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Abstract
Much discussion exists about what is computation, but less about is a computational problem.
Turing’s definition of computation was based on computing functions. When we move from sequential
computing to interactive computing, discussions concentrate on computations that do not terminate,
overlooking notions of distributed problems. Many models where concurrency happens have been
proposed, ranging from those equivalent to a Turing machine, to those where much heated discussion
has taken place, claiming that interactive models are fundamentally different from Turing machines.

It is argued here that there is no need to go all the way to non-terminating interaction, to
appreciate how different distributed computation is from sequential computation. The discussion
concentrates on the various ways that exist of representing a distributed decision problem. Each
process of a distributed system starts with an initial private input value, and after communicating
with other processes in the system, produces a local output value. An input/output relation is
needed, to specify which output values are legal for a particular assignment of input values to the
processes.

An overview is provided of some results that show how rich the topic of distributed decision
problems can be, when asynchronous processes can fail, but mostly independent of particular models
of distributed computing and their many intricate details (types of failures and of communication).
We are in a world very different from that of the functions of sequential computation; moving away
from the world of graphs beyond binary relations, to the world of simplicial complexes.
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1 What is Computation and what is a Computational Problem?

The tools of a barber include scissors, razor, shave brush, comb, clipper, neck duster; the
process that repeatedly uses these tools is barbering. It is awkward to talk about barbering
before saying what the problem being solved is: shaving, hair-cutting, and hair-dressing. Yet,
it seems we are sometimes more obsessed with understanding what is computation, than
with understanding what is a computational problem.

The first ACM Ubiquity symposium (2011) thoroughly discussed the question: What is
computation? The most fundamental question of our field, says Peter Denning in the Editor’s
Introduction [18]. But except for mentioning Turing and how he invented his machine to
classify functions according to computability, not much is said about computational problems.

For sequential computing not much is discussed about computational problems, beyond
functions, and for distributed computing even less. The participants of the workshop were
asked to consider how three new developments might have affected the traditional answers
to the question. One of the three developments is interactive computation, motivated by
situations such as operating systems and networks that are based on computations that do

© Sergio Rajsbaum;
licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Sławomir Lasota, and Anca Muscholl; Article No. 3; pp. 3:1–3:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rajsbaum@im.unam.mx
http://www.matem.unam.mx/rajsbaum
https://orcid.org/0000-0002-0009-5287
https://doi.org/10.4230/LIPIcs.CONCUR.2022.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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not terminate and regularly interact with their environments. All through the discussions
in the workshop, it seems that the interest on interactive computation comes from their
non-terminating nature, e.g. [24].

Some argue about the enduring legacy of the Turing Machine like Lance Fortnow [21],
while others strongly against it, like Peter Wegner [54]. But in the conclusions of the
workshop, Denning [17] mentions that there is an emerging consensus that interactive models
are fundamentally different from Turing machines.

Aho [1] easily describes the computational problem: A function f from strings to strings
is computable if there is some Turing machine M that given any input string w always halts
in the accepting state with just f(w) on its tape. But describes in detail what a Turing
machine is:

The reason we went through this explanation is to point out how much detail is involved
in precisely defining the term computation for the Turing machine, one of the simplest
models of computation. It is not surprising, then, as we move to more complex models,
the amount of effort needed to precisely formulate computation in terms of those
models grows substantially.

Aho [1] continues: Many real-world computational systems compute more than just a
single function – the world has moved to interactive computing. But there is no discussion
of what is it that they compute.

Indeed, as the authors of the workshop discuss, there are many models of distributed
computing, consisting of autonomous computing processes that communicate with one
another. To model multicore shared memory systems, wide area message passing networks,
biological systems such as cells and organisms, even the human brain. There are theoretical
models such as message-passing Actor model, Petri nets, process calculi, I/O automata, etc.
Many shared-memory and message passing models are discussed in the distributed computing
literature, e.g. [5, 33, 48, 49].

2 Distributed Decision Problems

To discuss distributed computing problems, very few details about the computational model
need to be considered; the same notions of distributed computing problem are relevant to
many of the models mentioned above.

2.1 Distributed computing problems
There are many problems to discuss about distributed computing. Distributed systems can
exhibit behaviors such as deadlock, livelock, race conditions. And there are many aspects to
study about routing, robot coordination, agents moving along a network, distributed graph
algorithms, and the like that cannot be studied using Turing machines. Concerns such as
reliability, performance, scalability and adaptivity, mobility, psychical locality, are inherently
different from sequential computing.

All through the symposium, it is emphasized the importance of models where interaction
takes place, assuming as evident that the interest is in non-terminating computations. I would
like to slow down here, to show the richness exhibited already in terminating distributed
computation. Furthermore, that there is no need to get into the intricacies of a distributed
computing model, to discuss distributed problems. The goal is to show that indeed very novel
issues arise that do not exists in Turing machines, already when we consider input/output
problems.
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In this paper the goal is to focus on possibly the purest form of distributed computing
problem, a direct analogue of the notion of a function for a Turing machine. The input x to
the function is now distributed, each process knows only part of x. Also the output f(x) is
distributed: after communicating with each other, the processes collectively compute f(x),
each one computes one part of it. As we shall see, instead of functions it is of interest to
consider relations T (x), called tasks, possibly allowing for more than one output for each
input x.

