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Abstract
We study the rational verification problem which consists in verifying the correctness of a system
executing in an environment that is assumed to behave rationally. We consider the model of
rationality in which the environment only executes behaviors that are Pareto-optimal with regard
to its set of objectives, given the behavior of the system (which is committed in advance of any
interaction). We examine two ways of specifying this behavior, first by means of a deterministic
Moore machine, and then by lifting its determinism. In the latter case the machine may embed
several different behaviors for the system, and the universal rational verification problem aims at
verifying that all of them are correct when the environment is rational. For parity objectives, we
prove that the Pareto-rational verification problem is co-NP-complete and that its universal version
is in PSPACE and both NP-hard and co-NP-hard. For Boolean Büchi objectives, the former problem
is Π2P-complete and the latter is PSPACE-complete. We also study the case where the objectives
are expressed using LTL formulas and show that the first problem is PSPACE-complete, and that
the second is 2EXPTIME-complete. Both problems are also shown to be fixed-parameter tractable
for parity and Boolean Büchi objectives.
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1 Introduction

Formal verification is essential to ensure the correctness of systems responsible for critical
tasks. Many advancements have been made in the field of formal verification both in terms
of theoretical foundations and tool development, and computer-aided verification techniques,
such as model-checking [4, 7], are now widely used in industry. In the classical approach to
verification, it is assumed that the system designer provides (i) a model of the system to
verify, together with (ii) a model of the environment in which the system will be executed,
and (iii) a specification φ (e.g. an ω-regular property) that must be enforced by the system.
Those models are usually nondeterministic automata that cover all possible behaviors of both
the system and the environment. The model-checking algorithm is then used to decide if all
executions of the system in the environment are correct with regard to φ. Unfortunately, in
some settings, providing a faithful and sufficiently precise model of the environment may
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33:2 Pareto-Rational Verification

be difficult or even impossible. This is particularly true in heterogeneous systems composed
of software entities interacting with human users, e.g. self-driving cars interacting with
human drivers. Alternative approaches are thus needed in order to verify such complex
multi-agent systems. One possible solution to this problem is to consider more declarative
ways of modeling the environment. Instead of considering an operational model of each
agent composing the environment, in this paper, we propose instead to identify the objectives
of those agents. We then consider only the behaviors of the environment that concur to
those objectives, instead of all behaviors described by some model of the system. We study
the problem of rational verification: the system needs to be proven correct with regard to
property φ, not in all the executions of the environment, but only in those executions that
are rational with regard to the objectives of the environment.

There are several ways to model rationality. For instance, a famous model of rational
behavior for the agents is the concept of Nash equilibrium (NE) [39]. Some promising
exploratory works, based on the concept of NE, exist in the literature, like in verification of
non-repudiation and fair exchange protocols [35, 23], planning of self-driving cars interacting
with human drivers [45], or the automatic verification of an LTL specification in multi-agent
systems that behave according to an NE [32]. Another classical approach is to model the
environment as a single agent with multiple objectives. In that setting, trade-offs between
(partially) conflicting objectives need to be made, and a rational agent will behave in a
way to satisfy a Pareto-optimal set of its objectives. Pareto-optimality and multi-objective
formalisms have been considered in computer science, see for instance [41] and references
therein, and in formal methods, see e.g. [2, 12].

Nevertheless, we have only scratched the surface and there is a lack of a general theoretical
background for marrying concepts from game theory and formal verification. This is the
motivation of our work. We consider the setting in which a designer specifies the behavior of
a system and identifies its objective Ω0 as well as the multiple objectives {Ω1, . . . ,Ωt} of the
environment in a underlying game arena G. The behavior of the system is usually modeled by
the designer using a deterministic Moore machine that describes the strategy of the system
opposite the environment. The designer can also use the model of nondeterministic Moore
machine in order to describe a set of multiple possible strategies for the system instead of
some single specific strategy. Given a strategy σ0 for the system, the environment being
rational only executes behaviors induced by σ0 which result in a Pareto-optimal payoff with
regard to its set of objectives {Ω1, . . . ,Ωt}. When the Moore machine M is deterministic,
the Pareto-rational verification (PRV) problem asks whether all behaviors that are induced
by the machine M in G and that are Pareto-optimal for the environment all satisfy the
objective Ω0 of the system (a toy example giving intuition on this problem is proposed in
the full version). When the Moore machine is nondeterministic, the universal PRV problem
asks whether for all strategies σ0 of the system described by M, all behaviors induced by
σ0 that are Pareto-optimal for the environment satisfy Ω0. The latter problem is a clear
generalization of the former and is conceptually more challenging, as it asks to verify the
correctness of the possibly infinite set of strategies described by M. The universal PRV
problem is also a well motivated problem, as typically, in the early stages of a development
cycle, not all implementation details are fixed, and the use of nondeterminism is prevailing.
In this last setting, we want to guarantee that a positive verification result is transferred to
all possible implementations of the nondeterministic model of the system.

Technical Contributions. We introduce the Pareto-rational verification (PRV) problem and
its universal variant. The objective Ω0 of the system and the set {Ω1, . . . ,Ωt} of objectives
of the environment are ω-regular objectives. We consider several ways of specifying these
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Table 1 Summary of complexity results for the PRV problem and UPRV problem.

Objective PRV problem complexity UPRV problem complexity
Parity co-NP-complete (Theorem 5) PSPACE, NP-hard, co-NP-hard (Theorem 10)
Boolean Büchi Π2P-complete (Theorem 5) PSPACE-complete (Theorem 10)
LTL PSPACE-complete (Theorem 15) 2EXPTIME-complete (Theorem 14)

objectives: either by using parity conditions (a canonical way to specify ω-regular objectives),
Boolean Büchi conditions (a generic way to specify Büchi, co-Büchi, Streett, Rabin, and other
objectives), or using LTL formulas. Our technical results, some of which are summarized in
Table 1, are as follows.

First, we study the complexity class of the PRV problem. We prove that it is co-NP-
complete for parity objectives, Π2P-complete for Boolean Büchi objectives, and PSPACE-
complete for LTL objectives.

