource invariant,
parametrised on the set J as

ξJ =
(

⋆
i∈{0,...,k}

max { [z1 + i 7→ 0] , [z1 + i 7→ 1] , [z1 + i 7→ 2] }

)

⋆

(
⋆

i∈{0,...,k}∩J

max { [z2 + i 7→ 0] , [z2 + i 7→ 1] , [z2 + i 7→ 2] }

)

⋆

(
⋆

i∈{0,...,k}\J

max { [z2 + i 7→ 0] , [z2 + i 7→ −1] }

)
.

Next, we can use the resource invariant to prove an invariant for each of the three
concurrent programs. The corresponding calculations can be found in Appendix A.2. Let
C1 be the producer, C2 the channel and C3 the consumer. For the producer program C1
we can prove the invariant I1 = 1 with respect to the postexpectation 1, for the channel
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C2 we can prove the invariant I2 = [0 ≤ y2 ≤ k] · p|{0,...,y2}∩J| · (1 − p)|{0,...,y2}\J| + [y2 < 0]
with respect to the postexpectation 1, and for the consumer program C3 we can prove the
invariant I3 = [0 ≤ y3 ≤ k] · [l = |J ∩ {0, . . . , y3}|] + [y3 < 0] · [l = |J |] with respect to the
postexpectation [l = |J |]. Using all three invariants, we can now lower bound the probability
that l = |J | holds after the execution of the whole program C in Figure 8:

( [0 ≤ k] · p|{0,...,k}∩J| · (1 − p)|{0,...,k}\J| | ξJ

l := 0 ;
y1, y2, y3 := k ;
( I1 ⋆ I2 ⋆ I3 | ξJ

C1 ∥ C2 ∥ C3

( 1 ⋆ 1 ⋆ [l = |J |] | ξJ

Here, we first use the concurrency rule to place the postexpectation [l = |J |] into a separating
context, thus covering all three programs. The resulting preexpectation is indeed the
separating multiplication of the respective invariants. By applying the assignment rules to
the first two rows, we finally get the result for a lower bound of the weakest resource-safe
preexpectation with respect to resource invariant ξJ . Thus, the lower bound ([0 ≤ k] ·
p|{0,...,k}∩J| · (1 − p)|{0,...,k}\J|) ⋆ ξJ ≤ wlpSJCK ([l = |J |] ⋆ ξJ) also holds. We also show
in Appendix A.2 how to prove the lower bound of more difficult postexpectations using
superlinearity.

6 Conclusion and Future Work

Using resource invariants from Concurrent Separation Logic [53] together with quantitative
reasoning from Quantitative Separation Logic [5] allows us to reason about lower-bound
probabilities of realizing a postcondition. In our technique, probability mass is local to
the thread. This insight gave rise to only allow qualitative expectations in the model of
the environment. By this, the resource invariant only describes shared memory and lacks
semantics for global probability mass.

However, we may favour a probabilistic model of the environment – for example, if the
environment is a black box and only statistic information about its possible behaviours is
available. More research is required for logics allowing probabilistic specifications in the
environment description, especially logics allowing quantitative resource invariants. Moreover,
we are only able to verify lower bounds due to the concurrent rule. We conjecture that a
logic for upper bounds requires different, unknown separation connectives.
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A Details on Examples

A.1 Additional Details on the Running Example
To recap, we are given the resource invariant ξ = max { [r 7→ 0], [r 7→ −1] } and have already
proven:

( 0.5 ⋆ 1 | ξ

( 0.5 | ξ

{ < r > := 0 } [ 0.5 ] { < r > := 1 }
( 1 | ξ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

( 1 | ξ

( 1 ⋆ ξ
y := < r > ;
( max { [y = 0], [y = −1] } ⋆ ξ
( max { [y = 0], [y = −1] } | ξ

while ( y = −1 ) { y := < r > } ;
( [y = 0] | ξ

( 1 ⋆ [y = 0] | ξ

The mutation < r > := −1 together with the atom rule gives us the inequality

0.5 ⋆ [r 7→ − ] ≤ [r 7→ − ] ⋆ ([r 7→ −1] −−⋆ 0.5 ⋆max { [r 7→ 0], [r 7→ −1] }) .