Assume the simplest case of a fixed, finite set of n individual processes composing the
distributed system. To focus only on the problem of computing a task in a distributed way,
disregard any routing and network communication problems, and assume that the processes
can directly communicate with each other. Similarly, to focus only on the distributed aspects
of the problem, disregard any individual sequential computing limitation. It turns out that
some tasks have no solution, even if each process is an infinite state automata, while when
there is a solution, each process is a (usually) simple Turing machine.

For the purposes of discussing distributed problems, there is no need to discuss many of
the specifics about the computational model – ways in which processes communicate with
each other, their relative speeds and failures. Roughly, the only thing needed, is that a
process may have to produce an output value without knowing the input values of some of
the other processes.

2.2 Distributed decision tasks
Early on in the development of distributed computing theory, Moran and Wolfstahl [43]
defined the notion of distributed decision task, to encompass the various problems that were
being studied at that time, such as consensus, approximate agreement and renaming. It was
already known that consensus is impossible to solve in a message passing system even if
only one process can fail by crashing [20] (even if each process is an infinite state machine).
Moran and Wolfstahl extended the impossibility to general decision tasks, and then Biran,
Moran and Zaks [6] extended it to a full characterization.

Consider n-dimensional vectors with entries over some set of possible values V : the i-th
entry of a vector is associated to the i-th process. A distributed decision task T = ⟨I, O, ∆⟩
consists of a set of input vectors, I a set of output vectors, O and a relation ∆, specifying,
for each input vector I ∈ I, a set of legal output vectors ∆(I) ⊆ O. The i-th entry of an
input vector is the input value of the i-th process. The i-th entry of an output vector is the
output value of the i-th process. It is assumed that each process, has two special variables, a
read-only one for the input value and a write-once variable for the output value.

A decision task is solvable by a distributed algorithm in some model of computation, if
the following holds. The system can start in any of the input vectors I ∈ I allowed by the
task. Now, consider any execution starting with input vector I, where all processes produce
an output value, defining a vector O consisting of all the n output values. Then, it must be
the case that O ∈ ∆(I).

Notice that task solvability is defined only by a safety requirement. There is also a liveness
requirement defined by the specifics of the model of computation. In the sequel of papers by
Biran, Moran, Zaks and Wolfstahl [6, 7, 8, 43], the focus was on 1-resilient asynchronous
processes (running at arbitrary speeds, independent from each other) communicating by
message passing. In this case, the liveness requirement is that, in an execution where at most
one process crashes, all processes that do not crash have to produce a decision value. A similar
situation but in shared memory was considered by Moran and Taubenfeld [53], including the
case where t < n processes may crash, where the liveness is adjusted accordingly.
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The following examples are well-known by now.
1. Consensus. For a set of values V , the inputs are all n-vectors over V . There is one

output vector for each v ∈ V , consisting of all output values equal to v, denoted Ov, and
O = ∪v∈V {Ov}. For any input vector with at least two different input values, ∆(I) = O,
for an input vector Iv with a single input value v, ∆(Iv) = {Ov}.

2. Approximate agreement. It is defined in [6] for any given ϵ > 0, and V the set of rational
numbers. Any n-vector over V is a possible input vector, and the output vectors contain
rational numbers so that for any two entries di, dj , |di − dj | ≤ ϵ. Then, ∆(I) contains all
output vectors with entries di such that m ≤ di ≤ M , where m is the smallest value of I

and M is the largest.
There are many variants of consensus and approximate agreement, including multidimensional
ones e.g. [41].

2.3 Participating processes

The discovery of the intimate connection between distributed computing and topology,
overviewed in [30], was facilitated by the realization that the 1-resilient case is not the most
fundamental situation, and surprisingly not the easiest to analyze – it is the wait-free case.
Wait-freedom is a progress condition which guarantees that each process can make progress in
a finite number of steps regardless of the behavior of other processes. So long as processes are
scheduled, wait-freedom guarantees progress for all processes. Thus, a distributed algorithm
that is wait-free never includes instructions by which a process waits for an event of another
process (if that process crashes, the event might never happen).

For this paper, the important property is that any set of processes may have to produce
output values, without knowing the input values of the remaining processes. Therefore,
the vectors of a decision task need to incorporate a notion of participating processes. Not
all entries in a given input (output) vector need contain an input (output) value; some
may contain the special value ⊥, indicating that some processes do not participate in the
execution (crashes before taking any steps). Thus, the set of input vectors is required to be
prefix closed. Meaning that if I is an input vector, then the task has to consider also any
input vector I ′ contained in I, in the sense that any subset of the entries of I is replaced by
⊥. Furthermore, for each such input vector I ′, where the input values of some subset of the
processes P ′ is defined as ⊥, the input/output relation ∆ has to specify what are the legal
output vectors. Namely, ∆(I ′) is a set of vectors, all with ⊥ in the entries for processes P ′.