Second, we consider the universal variant of the PRV problem. We prove that it is
in PSPACE and both NP-hard and co-NP-hard for parity objectives, PSPACE-complete for
Boolean Büchi objectives, and 2EXPTIME-complete for LTL objectives.

Third, we establish the fixed-parameter tractability (FPT) of the universal PRV problem
where the parameters are the number t of objectives of the environment as well as the highest
priorities used in the parity objectives or the size of the formulas used in the Boolean Büchi
objectives. For the particular case of the PRV problem with parity conditions, the parameters
reduce to t only. Since this number is expected to be limited in practice, our result is of
practical relevance. We additionally provide an alternative, possibly more efficient in practice,
FPT algorithm for solving the PRV problem which exploits counterexamples and builds an
under-approximation of the set of Pareto-optimal payoffs on demand.

Related Work. The concept of nondeterminism for strategies has been studied in the
particular context of two-player zero-sum games where one player is opposed to the other
one, under the name of permissive strategy, multi-strategy, or nondeterministic strategy
in [5, 9, 10, 38, 44]. Those works concern synthesis and not verification.

Several fundamental results have been obtained on multi-player games played on graphs
where the objectives of the players are Boolean or quantitative (see e.g. the book chapter [31]
or the surveys [11, 13, 14]). Several notions of rational behavior of the players have been
studied such as NEs, subgame perfect equilibria (SPEs) [46], secure equilibria [21], or profiles
of admissible strategies [6]. The existing results in the literature are mainly focused on the
existence of equilibria or the synthesis of such equilibria when they exist. Multidimensional
energy and mean-payoff objectives for two-player games played on graphs have been studied
in [20, 49, 50] and the Pareto curve of multidimensional mean-payoff games has been studied
in [12]. Two-player games with heterogeneous multidimensional quantitative objectives have
been investigated in [16].

Recent results concern the synthesis of strategies for a system in a way to satisfy its
objective when facing an environment that is assumed to behave rationally with respect to
the objectives of all his components. In [29, 36, 37], the objectives are expressed as LTL
formulas and the considered models of rationality are NEs or SPEs. Algorithmic questions
about this approach are studied in [24] for different types of ω-regular objectives. In [18],
the objectives are ω-regular and the environment is assumed to behave rationally by playing
in a way to obtain Pareto-optimal payoffs with respect to its objectives. We consider the
concepts of [18] as a foundation for Pareto-rational verification.

CONCUR 2022



33:4 Pareto-Rational Verification

The previously mentioned results all deal with the existence or the synthesis of solutions.
Rational verification (instead of synthesis) is studied in [32] (see also the survey [1]), where
the authors study how to verify a given specification for a multi-agent system with agents
that behave rationally according to an NE when all objectives are specified by LTL formulas.
They prove that this problem is 2EXPTIME-complete and design an algorithm that reduces
this problem to solving a collection of parity games. This approach is implemented in the
Equilibrium Verification Environment tool. In this paper, we study Pareto-optimality as a
model of rationality instead of the concepts of NE or SPE. Our framework is more tractable
as the PRV problem is PSPACE-complete for LTL specifications.

2 Definitions and the Pareto-Rational Verification Problem

We start by recalling several classical concepts of game theory, and in particular the model
of (nondeterministic) Moore machines. We then present the verification problem studied in
this paper and illustrate it on an example. We end the section by discussing the complexity
of useful checks performed in several algorithms throughout this paper.

2.1 Definitions
Game Arena and Plays. A game arena is a tuple G = (V, V0, V1, E, v0) where (V,E) is a
finite directed graph such that: (i) V is the set of vertices and (V0, V1) forms a partition
of V where V0 (resp. V1) is the set of vertices controlled by Player 0 (resp. Player 1), (ii)
E ⊆ V × V is the set of edges such that each vertex v has at least one successor v′, i.e.,
(v, v′) ∈ E, and (iii) v0 ∈ V is the initial vertex. We denote by |G| the size of G. A sub-arena
G′ with a set V ′ ⊆ V of vertices and initial vertex v′

0 ∈ V ′ is a game arena defined from G

as expected. A single-player game arena is a game arena where V0 = ∅ and V1 = V .
A play in a game arena G is an infinite sequence of vertices ρ = v0v1 · · · ∈ V ω such that

it starts with the initial vertex v0 and (vj , vj+1) ∈ E for all j ∈ N. Histories in G are finite
non-empty sequences h = v0 . . . vj ∈ V + defined similarly. The set of plays in G is denoted
by PlaysG and the set of histories (resp. histories ending with a vertex in Vi) is denoted by
HistG (resp. HistG,i). Notations Plays, Hist, and Histi are used when G is clear from the
context. The set of vertices occurring (resp. occurring infinitely often) in a play ρ is written
Occ(ρ) (resp. Inf(ρ)).

Strategies and Moore Machines. A strategy σi for Player i is a function σi : Histi → V

assigning to each history hv ∈ Histi a vertex v′ = σi(hv) such that (v, v′) ∈ E. A play
ρ = v0v1 . . . is consistent with σi if vj+1 = σi(v0 . . . vj) for all j ∈ N such that vj ∈ Vi.
Consistency is naturally extended to histories. The set of plays (resp. histories) consistent
with strategy σi is written Playsσi

(resp. Histσi
).

A strategy σi for Player i is finite-memory [30] if it can be encoded by a deterministic
Moore machine M = (M,m0, αU , αN ) where M is the finite set of states (the memory of the
strategy), m0 ∈M is the initial memory state, αU : M ×V →M is the update function, and
αN : M×Vi → V is the next-move function. Such a machine defines the strategy σi such that
σi(hv) = αN (α̂U (m0, h), v) for all histories hv ∈ Histi, where α̂U extends αU to histories as
expected. In this paper, we consider the broader notion of nondeterministic Moore machine
M (see e.g. [5]) with a next-move function αN : M × Vi → 2V . Such a machine embeds a
(possibly infinite) set of strategies σi for Player i such that σi(hv) ∈ αN (α̂U (m0, h), v) for all
histories hv ∈ Histi

1. We denote by JMK the set of all strategies defined by M. The size of
M is equal to the number |M | of its memory states. Example 1 illustrates these concepts.