However, it is easy to verify that ([r 7→ −1] −−⋆ 0.5 ⋆max { [r 7→ 0], [r 7→ −1] }) simplifies to
0.5, which results in the given lower bound.

For the probabilistic choice we have:

( 0.5 | ξ

( 0.5 · 1 + 0.5 · 0 | ξ
( 1 | ξ

< r > := 0
( 1 | ξ

 [ 0.5 ]


( 0 | ξ

< r > := 1
( 1 | ξ


( 1 | ξ

The right part is rather simple, as we can always lower bound anything by zero. The
left part holds since with [r 7→ 0] the mutation is satisfied, however the value before mu-
tating r is unknown. We can lower bound the resulting preexpectation 1 ⋆ [r 7→ − ] by
1 ⋆ max { [r 7→ −1], [r 7→ 0] } and thus realise the resource invariant again. For the loop
invariant max { [y = 0], [y = −1] } we have:

( max { [y = 0], [y = −1] } | ξ

y := < r >

( max { [y = 0], [y = −1] } | ξ

The lookup operation here results in both [y = 0] and [y = 1] to be evaluated to 1 if [r 7→ 0]
and [r 7→ −1], respectively. Our resource invariant guarantees this, thus we obtain the
expectation 1 and lower bound it by max { [y = 0], [y = −1] }. Lastly we check that it is
indeed a loop invariant:

[y = −1] · max { [y = 0], [y = −1] } + [y ̸= −1] · [y = 0]
= [y = −1] + [y = 0]
= max { [y = 0], [y = −1] }
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A.2 Example: A Producer, a Consumer and a lossy Channel

Here we have the following program C:

l := 0 ;
y1, y2, y3 := k ;

while ( y1 ≥ 0 ) {
{ x1 := 1 } [ 0.5 ] { x1 := 2 } ;
< z1 + y1 > := x1 ;
y1 := y1 − 1

}

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

while ( y2 ≥ 0 ) {
x2 := < z1 + y2 > ;
if ( x2 ̸= 0 ) {

{< z2 + y2 > := x2}
[ p ]

{< z2 + y2 > := −1} ;
y2 := y2 − 1

}
}

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

while ( y3 ≥ 0 ) {
x3 := < z2 + y2 > ;
if ( x3 ̸= 0 ) {

if ( x3 ̸= −1 ) {l := l + 1} ;
y3 := y3 − 1

}
}

We use the resource invariant ξJ for a set J . The set J encodes which locations in the array
starting from z2 will have an error value of −1 or a valid value of 1 or 2 after the channel inserts
data into it. We use a big separating multiplication to connect all the possible instantiations
using separating multiplication. That is, ⋆{X} = X and ⋆({X} ∪ A) = X ⋆⋆A for a
non-empty and countable set A. ξJ declares that all locations between z1 and z1 + k have
either value 0, 1 or 2 and all locations between z2 and z2 + k have values 0, 1 or 2 if the offset
is in J and 0 or −1 if the offset is not in J . The value 0 is always possible for all locations
between zi and zi + k since we assume 0 to be the initial value. We connect the predicates
declaring possible values for the location zj + i using a maximum, which acts as a qualitative
disjunction here.

ξJ =
(

⋆
i∈{0,...,k}

max { [z1 + i 7→ 0] , [z1 + i 7→ 1] , [z1 + i 7→ 2] }

)

⋆

(
⋆

i∈{0,...,k}∩J

max { [z2 + i 7→ 0] , [z2 + i 7→ 1] , [z2 + i 7→ 2] }

)

⋆

(
⋆

i∈{0,...,k}\J

max { [z2 + i 7→ 0] , [z2 + i 7→ −1] }

)
.

We will leave out computations of inequalities X ≤ Y for the sake of brevity and give an
explanation instead. Since our representation of expectations may grow in size, we use a
curly bracket after the ( symbol to denote expectations which are too long for one line. Our
goal is to prove a lower bound on the probability that l = |J | is realised after termination.
If J contains numbers outside the range between 0 and k, we may as well replace |J | with
|J ∩ {0, . . . , k}|. We now prove an invariant for each of the three subprograms.
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For the producer C1, we prove the invariant I1 = 1 with respect to the postexpectation 1
and resource invariant ξJ . This shows indeed that the probability of safe execution of the
loop is one and that our resource invariant ξJ almost always holds.