As already discussed by Herlihy and Shavit [32] and Hoest and Shavit [35], the intuitive
notion of “order of actions in time” is captured through the use of participating processes.
The example given is how it can be used to distinguish between tasks such as Unique-Id
and Fetch-And-Increment, which have the same sets of input and output vectors, have the
same ∆ when all processes participate, but have quite different task specification maps when
subsets of participating processes are taken into account. The Figure 1 is from [35], for a set
of n + 1 processes.

The Unique-Id task is defined as follows: each participating process i ∈ {0, . . . , n} has an
input xi = 0 and chooses an output yi ∈ {0, . . . , n} such that for any pair of processes i ≠ j,
yi ̸= yj .

In the Fetch-And-Increment task, each participating process i ∈ {0, . . . , n} has an input
xi = 0 and chooses a unique output yi ∈ {0, . . . , n} such that (1) for some participating
process i, yi = 0, and (2) for 1 ≤ k ≤ n, if yi = k, then for some j ̸= i, yj = k − 1.
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(a) Unique-Id task. (b) Fetch-And-Increment task.

Figure 1 Two tasks with the same set of vectors when all participate. First column is the input
vector, and for each row I, in the second column ∆(I) .

2.4 Beyond binary relations
These two examples already hint at why by moving from vectors to partial vectors, the
notion of decision task is interestingly enriched. This is clearly exposed using the appropriate
mathematical structure for partial vectors closed under containment: simplicial complexes.
Here follows and overview of how to use them to represent tasks, additional details are in
e.g. [30].

The following notions are illustrated in Figure 2, where the Fetch-And-Increment task
is represented using simplicial complexes, for three processes denoted 0, 1, 2. Intuitively,
triangles represent vectors with 0 entries equal to ⊥, edges represent vectors with 1 entry
equal to ⊥, and vertices correspond to vectors with 0 entires equal to ⊥. An input vertex
(i, x) means that process i has input value x, and for the vertex (0, 0), ∆(i, x)) = σ1. For
the input edge {(0, 0), (1, 0)}, ∆({(0, 0), (1, 0)}) = {σ2, σ3}, while for the input triangle
{(0, 0), (1, 0), (2, 0)}, ∆({(0, 0), (1, 0), (2, 0)}) consists of all 6 triangles of O.

A simplicial complex is a generalization of a graph, where sets of vertices of cardinality
more than two can also be grouped into a simplex (the generalization of an edge). Formally,
it is a collection K of non-empty sets, closed under containment, i.e., if σ ∈ K then, for every
non-empty set σ′ ⊆ σ, σ′ ∈ K. Every set in K is called a simplex. A subset of a simplex is
called a face, and a facet of K is a face that is maximal for inclusion in K. The dimension of
a simplex σ is |σ| − 1, where |σ| denotes the cardinality of σ. The dimension of a complex is
the maximal dimension of its facets. A complex in which all facets are of the same dimension
is called pure. The vertices of K are all simplices with a single element (i.e., of dimension 0).
The set of vertices of a complex K are denoted by V (K).

All complexes in this paper are chromatic, i.e., every vertex is a pair v = (i, x) where
i ∈ [n] = {1, . . . , n} for some n ≥ 1 is the color of v denoting a process, and x is some value
(an input value or an output value). Moreover, in a chromatic complex, a color i must appear
at most once in every simplex. Let σ = {(i, xi) : i ∈ I} be a simplex. We denote by id(σ)
the set of colors in σ, i.e., id(σ) = I. Indeed, in the following, the color of a vertex is actually
the identity of a process.

A task can be defined using vectors as above, or using simplicial complexes as follows,
exposing the role of combinatorial topology notation, and why going beyond binary relations
is intrinsic to distributed computing problems.

A task for n processes is a triple Π = (I, O, ∆) where I and O are (n − 1)-dimensional
complexes, respectively called input and output complexes, and ∆ : I → 2O is an input-
output specification. Every simplex σ = {(i, xi) : i ∈ I} of I, where I = id(σ) is a non-empty
subset of [n], defines a legal input state corresponding to the scenario in which, for every
i ∈ I, process i starts with input value xi. Similarly, every simplex τ = {(i, yi) : i ∈ I} of O
defines a legal output state corresponding to the scenario in which, for every i ∈ I, process i

outputs the value yi. The map ∆ is an input-output relation specifying, for every input state
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<latexit sha1_base64="aW0F2K6oODiElDNnfKU/hvYbTLY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOQU9gNQT0GvHhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWR0US27FXYBsEm9FSrBCY1D86g9jlkYoDRNU657nJsbPqDKcCZwV+qnGhLIJHWHPUkkj1H62OHRGrqwyJGGsbElDFurviYxGWk+jwHZG1Iz1ujcX//N6qQlv/YzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynYELz1lzdJu1rxriu1Zq1UL6/iyMMFXEIZPLiBOtxDA1rAAOEZXuHNeXRenHfnY9mac1Yz5/AHzucPdz2MpQ==</latexit>