1 Notice that this definition is different from simply making the machine deterministic by fixing a single
next vertex v′ ∈ αN (m, v) for each m ∈ M and v ∈ Vi.



V. Bruyère, J.-F. Raskin, and C. Tamines 33:5

When M is a deterministic Moore machine with |M | = 1, then it defines a memoryless
strategy σi where σi(hv) = σi(h′v) for all hv, h′v ending with the same vertex v ∈ Vi. When
M is a nondeterministic Moore machine with |M | = 1 and such that αN (m0, v) = {v′ |
(v, v′) ∈ E}, then JMK is exactly the set of all possible strategies for Player i.

Objectives. An objective for Player i is a set of plays Ω ⊆ Plays. A play ρ satisfies the
objective Ω if ρ ∈ Ω. The opposite objective of Ω is written Ω = Plays \ Ω. We consider the
following objectives in this paper:

Let c : V → {0, . . . , d} be a function called a priority function which assigns an integer
to each vertex in the arena (we assume that d is even). The set of priorities occurring
infinitely often in a play ρ is Inf(c(ρ)) = {c(v) | v ∈ Inf(ρ)}. The parity objective
Parity(c) = {ρ ∈ Plays | min(Inf(c(ρ))) is even} asks that the minimum priority visited
infinitely often be even. The opposite objective Ω of a parity objective Ω is again a parity
objective (the priority function c′ of Ω is such that c′(v) = c(v) + 1 for all v ∈ V ).
Given m sets T1, . . . , Tm such that Ti ⊆ V , i ∈ {1, . . . ,m}, and ϕ a Boolean formula
over the set of variables X = {x1, . . . , xm}, the Boolean Büchi2 [27, 17] objective
BooleanBüchi(ϕ, T1, . . . , Tm) = {ρ ∈ Plays | ρ satisfies (ϕ, T1, . . . , Tm)} is the set of plays
whose valuation of the variables in X satisfy formula ϕ. Given a play ρ, its valuation
is such that xi = 1 if and only if Inf(ρ) ∩ Ti ̸= ∅ and xi = 0 otherwise. That is, a play
satisfies the objective if the Boolean formula describing the sets to be visited (in)finitely
often by a play is satisfied. It is assumed that negations only appear in literals of ϕ and
we denote by |ϕ| the size of ϕ equal to the number of symbols in {∧,∨,¬} ∪X in ϕ.
The opposite objective Ω of a Boolean Büchi objective Ω is again a Boolean Büchi
objective (the formula ¬ϕ of Ω is obtained from ϕ by replacing each symbol ∨ (resp. ∧)
by ∧ (resp. ∨) and each literal by its negation).

We recall that parity and Boolean Büchi objectives Ω are prefix-independent, i.e., whenever
ρ ∈ Ω, then all suffixes of ρ also satisfy Ω.

Zero-Sum Games. A two-player zero-sum game G = (G,Ω) is a game on a game arena G
where Player 0 has objective Ω and Player 1 has the opposite objective Ω. Given an initial
vertex v0, we say that a player is winning from v0 if he has a strategy such that all plays
starting with v0 and consistent with this strategy satisfy his objective. We assume that the
reader is familiar with this concept, see e.g. [30].

Lattices and Antichains. A complete lattice is a partially ordered set (S,≤) where S is a
set, ≤ ⊆ S × S is a partial order on S, and for every pair of elements s, s′ ∈ S, their greatest
lower bound and their least upper bound both exist. A subset A ⊆ S is an antichain if all of
its elements are pairwise incomparable with respect to ≤. Given T ⊆ S and an antichain
A ⊆ S, we denote by ⌈T ⌉ the set of maximal elements of T (which is thus an antichain) and
by ↓<A the set of all elements s ∈ S for which there exists some s′ ∈ A such that s < s′.
Given two antichains A,A′ ⊆ S, we write A ⊑ A′ when for all s ∈ A, there exists s′ ∈ A′

such that s ≤ s′, and we write A ⊏ A′ when A ⊑ A′ and A ̸= A′.

2.2 Pareto-Rational Verification Problem
We start by recalling the class of two-player games considered in this paper and the notion
of payoffs in those games.

2 This objective is also called Emerson-Lei objective.

CONCUR 2022



33:6 Pareto-Rational Verification

Stackelberg-Pareto Games. A Stackelberg-Pareto game (SP game) G = (G,Ω0,Ω1, . . . ,Ωt)
is composed of a game arena G, an objective Ω0 for Player 0, and t ≥ 1 objectives Ω1, . . . ,Ωt

for Player 1 [18]. An SP game where all objectives are parity (resp. Boolean Büchi) objectives
is called a parity (resp. Boolean Büchi) SP game.

Payoffs. The payoff of a play ρ ∈ Plays is the vector of Booleans pay(ρ) ∈ {0, 1}t such that
for all i ∈ {1, . . . , t}, payi(ρ) = 1 if ρ ∈ Ωi, and payi(ρ) = 0 otherwise. Notice that we omit
to include the objective of Player 0 when discussing the payoff of a play. Instead we say
that a play ρ is won by Player 0 if ρ ∈ Ω0 and we write won(ρ) = 1, otherwise it is lost by
Player 0 and we write won(ρ) = 0. We write (won(ρ), pay(ρ)) for the extended payoff of ρ. A
payoff p (resp. extended payoff (w, p)) is realizable if there exists a play ρ ∈ Plays such that
pay(ρ) = p (resp. (won(ρ), pay(ρ)) = (w, p)); we say that ρ realizes p (resp. (w, p)).

We consider the following partial order on payoffs. Given two payoffs p = (p1, . . . , pt) and
p′ = (p′

1, . . . , p
′
t) such that p, p′ ∈ {0, 1}t, we say that p′ is larger than p and write p ≤ p′ if

pi ≤ p′
i for all i ∈ {1, . . . , t}. Moreover, when it also holds that pi < p′

i for some i, we say
that p′ is strictly larger than p and we write p < p′. Notice that the pair ({0, 1}t,≤) is a
complete lattice with size 2t and that the size of any antichain on ({0, 1}t,≤) is thus upper
bounded by 2t.