( 1 | ξJ
( 1 | ξJ

( [1 ∈ {0, . . . , 2}] | ξJ

x1 := 1
( [x1 ∈ {0, . . . , 2}] | ξJ

 [ 0.5 ]


( 1 | ξJ

( [2 ∈ {0, . . . , 2}] | ξJ

x1 := 2
( [x1 ∈ {0, . . . , 2}] | ξJ

 ;

( [x1 ∈ {0, . . . , 2}] | ξJ

< z1 + y1 > := x1 ;
( 1 | ξJ

y1 := y1 − 1
( 1 | ξJ

The inequality

[x1 ∈ {0, . . . , 2}] ⋆ ξJ ≤ [z1 + y1 7→ − ] ⋆ ([z1 + y1 7→ x1] −−⋆ (1 ⋆ ξJ))

resulting from the mutation < z1 + y2 > := x1 together with the atom rule holds because
for [z1 + y1 7→ x1] −−⋆ (1 ⋆ ξJ) to be non-zero, x1 must coincide with ξJ – thus x1 has to
be either 0, 1 or 2. Furthermore, we have that [z1 + y1 7→ i] ≤ [z1 + y1 7→ − ] holds for
every i, and obtain by this that i ∈ {0, . . . , 2}, with which we re-establish ξJ . We have
[y1 ≥ 0] · 1 + [y1 < 0] · 1 = 1 and therefore 1 is a loop invariant.

For the channel C2, we use the shorthand notation P (y) to denote cumulated probability
mass and define it as

P (y) = p|{0,...,y}∩J| · (1 − p)|{0,...,y}\J| .

This shorthand notation gives us the probability that all data with offset 0 up to y are
transferred according to J . That is, if an element should have been transferred successfully,
we multiply with p and if not with 1 − p for every location up to y2. We prove for the
invariant I2 = [0 ≤ y2 ≤ k] · P (y2) + [y2 < 0] with respect to the postexpectation 1 and
resource invariant ξJ :

( [0 ≤ y2 ≤ k] · P (y2) + [y2 < 0] | ξJ

(

{
[x2 ̸= 0] · [0 ≤ y2 ≤ k] · P (y2)
+ [x2 = 0] · ([0 ≤ y2 ≤ k] · P (y2) + [y2 < 0]) | ξJ

x2 := < z1 + y2 > ;

(


[x2 ̸= 0] · [0 ≤ y2 ≤ k] · P (y2 − 1) · (p · [y2 ∈ J ] · [x2 ∈ {1, . . . , 2}]

+ (1 − p) · [y2 ̸∈ J ])
+ [x2 = 0] · ([0 ≤ y2 ≤ k] · P (y2) + [y2 < 0])

| ξJ

if (x2 ̸= 0 ) {
( [0 ≤ y2 ≤ k] · P (y2 − 1) · (p · [y2 ∈ J ] · [x2 ∈ {0, . . . , 2}] + (1 − p) · [y2 ̸∈ J ]) | ξJ

{
( ([0 ≤ y2 ≤ k] · P (y2 − 1)) · [y2 ∈ J ] · [x2 ∈ {0, . . . , 2}] | ξJ
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( ([1 ≤ y2 ≤ k] · P (y2 − 1) + [y2 = 0]) · [y2 ∈ J ] · [x2 ∈ {0, . . . , 2}] | ξJ

< z2 + y2 > := x2

( [1 ≤ y2 ≤ k + 1] · P (y2 − 1) + [y2 < 1] | ξJ

}
[ p ]

{
( ([0 ≤ y2 ≤ k] · P (y2 − 1)) · [y2 ̸∈ J ] | ξJ

( ([1 ≤ y2 ≤ k] · P (y2 − 1) + [y2 = 0]) · [y2 ̸∈ J ] | ξJ

< z2 + y2 > := −1 ;
( [1 ≤ y2 ≤ k + 1] · P (y2 − 1) + [y2 < 1] | ξJ

}
( [1 ≤ y2 ≤ k + 1] · P (y2 − 1) + [y2 < 1] | ξJ

( [0 ≤ y2 − 1 ≤ k] · P (y2 − 1) + [y2 − 1 < 0] | ξJ

y2 := y2 − 1
( [0 ≤ y2 ≤ k] · P (y2) + [y2 < 0] | ξJ

}
( [0 ≤ y2 ≤ k] · P (y2) + [y2 < 0] | ξJ

We explain some of the difficult inequalities in the previous proof. We start with the inequality