2

<latexit sha1_base64="xRaalbRKNtGb7A1SmUdH3APrRRs=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hd0Q1GPAi8cI5gHJEmYnvcmQmdl1ZlYIIT/hxYMiXv0db/6NkweiiQUNRVU33V1RKrixvv/lra1vbG5t53byu3v7B4eFo+OGSTLNsM4SkehWRA0KrrBuuRXYSjVSGQlsRsObqd98RG14ou7tKMVQ0r7iMWfUOqnVMbwvabfcLRT9kj8D+SHBMinCArVu4bPTS1gmUVkmqDHtwE9tOKbaciZwku9kBlPKhrSPbUcVlWjC8ezeCTl3So/EiXalLJmpvyfGVBozkpHrlNQOzLI3Ff/z2pmNr8MxV2lmUbH5ojgTxCZk+jzpcY3MipEjlGnubiVsQDVl1kWUdyGsvLxKGuVScFmq3FWKVX8RRw5O4QwuIIArqMIt1KAODAQ8wQu8eg/es/fmvc9b17zFzAn8gffxDcY7j8A=</latexit>�2

<latexit sha1_base64="Nd8t82NrXoBGL5E+eUvdw2EkCxM=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hV0N6jHgxWME84BkCbOT3mTIzOw6MyuEkJ/w4kERr/6ON//GyQPRxIKGoqqb7q4oFdxY3//yVlbX1jc2c1v57Z3dvf3CwWHdJJlmWGOJSHQzogYFV1iz3ApsphqpjAQ2osHNxG88ojY8Ufd2mGIoaU/xmDNqndRsG96TtHPRKRT9kj8F+SHBIinCHNVO4bPdTVgmUVkmqDGtwE9tOKLaciZwnG9nBlPKBrSHLUcVlWjC0fTeMTl1SpfEiXalLJmqvydGVBozlJHrlNT2zaI3Ef/zWpmNr8MRV2lmUbHZojgTxCZk8jzpco3MiqEjlGnubiWsTzVl1kWUdyEsvbxM6uel4LJUvisXK/48jhwcwwmcQQBXUIFbqEINGAh4ghd49R68Z+/Ne5+1rnjzmSP4A+/jG8e/j8E=</latexit>�3

<latexit sha1_base64="aW0F2K6oODiElDNnfKU/hvYbTLY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOQU9gNQT0GvHhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWR0US27FXYBsEm9FSrBCY1D86g9jlkYoDRNU657nJsbPqDKcCZwV+qnGhLIJHWHPUkkj1H62OHRGrqwyJGGsbElDFurviYxGWk+jwHZG1Iz1ujcX//N6qQlv/YzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynYELz1lzdJu1rxriu1Zq1UL6/iyMMFXEIZPLiBOtxDA1rAAOEZXuHNeXRenHfnY9mac1Yz5/AHzucPdz2MpQ==</latexit>

2

<latexit sha1_base64="aW0F2K6oODiElDNnfKU/hvYbTLY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOQU9gNQT0GvHhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWR0US27FXYBsEm9FSrBCY1D86g9jlkYoDRNU657nJsbPqDKcCZwV+qnGhLIJHWHPUkkj1H62OHRGrqwyJGGsbElDFurviYxGWk+jwHZG1Iz1ujcX//N6qQlv/YzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynYELz1lzdJu1rxriu1Zq1UL6/iyMMFXEIZPLiBOtxDA1rAAOEZXuHNeXRenHfnY9mac1Yz5/AHzucPdz2MpQ==</latexit>

2

<latexit sha1_base64="IQI5ZBeb+rwXNUNNMc+FoFy+QAE=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GjLT2tZdwY3LCvYB7VAyaaaNzSRDkhFK6T+4caGIW//HnX9jpq2gogcuHM65l3vvCRPOtEHow8mtrW9sbuW3Czu7e/sHxcOjtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr8zj1Vmklxa6YJDWI8EixiBBsrtfuGxVQPiiXkXtar/oUPkYtQzS9XM+LXKn4ZelbJUAIrNAfF9/5QkjSmwhCOte55KDHBDCvDCKfzQj/VNMFkgke0Z6nAdkkwW1w7h2dWGcJIKlvCwIX6fWKGY62ncWg7Y2zG+reXiX95vdRE9WDGRJIaKshyUZRyaCTMXodDpigxfGoJJorZWyEZY4WJsQEVbAhfn8L/Sdt3vapbuamUGmgVRx6cgFNwDjxQAw1wDZqgBQi4Aw/gCTw70nl0XpzXZWvOWc0cgx9w3j4BFqePbw==</latexit>⇥

<latexit sha1_base64="IQI5ZBeb+rwXNUNNMc+FoFy+QAE=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GjLT2tZdwY3LCvYB7VAyaaaNzSRDkhFK6T+4caGIW//HnX9jpq2gogcuHM65l3vvCRPOtEHow8mtrW9sbuW3Czu7e/sHxcOjtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr8zj1Vmklxa6YJDWI8EixiBBsrtfuGxVQPiiXkXtar/oUPkYtQzS9XM+LXKn4ZelbJUAIrNAfF9/5QkjSmwhCOte55KDHBDCvDCKfzQj/VNMFkgke0Z6nAdkkwW1w7h2dWGcJIKlvCwIX6fWKGY62ncWg7Y2zG+reXiX95vdRE9WDGRJIaKshyUZRyaCTMXodDpigxfGoJJorZWyEZY4WJsQEVbAhfn8L/Sdt3vapbuamUGmgVRx6cgFNwDjxQAw1wDZqgBQi4Aw/gCTw70nl0XpzXZWvOWc0cgx9w3j4BFqePbw==</latexit>⇥