Let G = (G,Ω0,Ω1, . . . ,Ωt) be an SP game and let σ0 be a strategy of Player 0. We can
consider the set of payoffs of plays consistent with σ0 which are Pareto-optimal, i.e., maximal
with respect to ≤. We write this set Pσ0 = max{pay(ρ) | ρ ∈ Playsσ0}. Notice that this set
is an antichain. In this paper, we study the following verification problem.

▶ Problem. Let G be an SP game and let M be a nondeterministic Moore machine for
Player 0. The universal Pareto-rational verification problem (UPRV problem) is to decide
whether for all σ0 ∈ JMK, it holds that every play ρ ∈ Playsσ0 such that pay(ρ) ∈ Pσ0 satisfies
the objective of Player 0. WhenM is deterministic, we consider the single strategy σ0 ∈ JMK
and speak about the Pareto-rational verification problem (PRV problem).

The UPRV problem models the situation where the system may employ one of several
possible strategies in a nondeterministic manner and we therefore want to verify that all
of them are correct. We do so in the context where the environment is rational and only
executes behaviors which result in a Pareto-optimal payoff with regard to its set of objectives.
In the following sections, we study the complexity of the (U)PRV problem in terms of |G|
the size of the game arena, |M | the size of the Moore machine, t the number of objectives
of Player 1, max di the maximum of all maximum priorities di according to each parity
objective Ωi in case of parity SP games, and max |ϕi| the maximum of all sizes |ϕi| such that
ϕi is the formula for objective Ωi in case of Boolean Büchi SP games.

▶ Example 1. Consider the parity SP game G with arena G depicted in Figure 1 (left) in
which Player 1 has t = 3 objectives [18]. The vertices of Player 0 (resp.Player 1) are depicted
as circles (resp. squares)3. We do not explicitly define the parity objective Ω0 of Player 0
nor the three parity objectives of Player 1. Instead, the extended payoff of plays reaching
vertices from which they can only loop is displayed in the arena next to those vertices, and
we set the extended payoff of play v0v2(v3v5)ω to (0, (0, 1, 0)).

3 This convention is used throughout this paper.
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m0 m1

V \ {v3}

v3/v5

V \ {v3}

v3/v7

m0 m1

V \ {v3}

v3/{v5}

V \ {v3}

v3/{v5, v7}

m0 m1 m2

V \ {v3}

v3/{v5}

V \ {v3}

v3/{v5, v7}

V \ {v3}

v3/{v7}

v0

v1

v2

v3

v4

v5

v7

v6(0, (0, 0, 1))

(0, (1, 0, 0))

(1, (1, 1, 0))

(1, (0, 1, 1))

Figure 1 A parity SP game (left), one deterministic Moore machine Mt and two nondeterministic
Moore machines Mc and Mb (respectively top, center, and bottom right).

Consider the memoryless strategy σ0 of Player 0 such that he chooses to always move to v5
from v3. The set of payoffs of plays consistent with σ0 is {(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1)}
and the set of those that are Pareto-optimal is Pσ0 = {(1, 0, 0), (0, 1, 1)}. Notice that play
ρ = v0v2v

ω
4 is consistent with σ0, has payoff (1, 0, 0) ∈ Pσ0 and is lost by Player 0. Together

with G, strategy σ0 is therefore a negative instance of the PRV problem.
Let us now consider the finite-memory strategy σ′

0 such that σ′
0(v0v2v3) = v5 and

σ′
0(v0v2v3v5v3) = v7. Contrarily to the previous strategy, G and σ′

0 constitute a posi-
tive instance of the PRV problem. Indeed, the set of Pareto-optimal payoffs is Pσ′

0
=

{(0, 1, 1), (1, 1, 0)} and Player 0 wins every play consistent with σ′
0 whose payoff is in this set.

A deterministic Moore machine Mt for σ′
0 is depicted in Figure 1 (top right). It has two

memory states with state m1 indicating that v3 has been visited. Each edge from m to m′ is
labeled by v/v′ with an optional v′ such that αU (m, v) = m′ and αN (m, v) = v′ if v ∈ V0.

Finally, we provide two nondeterministic Moore machines in Figure 1 (center right and
bottom right). Each edge from m to m′ is now labeled by v/T such that αN (m, v) = T ⊆ V
when v ∈ V0. Let us show that the SP game G with machine Mc (resp. machine Mb) is a
negative (resp. positive) instance of the UPRV problem.

One can check that the memoryless strategy σ0 mentioned above (always move to v5
from v3) belongs to the set JMcK. It follows that G and Mc are a negative instance of
the UPRV problem. Notice that all the other strategies σk

0 , k ≥ 1, of JMcK are such that
σk

0 (hv3) = v5 except when h = v0v2(v3v5)k in which case σk
0 (hv3) = v7 (the strategy allows

to cycle between v3 and v5 k times before dictating that v7 be visited).
The machine Mb has three memory states such that m1 (resp. m2) records one visit

(resp. at least two visits) to v3. The set JMbK contains exactly two strategies: one is
the finite-memory strategy σ′

0 given before and the other one is the strategy σ′′
0 such that

σ′′
0 (v0v2v3) = σ′′

0 (v0v2v3v5v3) = v5 and σ′′
0 (v0v2v3(v5v3)2) = v7. One can verify that G and

Mb are a positive instance of the UPRV problem. ⌟

▶ Remark 2. In the sequel, we often consider the Cartesian product G ×M with initial
vertex (v0,m0) of the arena G of G with the (nondeterministic) Moore machine M for
Player 0. When M is nondeterministic, this finite graph G×M is a two-player game arena
(as the vertices of Player 0 may have several successors). The strategies σ′

0 for Player 0 in
this product correspond exactly to the strategies σ0 ∈ JMK. With this in mind, we can
reformulate the UPRV problem to take a game arena as input. Given G′ = G×M, the UPRV
problem is to decide whether for all strategies σ′

0 of Player 0 in G′, every play ρ ∈ Playsσ′
0

such that pay(ρ) ∈ Pσ′
0

satisfies the objective of Player 0. When M is deterministic, this

CONCUR 2022
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product is a finite graph whose infinite paths, starting from the initial vertex, are exactly the
plays consistent with the single strategy σ0 ∈ JMK. This graph can be seen as a single-player
game arena G′ (as every vertex of Player 0 only has a single successor). In that setting,
given a single-player arena G′ = G×M, the PRV problem is to decide whether every play
ρ ∈ PlaysG′ such that pay(ρ) ∈ max{pay(ρ) | ρ ∈ PlaysG′} satisfies the objective of Player 0.