(([1 ≤ y2 ≤ k] · P (y2 − 1) + [y2 = 0]) · [y2 ̸∈ J ]) ⋆ ξJ

≤ [z2 + y2 7→ − ] ⋆ ([z2 + y2 7→ −1] −−⋆ ([1 ≤ y2 ≤ k + 1] · P (y2 − 1) + [y2 < 1]) ⋆ ξJ

resulting from the mutation < z2 + y2 > := −1 together with the atom rule. This inequality
holds since for the part [z2 + y2 7→ −1] −−⋆ . . . to be non-zero, we require y2 ̸∈ J due to ξJ .
We lower bound all evaluations where y2 < 0 by 0 as we can not infer any information about
these locations from ξJ . Afterwards, we can lower bound [z2 + y2 7→ − ] by [z2 + y2 7→ i] for
every i and thus re-establish ξJ .

Next we have the inequality

(([1 ≤ y2 ≤ k] · P (y2 − 1) + [y2 = 0]) · [y2 ∈ J ] · [x2 ∈ {0, . . . , 2}]) ⋆ ξJ

≤ [z2 + y2 7→ − ] ⋆ ([z2 + y2 7→ x2] −−⋆ ([1 ≤ y2 ≤ k + 1] · P (y2 − 1) + [y2 < 1]) ⋆ ξJ

resulting from the mutation < z2 + y2 > := x2 together with the atom rule. Here we assume
that the location y2 is in J and obtain that x2 ∈ {0, . . . , 2}. We lower bound any outcome of
y2 not in J by 0 because we already know that we will eventually set the term to 0 due to
the previous lookup. Next we establish ξJ back from lower bounding [z2 + y2 7→ − ].

We have the inequality

[x2 ̸= 0] · [0 ≤ y2 ≤ k] · P (y2) + [x2 = 0] · ([0 ≤ y2 ≤ k] · P (y2) + [y2 < 0]) ⋆ ξ
≤ sup

v∈Z
[z1 + y2 7→ v] ⋆ ([z1 + y2 7→ v] −−⋆

([v ̸= 0] · [0 ≤ y2 ≤ k] · P (y2 − 1) · (p · [y2 ∈ J ] · [v ∈ {1, . . . , 2}] + (1 − p) · [y2 ̸∈ J ])
+ [v = 0] · ([0 ≤ y2 ≤ k] · P (y2) + [y2 < 0])) ⋆ ξ)
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resulting from the lookup x2 := < z1 + y2 > together with the atom rule. We will consider
both cases separately. Let us assume that v is not 0. Then either y2 is in J and v is either 1
or 2 to make p · [y2 ∈ J ] · [v ∈ {1, . . . , 2}] not zero, or y2 is not in J . Then, however, v needs
to be −1, because else ξJ will evaluate to zero. Both cases can then be used to turn P (y2 − 1)
into P (y2). In both cases, we can also use [z1 + y2 7→ v] to re-establish the resource invariant
ξJ . If, on the other side, v is 0, we do not get any new information, but also do not need to
update P (y2), and directly re-establish the resource invariant ξJ .

Due to

[y2 ≥ 0] · ([0 ≤ y2 ≤ k] · P (y2) + [y2 < 0]) + [y2 < 0] · 1
= [0 ≤ y2 ≤ k] · P (y2) + [y2 < 0]

we establish the loop invariant with respect to postexpectation 1.
For the consumer C3 we require a loop invariant that checks if l indeed matches the size

of the set J . We prove the loop invariant I3 = [0 ≤ y3 ≤ k] · [y3 + l = |J ∩ {0, . . . , y3}|] with
respect to the postexpectation [l = |J |] and the resource invariant ξJ :

( [0 ≤ y3 ≤ k] · [l = |J ∩ {y3 + 1, . . . , k}|] | ξJ

x3 := < z2 + y3 > ;