<latexit sha1_base64="IQI5ZBeb+rwXNUNNMc+FoFy+QAE=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GjLT2tZdwY3LCvYB7VAyaaaNzSRDkhFK6T+4caGIW//HnX9jpq2gogcuHM65l3vvCRPOtEHow8mtrW9sbuW3Czu7e/sHxcOjtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr8zj1Vmklxa6YJDWI8EixiBBsrtfuGxVQPiiXkXtar/oUPkYtQzS9XM+LXKn4ZelbJUAIrNAfF9/5QkjSmwhCOte55KDHBDCvDCKfzQj/VNMFkgke0Z6nAdkkwW1w7h2dWGcJIKlvCwIX6fWKGY62ncWg7Y2zG+reXiX95vdRE9WDGRJIaKshyUZRyaCTMXodDpigxfGoJJorZWyEZY4WJsQEVbAhfn8L/Sdt3vapbuamUGmgVRx6cgFNwDjxQAw1wDZqgBQi4Aw/gCTw70nl0XpzXZWvOWc0cgx9w3j4BFqePbw==</latexit>⇥
<latexit sha1_base64="IQI5ZBeb+rwXNUNNMc+FoFy+QAE=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GjLT2tZdwY3LCvYB7VAyaaaNzSRDkhFK6T+4caGIW//HnX9jpq2gogcuHM65l3vvCRPOtEHow8mtrW9sbuW3Czu7e/sHxcOjtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr8zj1Vmklxa6YJDWI8EixiBBsrtfuGxVQPiiXkXtar/oUPkYtQzS9XM+LXKn4ZelbJUAIrNAfF9/5QkjSmwhCOte55KDHBDCvDCKfzQj/VNMFkgke0Z6nAdkkwW1w7h2dWGcJIKlvCwIX6fWKGY62ncWg7Y2zG+reXiX95vdRE9WDGRJIaKshyUZRyaCTMXodDpigxfGoJJorZWyEZY4WJsQEVbAhfn8L/Sdt3vapbuamUGmgVRx6cgFNwDjxQAw1wDZqgBQi4Aw/gCTw70nl0XpzXZWvOWc0cgx9w3j4BFqePbw==</latexit>⇥

<latexit sha1_base64="IQI5ZBeb+rwXNUNNMc+FoFy+QAE=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GjLT2tZdwY3LCvYB7VAyaaaNzSRDkhFK6T+4caGIW//HnX9jpq2gogcuHM65l3vvCRPOtEHow8mtrW9sbuW3Czu7e/sHxcOjtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr8zj1Vmklxa6YJDWI8EixiBBsrtfuGxVQPiiXkXtar/oUPkYtQzS9XM+LXKn4ZelbJUAIrNAfF9/5QkjSmwhCOte55KDHBDCvDCKfzQj/VNMFkgke0Z6nAdkkwW1w7h2dWGcJIKlvCwIX6fWKGY62ncWg7Y2zG+reXiX95vdRE9WDGRJIaKshyUZRyaCTMXodDpigxfGoJJorZWyEZY4WJsQEVbAhfn8L/Sdt3vapbuamUGmgVRx6cgFNwDjxQAw1wDZqgBQi4Aw/gCTw70nl0XpzXZWvOWc0cgx9w3j4BFqePbw==</latexit>⇥ <latexit sha1_base64="IQI5ZBeb+rwXNUNNMc+FoFy+QAE=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GjLT2tZdwY3LCvYB7VAyaaaNzSRDkhFK6T+4caGIW//HnX9jpq2gogcuHM65l3vvCRPOtEHow8mtrW9sbuW3Czu7e/sHxcOjtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr8zj1Vmklxa6YJDWI8EixiBBsrtfuGxVQPiiXkXtar/oUPkYtQzS9XM+LXKn4ZelbJUAIrNAfF9/5QkjSmwhCOte55KDHBDCvDCKfzQj/VNMFkgke0Z6nAdkkwW1w7h2dWGcJIKlvCwIX6fWKGY62ncWg7Y2zG+reXiX95vdRE9WDGRJIaKshyUZRyaCTMXodDpigxfGoJJorZWyEZY4WJsQEVbAhfn8L/Sdt3vapbuamUGmgVRx6cgFNwDjxQAw1wDZqgBQi4Aw/gCTw70nl0XpzXZWvOWc0cgx9w3j4BFqePbw==</latexit>⇥

<latexit sha1_base64="XxQyX1hB6ZMDM13ZKq18Ny33sUQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfmLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a869pV86pSr+ZxFOEMzqEKHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDdDWMow==</latexit>