Payoff Realizability and Lassoes. In order to study the (U)PRV problem, we need to
perform specific checks on payoffs as described in the next proposition (the proof of which
can be found in the full version).
▶ Proposition 3. Let G = (G,Ω1, . . . ,Ωt) be an SP game and let p (resp. (w, p)) be a payoff
(resp. extended payoff). The existence of a play ρ realizing payoff p (resp. extended payoff
(w, p)) can be decided with the following complexities.

For parity objectives: in time polynomial in |G|, t, and max di.
For Boolean Büchi objectives: in time polynomial in |G|, and exponential in t and max |ϕi|.

Checking whether a realizable payoff p is Pareto-optimal is decided with the same complexities.
We also need the next property which shows that when a play satisfies a parity or a

Boolean Büchi objective, there exists another such play that is a lasso of polynomial size.
▶ Lemma 4 ([8]). For any play ρ ∈ Plays, there exists a lasso ρ′ = ghω such that ρ and ρ′

start with the same vertex, Occ(ρ) = Occ(ρ′), Inf(ρ) = Inf(ρ′), and |gh| is quadratic in |G|.

Related Synthesis Problem. Our verification problem is related to the Stackelberg-Pareto
Synthesis problem introduced in [18]. This synthesis problem asks, given a two-player SP
game, whether there exists a strategy σ0 for Player 0 such that every play in Playsσ0 with a
Pareto-optimal payoff satisfies the objective of Player 0. This problem is solved in [18] for
parity and reachability objectives. It is shown that the problem is NEXPTIME-complete, and
that finite-memory strategies are sufficient for Player 0 to have a solution σ0 to the problem.

3 Complexity Class of the PRV problem

In this section, we provide the complexity class of the PRV problem for both parity SP
games and Boolean Büchi SP games. The complexity class of the UPRV problem is studied
in Section 4. In this whole section, we assume that an instance of the PRV problem is an SP
game with a single-player game arena (see Remark 2). This is not problematic with respect
to the algorithmic complexities since the size of the single-player game arena is |G| · |M |.
▶ Theorem 5. The PRV problem is co-NP-complete for parity SP games and Π2P-complete
for Boolean Büchi SP games.

We now detail the arguments used to show the co-NP-completeness for parity SP games,
and refer the reader to the full version for the completeness result for Boolean Büchi SP
games.

Membership to co-NP. The co-NP-membership stated in Theorem 5 is easily proved by
showing that the complement of the PRV problem is in NP. Given a single-player SP game
G, we guess a payoff p ∈ {0, 1}t, and we check (i) whether p is realizable and Pareto-optimal,
and (ii) whether there exists a play ρ with payoff p which is lost by Player 0. In the case of
parity objectives, those two checks can be performed in polynomial time by Proposition 3.

The proof of co-NP-hardness is more involved. In order to show this result, we provide a
reduction from the co-3SAT problem to the PRV problem.
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. . . . . .
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G2v2

...

v0

Figure 2 The single-player arena G used in the reduction from co-3SAT for parity objectives.

The co-3SAT Problem. We consider a formula ψ = D1 ∧ · · · ∧Dr in 3-Conjunctive Normal
Form (3CNF) consisting of r clauses, each containing exactly 3 literals over the set of variables
X = {x1, . . . , xm}. We assume that each variable x occurs as a literal ℓ ∈ {x,¬x} in at least
one clause of ψ. The satisfiability problem, called 3SAT, is to decide whether there exists a
valuation of the variables in X such that the formula ψ evaluates to true. This problem is
well-known to be NP-complete [25, 34]. We can consider the complement of this problem,
which is to decide for such a formula ψ whether all valuations of the variables in X falsify
the formula i.e., make at least one of the clauses evaluate to false. This problem, called
co-3SAT, being the complement of an NP-complete problem, is co-NP-complete [40].

Intuition of the Reduction. Given an instance of co-3SAT, we create a parity SP game G
with a single-player game arena G consisting of two sub-arenas G1 and G2 reachable from
the initial vertex v0 as depicted in Figure 2. The intuition behind this construction is the
following. A play in the arena starts in v0 and will either enter G1 through v1 and stay in
that sub-arena forever or enter G2 through v2, visit some vertex si with i ∈ {1, . . . , r}, and
stay forever in the corresponding sub-arena Si. The objectives are devised such that a payoff
contains one objective per literal of X and one objective per literal, per clause of ψ. A play
in G1 has a payoff corresponding to a valuation of X and the literals in the clauses of ψ
satisfied by that valuation. In addition, the objective of Player 0 is not satisfied in those
plays. Therefore, it must be the case that the payoffs of plays in G1 are not Pareto-optimal
in order for the instance of the PRV problem to be positive. This is only the case when the
instance of co-3SAT is also positive due to the fact that plays in G2, which all satisfy the
objective of Player 0, then have payoffs strictly larger than that of plays in G1. This is not
the case if some play in G1 corresponds to a valuation of X which satisfies ψ.

Structure of a Payoff. We now detail the objectives used in the reduction and the corre-
sponding structure of a payoff in G. Player 0 has a single parity objective Ω0. Player 1 has
1 + 2 ·m+ 3 · r parity objectives (assuming each clause is composed of exactly 3 literals).
The payoff of a play in G therefore consists in a vector of 1 + 2 ·m+ 3 · r Booleans for the
following objectives:
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(Ω1,Ωx1 ,Ω¬x1 , . . . ,Ωxm
,Ω¬xm

,Ωℓ1,1 ,Ωℓ1,2 ,Ωℓ1,3 , . . . ,Ωℓr,1 ,Ωℓr,2 ,Ωℓr,3).