(



[x3 = −1] · [1 ≤ y3 ≤ k + 1] · [l = |J ∩ {y3, . . . , k}|]
+ [x3 = −1] · [y3 < 1] · [l = |J |]
+ [x3 ̸= 0] · [x3 ̸= −1] · [1 ≤ y3 ≤ k + 1] · [l + 1 = |J ∩ {y3, . . . , k}|])
+ [x3 ̸= 0] · [x3 ̸= −1] · [y3 < 1] · [l + 1 = |J |]
+ [x3 = 0] · [0 ≤ y3 ≤ k] · [l = |J ∩ {y3 + 1, . . . , k}|]
+ [x3 = 0] · [y3 < 0] · [l = |J |]

| ξJ

if (x3 ̸= 0 ) {

(


[x3 = −1] · [1 ≤ y3 ≤ k + 1] · [l = |J ∩ {y3, . . . , k}|]

+ [x3 = −1] · [y3 < 1] · [l = |J |]
+ [x3 ̸= −1] · [1 ≤ y3 ≤ k + 1] · [l + 1 = |J ∩ {y3, . . . , k}|]
+ [x3 ̸= −1] · [y3 < 1] · [l + 1 = |J |]

| ξJ

if (x3 ̸= −1 ) {
( [1 ≤ y3 ≤ k + 1] · [l + 1 = |J ∩ {y3, . . . , k}|] + [y3 < 1] · [l + 1 = |J |] | ξJ

l := l + 1
( [1 ≤ y3 ≤ k + 1] · [l = |J ∩ {y3, . . . , k}|] + [y3 < 1] · [l = |J |] | ξJ

} ;
( [1 ≤ y3 ≤ k + 1] · [l = |J ∩ {y3, . . . , k}|] + [y3 < 1] · [l = |J |] | ξJ

( [0 ≤ y3 − 1 ≤ k] · [l = |J ∩ {y3, . . . , k}|] + [y3 − 1 < 0] · [l = |J |] | ξJ

y3 := y3 − 1
( [0 ≤ y3 ≤ k] · [l = |J ∩ {y3 + 1, . . . , k}|] + [y3 < 0] · [l = |J |] | ξJ

}
( [0 ≤ y3 ≤ k] · [l = |J ∩ {y3 + 1, . . . , k}|] + [y3 < 0] · [l = |J |] | ξJ
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Here we will take a closer look at the inequality

([1 ≤ y3 ≤ k] · [l = |J ∩ {y3 + 1, . . . , k}|] + [y3 = 0] · [l = |J ∩ {1, . . . , k}|]) ⋆ ξJ

≤ sup
v∈Z

[z2 + y2 7→ v] ⋆ ([z2 + y2 7→ v] −−⋆

([v = −1] · [1 ≤ y3 ≤ k + 1] · [l = |J ∩ {y3, . . . , k}|]
+ [v = −1] · [y3 < 1] · [l = |J |]
+ [v ̸= 0] · [v ̸= −1] · [1 ≤ y3 ≤ k + 1] · [l + 1 = |J ∩ {y3, . . . , k}|])
+ [v ̸= 0] · [v ̸= −1] · [y3 < 1] · [l + 1 = |J |]
+ [v = 0] · [0 ≤ y3 ≤ k] · [l = |J ∩ {y3 + 1, . . . , k}|]
+ [v = 0] · [y3 < 0] · [l = |J |]) ⋆ ξJ)

due to the lookup x3 := < z2 + y2 > together with the atom rule. We consider all cases
separately.

First, let v be −1
If moreover y3 is between 1 and k + 1, then we can directly lower bound the case
that y3 is k + 1 by zero as ξJ does not have carry information for this location.
Because v is −1, we know that y3 is not in J due to ξJ . Thus, we also have that
|J ∩ {y3 + 1, . . . , k}| = |J ∩ {y3, . . . , k}|.
If y3 is below 1, the same reasoning holds, with the difference that we lower bound the
expectation for every value of y3 below 0 as zero and consider only the case where y3
is 0.

In the case that v is neither 0 nor −1, we first observe that only 1 and 2 are valid values,
because ξJ does not allow any other value for y3 between 0 and k.
In the cases where v is either k + 1 or below 0, we just lower bound the formula by zero.
However, for the latter cases we have |J ∩ {y3 + 1, . . . , k}| + 1 = |J ∩ {y3, . . . , k}|.
Lastly, in the case that v is 0, the expression already matches the target lower bound,
but again, we lower bound the formula by zero if y3 has a value below 0.