0

<latexit sha1_base64="XxQyX1hB6ZMDM13ZKq18Ny33sUQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfmLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a869pV86pSr+ZxFOEMzqEKHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDdDWMow==</latexit>

0
<latexit sha1_base64="XxQyX1hB6ZMDM13ZKq18Ny33sUQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfmLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a869pV86pSr+ZxFOEMzqEKHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDdDWMow==</latexit>

0

<latexit sha1_base64="FgsVyF6Z9DEBO9vxS4jxukqPeMA=">AAAB73icdVBNSwMxEJ31s9avqkcvwSJ4KtlSansrePFYwX5Au5RsmrahSXZNskJZ+ie8eFDEq3/Hm//GbFtBRR8MPN6bYWZeGAtuLMYf3tr6xubWdm4nv7u3f3BYODpumyjRlLVoJCLdDYlhgivWstwK1o01IzIUrBNOrzK/c8+04ZG6tbOYBZKMFR9xSqyTun3Dx5IM/EGhiEvYoVpFGfFr2HekXq+Vy3XkLyyMi7BCc1B47w8jmkimLBXEmJ6PYxukRFtOBZvn+4lhMaFTMmY9RxWRzATp4t45OnfKEI0i7UpZtFC/T6REGjOToeuUxE7Mby8T//J6iR3VgpSrOLFM0eWiUSKQjVD2PBpyzagVM0cI1dzdiuiEaEKtiyjvQvj6FP1P2uWSXy1VbirFBl7FkYNTOIML8OESGnANTWgBBQEP8ATP3p336L14r8vWNW81cwI/4L19Ahqdj/s=</latexit>�1

<latexit sha1_base64="IQI5ZBeb+rwXNUNNMc+FoFy+QAE=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GjLT2tZdwY3LCvYB7VAyaaaNzSRDkhFK6T+4caGIW//HnX9jpq2gogcuHM65l3vvCRPOtEHow8mtrW9sbuW3Czu7e/sHxcOjtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr8zj1Vmklxa6YJDWI8EixiBBsrtfuGxVQPiiXkXtar/oUPkYtQzS9XM+LXKn4ZelbJUAIrNAfF9/5QkjSmwhCOte55KDHBDCvDCKfzQj/VNMFkgke0Z6nAdkkwW1w7h2dWGcJIKlvCwIX6fWKGY62ncWg7Y2zG+reXiX95vdRE9WDGRJIaKshyUZRyaCTMXodDpigxfGoJJorZWyEZY4WJsQEVbAhfn8L/Sdt3vapbuamUGmgVRx6cgFNwDjxQAw1wDZqgBQi4Aw/gCTw70nl0XpzXZWvOWc0cgx9w3j4BFqePbw==</latexit>⇥

Figure 2 The Fetch-And-Increment task. Inside a vertex is its id, outside is its input or output
value. The input complex I consists of a single triangle, and its faces. The input complex O consists
of 6 triangles, and its faces. The triangles marked with an × are deleted.
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<latexit sha1_base64="XxQyX1hB6ZMDM13ZKq18Ny33sUQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfmLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a869pV86pSr+ZxFOEMzqEKHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDdDWMow==</latexit>

0

<latexit sha1_base64="M6Cnmdl/c5LIx7D4JM1Eq/xJ4fs=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfmLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a869pV86pSr+ZxFOEMzqEKHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDdbmMpA==</latexit>

1

<latexit sha1_base64="M6Cnmdl/c5LIx7D4JM1Eq/xJ4fs=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfmLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a869pV86pSr+ZxFOEMzqEKHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDdbmMpA==</latexit>

1

<latexit sha1_base64="IQI5ZBeb+rwXNUNNMc+FoFy+QAE=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GjLT2tZdwY3LCvYB7VAyaaaNzSRDkhFK6T+4caGIW//HnX9jpq2gogcuHM65l3vvCRPOtEHow8mtrW9sbuW3Czu7e/sHxcOjtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044ucr8zj1Vmklxa6YJDWI8EixiBBsrtfuGxVQPiiXkXtar/oUPkYtQzS9XM+LXKn4ZelbJUAIrNAfF9/5QkjSmwhCOte55KDHBDCvDCKfzQj/VNMFkgke0Z6nAdkkwW1w7h2dWGcJIKlvCwIX6fWKGY62ncWg7Y2zG+reXiX95vdRE9WDGRJIaKshyUZRyaCTMXodDpigxfGoJJorZWyEZY4WJsQEVbAhfn8L/Sdt3vapbuamUGmgVRx6cgFNwDjxQAw1wDZqgBQi4Aw/gCTw70nl0XpzXZWvOWc0cgx9w3j4BFqePbw==</latexit>⇥

<latexit sha1_base64="XxQyX1hB6ZMDM13ZKq18Ny33sUQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfmLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a869pV86pSr+ZxFOEMzqEKHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDdDWMow==</latexit>

0
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Figure 3 The input complex of the set agreement task for 3 processes, and part of the output
complex. The triangle marked with × is deleted. The corners of the input triangle are mapped by
∆ to the corners of O. The boundary of the input triangle is mapped to the boundary of O. The
input triangle is mapped to all the depicted 12 triangles of O.