The objective Ω0 is equal to objective Ω1 = Parity(c) with c(v) = 2 if v ∈ G2 and c(v) = 1
otherwise. It is direct to see that these objectives are only satisfied for plays in G2. We
define the objective Ωx = Parity(c) (resp. Ω¬x = Parity(c′)) with c(x) = 2 and c(¬x) = 1
(resp. c′(¬x) = 2 and c′(x) = 1) for the vertices labelled x and ¬x in G1 and G2, and such
that every other vertex has priority 2 according to c (resp. c′). Objective Ωx (resp. ¬Ωx)
is satisfied if and only if vertex x (resp. ¬x) is visited infinitely often and ¬x (resp. x) is
not. If both x and ¬x are visited infinitely often, neither Ωx not Ω¬x are satisfied. These
objectives are used to encode valuations of X into payoffs. The objective Ωℓi,j corresponds
to the objective for the jth literal of the ith clause of ψ, written ℓi,j ∈ {xk,¬xk} for some
k ∈ {1, . . . ,m}, we define the priority function for this objective later for each sub-arena.

Payoff of Plays Entering Sub-Arena G1. We define the priority function c of objective
Ωℓi,j in G1 such that c(ℓi,j) = 2 and c(¬ℓi,j) = 1 for vertices labeled ℓi,j and ¬ℓi,j in G1.
Notice that a play in G1 corresponds to repeatedly making the choice of visiting xi or ¬xi

for i ∈ {1, . . . ,m}. We call plays which visit both xi and ¬xi infinitely often for some i
unstable plays and those which visit infinitely often either xi or ¬xi for each i stable plays.
We introduce the following lemma on the stability of plays in G1 (proved in the full version).

▶ Lemma 6. Unstable plays in G1 do not have a Pareto-optimal payoff.

In the sequel, we therefore only consider stable plays ρ in G1. The objective Ω0 of Player 0
and Ω1 of Player 1 are not satisfied in ρ and such a play satisfies either the objective Ωxi

or Ω¬xi
for each xi ∈ X. The part of the payoff of ρ for these objectives can be seen as

a valuation of the variables in X, expressed as a vector of 2 ·m Booleans. The objective
Ωℓi,j is satisfied in the payoff of ρ if and only if the literal ℓi,j is satisfied by that valuation.
That is if either ℓi,j = xk and Ωxk

is satisfied or ℓi,j = ¬xk and Ω¬xk
is satisfied, for xk ∈ X.

Given a positive instance of the co-3SAT problem, it holds that none of the valuations of X
satisfy the formula ψ. Therefore, since stable plays in G1 encode valuations of X and the
corresponding satisfied literals of the clauses of ψ, the next lemma holds (see full version).

▶ Lemma 7. Given a positive instance of the co-3SAT problem and any stable play ρ in G1,
there exists a clause Di for i ∈ {1, . . . , r} such that Ωℓi,j is not satisfied in ρ for j ∈ {1, 2, 3}.

In order for the instance of the PRV problem to be positive in case of a positive instance
of co-3SAT, since plays in G1 do not satisfy the objective of Player 0, it must be the case
that the payoff of these plays are not Pareto-optimal when considering the whole arena G.
Therefore, given any play in G1, there must exists a play with a strictly larger payoff in G2
which also satisfies the objective of Player 0.

Payoff of Plays Entering Sub-Arena G2. We define the priority function c of objective
Ωℓi,j in G2 such that c(si) = 1 and c(v) = 2 for v ̸= si in G2. Therefore, any play entering
Si satisfies every objective for the literals of the clauses of ψ, except for objectives Ωℓi,j ,
j ∈ {1, 2, 3}. After entering a sub-arena Sj , plays in G2 can visit infinitely often either or
both xi and ¬xi for i ∈ {1, . . . ,m} and we therefore introduce the following lemma on the
stability of plays in G2, the proof of which is given in the full version.
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▶ Lemma 8. Unstable plays in G2 do not have a Pareto-optimal payoff.

We therefore only consider stable plays in G2. Such a play ρ satisfies either the objective
Ωxi

or Ω¬xi
for each xi ∈ X. The objectives corresponding to the literals in the clauses of ψ

which are satisfied in ρ only depend on the sub-arena Sj entered by ρ. It can easily be shown
that every such objective is satisfied by ρ except for Ωℓj,1 ,Ωℓj,2 and Ωℓj,3 for clause Dj .

Correctness. Finally, we briefly discuss the correctness of this reduction (a full proof is
provided in the full version). In case of a positive instance of the co-3SAT problem, for every
valuation of X (and therefore every stable play ρ in G1), this valuation does not satisfy some
clause Di of ϕ (and therefore ρ does not satisfy any objective Ωℓi,j by Lemma 7). It follows
that there exists a play with a strictly larger payoff in G2 given the form of the payoff of
plays in G2 discussed above (and the fact that they satisfy objective Ω1 while ρ does not).
In case of a negative instance of co-3SAT, this is not the case as some stable play in G1
corresponds to a valuation which satisfies ϕ and therefore satisfies at least one objective for
each clause Di. As plays in G2 do not satisfy any objective for some clause, G1 contains a
Pareto-optimal play lost by Player 0, and the instance of the PRV problem is negative.

▶ Remark 9. As stated in Theorem 5, the lower bound for the PRV problem is stronger for
Boolean Büchi objectives than for parity objectives. We can show that this difference in
complexity is even more apparent if we consider the following variant of the complement
of the PRV problem in which we fix a payoff for Player 1: given a single-player SP game
and a payoff p, decide whether there exists a play with payoff p not satisfying Ω0 and p is
Pareto-optimal. While this problem is in P for parity SP games (indeed p does not need to
be guessed anymore), it is BH2-complete for Boolean Büchi SP games. We refer the reader
to the full version for details about this additional complexity result.

4 Complexity Class of the UPRV problem

We study in this section the complexity class of the UPRV problem for parity and Boolean
Büchi SP games. Our results are summarized in the following theorem.

▶ Theorem 10. The UPRV problem is
PSPACE-complete for Boolean Büchi SP games,
in PSPACE, NP-hard and co-NP-hard for parity SP games.

We show the PSPACE-membership stated in Theorem 10 in the following proposition.