Moreover, we have

[y3 ≥ 0] · ([0 ≤ y3 ≤ k] · [l = |J ∩ {y3 + 1, . . . , k}|] + [y3 < 0] · [l = |J |])
= [0 ≤ y3 ≤ k] · [l = |J ∩ {y3 + 1, . . . , k|}] + [y3 < 0] · [l = |J |]

and thus established a loop invariant with respect to postexpectation [l = |J |].
Now we can combine all three results

( P (k) · [0 ≤ k] | ξJ

( [0 ≤ k] · P (k) + [k < 0] · [0 = |J |] | ξJ

l := 0 ;
( [0 ≤ k] · [l = 0] · P (k) + [k < 0] · [l = |J |] | ξJ

(


1

⋆ ([0 ≤ k] · P (k) + [k < 0])
⋆ ([0 ≤ k] · [l = |J ∩ {k + 1, . . . , k}|] + [k < 0] · [l = |J |])

| ξJ

y1, y2, y3 := k ;

(


1

⋆ ([0 ≤ y2 ≤ k] · P (y2) + [y2 < 0])
⋆ ([0 ≤ y3 ≤ k] · [l = |J ∩ {y3 + 1, . . . , k}|] + [y3 < 0] · [l = |J |])

| ξJ
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C1 ∥ C2 ∥ C3

( 1 ⋆ 1 ⋆ [l = |J |] | ξJ

and we have for the whole program C and a set of schedulers S ⊆ S:

(P (k) · [0 ≤ k]) ≤ wrlpJCK ([l = |J |] | ξJ)
implies (P (k) · [0 ≤ k]) ⋆ ξJ ≤ wrlpJCK ([l = |J |] ⋆ ξJ | [emp]) (share)
implies (P (k) · [0 ≤ k]) ⋆ ξJ ≤ wlpSJCK ([l = |J |] ⋆ ξJ) (wlp-wrlp)

We can use this to prove the lower bound of probabilities for even more elaborated post-
conditions if we have a set of schedulers S ⊆ S such that C is almost surely terminating
with respect to S. One of these is the probability that at least half of the messages are sent
successfully, i.e., the probability of the postexpectation

[
k + 1 ≥ l ≥ k+1

2
]

– or equivalently∑
k+1

2 ≤j≤k+1 [l = j]. For this, we use the resource invariant ξj = maxJ⊆{0,...,k},|J|=j ξJ where
ξJ is defined as previous. Although we call ξj a resource invariant, we never prove that it is
a resource invariant. We only prove that ξJ is a resource invariant. We can now compute:

wlpSJCK ([l = |J |] ⋆ ξJ) ≥ (P (k) · [0 ≤ k]) ⋆ ξJ

implies wlpSJCK
(

max
J⊆{0,...,k},|J|=j

[l = |J |] ⋆ ξJ

)
≥ max

J⊆{0,...,k},|J|=j
(P (k) · [0 ≤ k]) ⋆ ξJ

(max)
implies wlpSJCK ([l = j] ⋆ ξj) ≥ (pj · (1 − p)k−j+1 · [0 ≤ k]) ⋆ ξj (Definition of ξj)

implies wlpSJCK

 ∑
k+1

2 ≤j≤k+1

[l = j] ⋆ ξj

 ≥
∑

k+1
2 ≤j≤k+1

(pj · (1 − p)k−j+1 · [0 ≤ k]) ⋆ ξj

(Superlinearity)

implies wlpSJCK
([
k + 1 ≥ l ≥ k + 1

2

]
⋆ ξj

)

≥

 ∑
k+1

2 ≤j≤k+1

pj · (1 − p)k−j+1 · [0 ≤ k]

 ⋆ ξj

(ξj is precise and
[
k + 1 ≥ l ≥ k+1

2
]

as above)

We could drop the resource invariant ξj inside wlpS due to monotonicity of wlpS , for which
we do not provide a proof. However, this shows that we can use superlinearity to partition a
big problem in smaller problems and afterwards reason about these smaller problems with
the help of easier resource invariants, as it is standard in probability theory.
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