σ ∈ I, the set of output states τ ∈ O with id(τ) = id(σ) that are legal with respect to σ.
That is, assuming that only the processes in id(σ) participate to the computation (the set
of participating processes is not known a priori to the processes in σ), these processes are
allowed to output any simplex τ ∈ ∆(σ). It is often assumed that ∆ is a carrier map (that
is, for every σ, σ′ ∈ I, if σ′ ⊆ σ then ∆(σ′) ⊆ ∆(σ) as subcomplexes).

An important example is the set agreement task, with a single input facet (and all its
faces), where process i starts with input value i. The n processes need to agree on at most
n− 1 input values of participating processes. For three processes, at most two different values
can be decided, as illustrated in Figure 3, where part of the output complex is depicted.
This task is important, because it is unsolvable wait-free [9, 32, 52], and the reason for
the impossibility is a topological one: intuitively, the task has a hole while no wait-free
distributed algorithm has one.
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3 Selected Topics

Here is a selection of the various aspects about tasks that have been studied. Consensus is
the most fundamental task, in a sense the most difficult one together with variants such as
interactive consistency where all of the processes have to agree on the same vector such that
the ith entry of the vector contains the value proposed by the i-process; any task is solvable,
if processes can agree on their inputs. Much can be said about consensus in long-lived
situations, and consensus is known to be enormously important in real systems since early
on [37], as well as in theory e.g. [29], for reasons including the consensus hierarchy [39] and
as a universal object [50], but here the focus is on decision problems.

3.1 Colorless tasks, local tasks, continuous tasks: decidability and
reductions

The class of colorless tasks was identified in [10]. Such a task can be defined in terms of sets
of input and output values, without referring to which process is assigned which input value
or produces which output value, and without referring to the number of processes in the
system. Many widely-studied tasks are colorless, including consensus, set-agreement, and
approximate agreement. Some important tasks like renaming [13] and others [12] are not
colorless, and are more difficult to study, but easier than set agreement [11]. A notion of
continuous task has been prosed aiming at obtaining wait-free solvability characterization [25]
in a more intuitive way than the original one [32].

The rendezvous task [38] is a colorless task that models scenarios where autonomous
agents move around in a specific space to meet one another. A chromatic version where
a process must end in a vertex of its own color in a chromatic subdivision of an input
simplex, is the chromatic simplex agreement task, important for the wait-free task solvability
theorem [32], and the affine tasks, on subcomplexes of the chromatic subdivision by Kuznetsov
and Rieutord [36]. The loop agreement task is an example of rendezvous task, which is defined
in terms of an edge loop in a 2-complex. Herlihy and Rajsbaum [31] showed that a loop
agreement task is wait-free solvable if and only if the loop is contractible in the 2-complex,
as a result, the wait-free solvability of loop agreement tasks is undecidable. Rendezvous on
the vertices of a graph was introduced in [15], and variants were studied in [3] including
applications to robot coordination problems [2].

A task G implements task F if one can construct a protocol for F by calling any
protocol for G, possibly followed by access to a shared read/write memory. This notion of
implementation induces a partial order on tasks and hence it induces a classification of a set
of tasks, into disjoint classes such that tasks in the same class implement each other. In this
sense, all tasks in a class are computationally equivalent. A classification of loop agreement
tasks was presented in [31], and extended in [55] to rendezvous tasks.

A task T is wait-free checkable if and only if it satisfies a certain locality condition. Notions
of locality considered by Fraigniaud, Travers and Rajsbaum [23] are mostly independent of
the computing model. Wait-free solvability of local tasks remains undecidable. A strong
notion of locality is defined by covering tasks whose output complex is a covering of the
input complex. This topological property yields obstacles for wait-free solvability different in
nature from the classical agreement impossibility results, and, apart from the identity task,
locality-preserving tasks are not wait-free solvable. A classification of locality-preserving
tasks in term of their computational power is presented. Also closely related to covering
tasks and with a similar impossibility argument [26], is the equality negation task. For two
processes, each of which has an input from a set of three distinct values, each process must
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decide a binary output value so that the decisions of the processes are the same if and
only if the initial values of the processes are different. This task was defined by Lo and
Hadzilacos [39], as the central idea to prove that the consensus hierarchy is not robust.

Fraigniaud, Paz and Rajsbaum [22] study consensus and approximate agreement, through
an approach for proving lower bounds and impossibility results, called the asynchronous
speedup theorem. For a given task T and a given computational model M , the closure of
T with respect to M is a task that is supposed to be a slightly easier version of T . The
asynchronous speedup theorem states that if a task T is solvable in t ≥ 1 rounds in M , then
its closure w.r.t. M is solvable in t − 1 rounds in M . As an application they study the power
of test&set and binary consensus, for wait-free solving approximate agreement faster.