▶ Proposition 11. The UPRV problem is in PSPACE for both Boolean Büchi SP games and
parity SP games.

Proof. Let G be an SP game and M be a nondeterministic Moore machine for Player 0. By
Remark 2, the strategies of JMK are exactly the strategies of the product G′ = G×M. In
the sequel, we will shift from G to G′ and conversely without mentioning it explicitly.

To prove Proposition 11, it is enough to show that the complement of the UPRV
problem is in NPSPACE, since NPSPACE = PSPACE and as the PSPACE class is closed under
complementation. The complement of the UPRV problem is to decide whether there exists a
strategy σ0 ∈ JMK and a play ρ ∈ Playsσ0 such that pay(ρ) ∈ Pσ0 and ρ is lost by Player 0.

Our algorithm works as follows in G′ (we detail its correctness and complexity later):
1. guess a lasso ρ′ = g′h′ω in PlaysG′ such that g′h′ has polynomial size,
2. check that ρ′ is lost by Player 0,
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3. check that for each vertex v of ρ′ controlled by Player 1, Player 0 is winning from v in the
two-player zero-sum game H = (G′,Ω′) with arena G′ and objective Ω′ = {ρ∗ ∈ PlaysG′ |
¬(pay(ρ∗) > pay(ρ′))}.

Let us prove that this algorithm is correct. (i) Assume first that there exists a strategy
σ0 ∈ JMK and a play ρ ∈ Playsσ0 such that pay(ρ) ∈ Pσ0 and ρ is lost by Player 0. We see
this play ρ as a play in G′. By Lemma 4 there exists a lasso ρ′ = g′h′ω of polynomial size
in G′ which realises the same extended payoff and such that Occ(ρ) = Occ(ρ′). This lasso
is what is guessed in step 1 of the algorithm. By our assumptions on ρ, we know that it
satisfies the check of step 2. It remains to explain why the second check also succeeds in
step 3. From each vertex v of ρ′ (and thus of ρ) controlled by Player 1, Player 0 is winning
in H thanks to his strategy σ0. Indeed, any play ρ′

1 ∈ PlaysG′ consistent with σ0 cannot
have a payoff strictly larger than pay(ρ′) ∈ Pσ0 , and parity and Boolean Büchi objectives
are prefix-independent. (ii) Assume now that the two checks of our algorithm succeed for
the guessed lasso ρ′. Let us define a strategy σ0 for Player 0 in G′ (which is also a strategy
σ0 ∈ JMK) as follows: first we define σ0 in a way to produce play ρ′; second after each history
hvv′ such that hv is prefix of ρ′ and hvv′ is not (meaning that v belongs to Player 1), σ0
acts as the winning strategy of Player 0 from v in H. We have thus proved that there exist a
strategy σ0 ∈ JMK and a play ρ′ ∈ Playsσ0 such that pay(ρ′) ∈ Pσ0 and ρ′ is lost by Player 0.

Let us now show that our nondeterministic algorithm executes in polynomial space. Step 1
requires polynomial space to store g′h′. The check of step 2 requires to verify that ρ′ ̸∈ Ω0
such that Ω0 is either a parity or a Boolean Büchi objective. This can be done by looking
at the cycle h′ in polynomial space. Let us now study step 3. We are going to show that
H = (G′,Ω′) is a zero-sum game with a Boolean Büchi objective Ω′, known to be solvable in
PSPACE [33]. Let us denote by p = (p1, . . . , pt) the payoff of ρ′. The objective Ω′ is equal to( ⋂

pi=0
Ωi

)
∪

( ⋃
pi=1
pj=0

(
Ωi ∩ Ωj

))
(1)

where the the first disjunct expresses plays with payoffs less than or equal to p and the
second disjunct expresses plays with payoffs incomparable with p. Recall that any parity
objective can be expressed as a Boolean Büchi objective using a formula of size O(d2) where
d is the highest priority in the parity objective (see e.g. [3]). Therefore, for both parity and
Boolean Büchi SP games, the objective Ω′ is a Boolean Büchi objective defined by a formula
of polynomial size. ◀

We now turn to the hardness results stated in Theorem 10. The co-NP hardness of the
UPRV problem for parity SP games is easily obtained from the co-NP hardness of the PRV
problem (Theorem 5). We consider the other hardness results in the following proposition.

▶ Proposition 12. The UPRV problem is NP-hard for parity SP games, and PSPACE-hard
for Boolean Büchi SP games.

We prove the NP-hardness for parity SP games and refer the reader to the full version
for the PSPACE-hardness for Boolean Büchi SP games. For this purpose, we reduce the
following co-NP-hard problem to an instance of the complement of the UPRV problem.

Generalized Parity Game. Let us consider a two-player zero-sum generalized parity game
(G,Ωa ∧Ωb) where the objective of Player 0 is a conjunction Ωa ∧Ωb of two parity objectives.
Deciding whether Player 0 has a winning strategy from a vertex v0 in G is co-NP-hard [22].
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v′
0g1 G

Figure 3 The arena G′ used in the reduction from zero-sum games with two parity objectives.

Intuition of the Reduction. Given a zero-sum generalized parity game (G,Ωa ∧ Ωb) and a
vertex v0, we construct an instance of the UPRV problem with the game arena G′ depicted
in Figure 3. In G′, the dashed box labeled G represents the arena of the zero-sum game
and we assume that the edge from v′

0 goes to v0 in G. Equivalently, the dashed box is
the Cartesian product of G and the nondeterministic machine M with one memory state
embedding all possible strategies of Player 0 (see Remark 2). Notice that given a play ρ′

of G′ reaching G, we can retrieve a corresponding play ρ from v0 in G. Any strategy σ0
of Player 0 in G′ is a strategy in JMK and the converse also holds. We will see that the
proposed construction is such that Player 0 has a winning strategy from v0 in (G,Ωa ∧Ωb) if
and only if the corresponding instance of the UPRV problem is negative.