3.2 Domain restrictions and social choice
A research line started by Mostefaoui, Rajsbaum and Raynal [44] considers restricting the
input domain of a task, to obtain an easier task. A restriction of the input complex is called
a condition. For example, although consensus is unsolvable even if only one process can crash,
if we assume that more than a majority of processes propose the same value then consensus
becomes solvable (n ≥ 4). The paper identified the conditions for which consensus is solvable
in an asynchronous distributed system with t crash failures. In a sequel paper [45] they
study conditions for consensus in a synchronous system where processes can fail by crashing.
A hierarchy of conditions parametrized by d is presented, that allows solving synchronous
consensus with less and less rounds, as we go from d = t to d = 0.

There are remarkable analogies between social choice theory and distributed computing,
despite the fact that social choice theory is typically not concerned with concurrency (for
decentralised studies see [16, 40]). The modern field of social choice theory took off with
Kenneth Arrow’s remarkable 1950 result [4] for the basic problem of democracy: it is
impossible to aggregate individual preferences into a single social preference, under some
reasonable-looking axioms. In Arrow’s setting, each process proposes a total order on the
possible candidates, and the outcome of the election, computed by a centralized aggregation
function f , is also a total order, that should reflect the social preference. One requirement
is unanimity, if everyone prefers candidate x over y, so should the social preference. With
only this requirement, the aggregation function can simply decide on the preferences of
one individual, say the 1st one, which would become a dictator. Arrow’s impossibility says
that f must be dictatorial, if one requires, additionally to the unanimity requirement, an
independence of irrelevant alternatives (IIS) requirement, stating that f depends only on
pairwise preferences.

Much research has been devoted to identify domain restriction to circumvent Arrow’s
impossibility theorem. Rajsbaum and Raventós [47] identify the exact domain restrictions for
the case of two voters and three alternatives, and present a new proof of Arrow’s impossibility
based on a task formalization using simplicial complexes, showing that any unanimous IIS
aggregation function must be dictatorial, on any of the corresponding restricted domains.
The proof uses techniques analogous to those used in distributed computing [13, 26].

3.3 Tasks and objects
Tasks are not the only possible input/output distributed specifications. Objects are defined
in terms of sequential specifications, and can specify ongoing, never-ending behavior, such as
for concurrent data structures [42]. For this paper consider their one-shot version, and one
method that can be invoked only once by each process, with an input parameter. The object
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returns an output value to the invoking process. Thus, one-shot objects are similar to tasks,
in that they specify input/output problems. Objects come with an accompanying notion of
when a concurrent execution satisfies the object’s sequential specification, linearizability.

In fact we encounter in the literature three ways of talking about distributed decision
problems. As a set of informal requirements, as a sequential object plus a consistency
condition (linearizability), and as a task. For example, we have seen that consensus can be
defined as a task. But often it is defined by two safety requirements. Validity: a decided
value is the input of some participating process; Agreement: any two decided values are
equal. The third way is to think of consensus as an object, defined by a sequential automata,
whose states represent which values have been proposed to the object, and which values can
be returned to a process.

The relation between tasks and objects has been studied by Castañeda, Rajsbaum and
Raynal [14], motivated by Neiger [46], who proposed a generalization of linearizability to
be able to specify tasks, such as set agreement, which have no natural specification as
sequential objects. Set-sequential objects can define executions in which a set of processes
access an object concurrently. The notion of an interval-sequential object [14], together
with a corresponding consistency condition, is able to express any concurrency pattern of
overlapping invocations of operations, that might occur in an execution [27]. While some
important tasks have no specification either as a sequential object nor as a set-sequential
object, all tasks can be naturally expressed as interval-sequential objects. Remarkably,
there are objects that cannot be expressed as tasks. An extension of the task framework is
described, called refined tasks, that has more expressive power, and is able to specify any
one-shot interval-sequential object.

An interesting notion appears with objects, composabilty, which has not been studied
as much for tasks. Linearizability is very popular to design components of large systems
because one can consider linearizable object implementations in isolation and compose them
for free, without sacrificing linearizability of the whole system [34]. It was shown that by
going from linearizability to interval-linearizability, one does not sacrifice the benefits of
composability [14].

3.4 Tasks and knowledge
Rosenbloom [51] argues that computation is information transformation. In this sense, one
may view a distributed problem as setting the goals, from an initial state of information, to
a final one. More precisely, a task is reformulated by Goubault, Rajsbaum and Ledent [28]
as a knowledge transformation goal. The input complex defines what processes know about
each other inputs, formalized as a simplicial model, the dual of the classic one-dimensional
Kripke model, that exposes relations beyond binary. A task can be re-interpreted as a goal
in terms of knowledge gain, using an output simplicial model, which is the product update
of the initial simplicial model and an action model. This formally specifies the knowledge
gain required by the task.

The importance of common knowledge for reaching agreement is well understood [19].
Consensus and common knowledge is discussed in [28], as well as approximate agreement,
in terms of knowledge gain. After all, the difficulty of distributed decisions comes from the
absence of common knowledge about the inputs and consensus gives us just that. Indeed, in
the epistemic setting, consensus is the requirement of achieving common knowledge on an
input value. This is impossible in asynchronous systems. In contrast, approximate agreement
is solvable, because it is a finite version of common knowledge, requiring only that everybody
knows that everybody knows, and so on, a certain number of times.
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