Objectives. Player 0 has a single parity objective Ω0 and Player 1 has two parity objectives
Ω1 and Ω2. We first extend the priority function ca of Ωa (resp. cb of Ωb) to G′ such that
ca(g1) = ca(v′

0) = cb(g1) = cb(v′
0) = 1 and consider the corresponding objective Ω′

a (resp. Ω′
b)

in G′. Notice that Ω′
a = Ωa (resp. Ω′

b = Ωb) when considering only the plays of sub-arena
G in G′. We define the actual objectives used in the reduction as follows. Player 0 has
objective Ω0 = Parity(c) with a priority function c defined such that Ω0 is only satisfied in
plays reaching G. The first (resp. second) objective of Player 1 is such that Ω1 = Ω′

a (resp.
Ω2 = Ω′

b). Notice that objective Ω1 (resp. Ω2) is satisfied in plays reaching G if and only if
the objective Ωa (resp. Ωb) is not satisfied in those plays. The play v′

0g
ω
1 is consistent with

any strategy of Player 0 and has extended payoff (0, (0, 0)). Any play reaching G is of the
form ρ′ = v′

0ρ where ρ is a play in G starting from the initial vertex v0. The extended payoff
for such a play ρ′ is (1, (0, 0)) if ρ satisfies Ωa and Ωb; (1, (0, 1)) if ρ satisfies Ωa and not Ωb;
(1, (1, 0)) if ρ satisfies Ωb and not Ωa; and (1, (1, 1)) if ρ does not satisfy Ωa nor Ωb.

Correctness. If the instance of the UPRV problem is negative, it holds there exists a
strategy σ0 ∈ JMK such that some play in Playsσ0 has a Pareto-optimal payoff and is lost
by Player 0. Since the play v′

0g
ω
1 with payoff (0, 0) is the only one in G′ not to satisfy Ω0,

its payoff must be Pareto-optimal. It follows that all plays in G that are consistent with
σ0 have payoff (0, 0) and therefore satisfy the conjunction Ωa ∧ Ωb. Hence, σ0 is a winning
strategy for Player 0 from v0 in the zero-sum game (G,Ωa ∧ Ωb). Conversely, if Player 0 has
a winning strategy from v0 in (G,Ωa ∧ Ωb), it holds that this strategy is in JMK and such
that all consistent plays in G satisfy the conjunction Ωa ∧ Ωb and therefore has payoff (0, 0).
It is easily checked that the instance of the UPRV problem is negative.

5 Fixed-Parameter Complexity

In this section, we study the fixed-parameter complexity of the (U)PRV problem. We refer
the reader to [26] for the concept of fixed-parameter tractability (FPT). We recall that
given an SP game G = (G,Ω0, . . . ,Ωt), max di is the maximum of all maximum priorities di

according to each objective Ωi in case of parity SP games, and that max |ϕi| is the maximum
of all sizes |ϕi| such that each ϕi defines objective Ωi in case of Boolean Büchi SP games.
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▶ Theorem 13. The UPRV problem is in FPT
with parameters t and max di for parity SP games (with an exponential in t and max di),
with parameters t and max |ϕi| for Boolean Büchi SP games (with an exponential in t

and max |ϕi|).
The proof of this theorem uses a deterministic variant of the algorithm given in the proof

of Proposition 11. Instead of guessing a lasso, we loop over each possible payoff p for which
we test whether there exists a play ρ with payoff p not satisfying Ω0, and such that Player 0
has a winning strategy from each vertex v of ρ in the zero-sum game H = (G×M,Ω′) with
Ω′ defined in (1). Whether Player 0 is winning from v in H can be checked with an FPT
algorithm with parameter |ϕ′| (with an exponential in |ϕ′|) where ϕ′ defines the Boolean
Büchi objective Ω′ [17, 15].4 Details of the proof are given in the full version.

A direct corollary of Theorem 13 is that the PRV problem is also in FPT. Nevertheless,
we provide in the full version a simpler FPT algorithm for the PRV problem leading to an
improved complexity for parity SP games (with a sole exponential in t). A second, more
clever, variation is given in Algorithm 1 where instead of computing the antichain Pσ0 by
going through the entire lattice of payoffs, we compute an under-approximation (with respect
to ⊑) of Pσ0 on demand by using counterexamples. The algorithm systematically searches
for plays ρ losing for Player 0 and maintains an antichain A of realizable payoffs to eliminate
previous counterexamples. Initially, this antichain A is empty. A potential counterexample
is a play ρ losing for Player 0 and such that for all payoffs p of A, pay(ρ) is not strictly
smaller than p, that is, pay(ρ) ̸∈ ↓<A (line 3). When a potential counterexample ρ exists,
there are two possible cases. First, there exists a play ρ′ winning for Player 0 and such that
pay(ρ′) > pay(ρ) (line 4). The payoff of ρ′ is added to A and a new approximation A of Pσ0

is computed (by keeping only the maximal elements, line 5). Second, if such a play ρ′ does
not exist, then we have identified a counterexample (the play ρ), showing that the instance
of the PRV problem is negative (line 7). If there are no more potential counterexamples,
then the instance is positive (line 9), otherwise we iterate. This algorithm is guaranteed to
terminate as A ⊏ ⌈A ∪ {pay(ρ′)}⌉ in line 5. Algorithm 1 is shown to be correct and in FPT
in the full version of the paper, where we also evaluate it to show its efficiency in practice.

Algorithm 1 Counterexample-based algorithm for the PRV problem.

Input: A single-player SP game resulting from the Cartesian product of the arena G
of an SP game and a deterministic Moore machine M for Player 0.

Output: Whether the instance of the PRV problem is positive.
1 A← ∅
2 repeat
3 if ∃ρ ∈ Plays such that won(ρ) = 0 and pay(ρ) ̸∈ ↓<A then
4 if ∃ρ′ ∈ Plays such that won(ρ′) = 1 and pay(ρ′) > pay(ρ) then
5 A← ⌈A ∪ {pay(ρ′)}⌉
6 else
7 return False
8 else
9 return True

4 The FPT algorithm in [17] is linear in the number of symbols ∨, ∧ of ϕ′ and double exponential in the
number of variables of ϕ′. This complexity is improved in [15] by replacing the double exponential in
|ϕ′| by a single one.
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6 LTL Pareto-Rational Verification

We now show that when the objectives are expressed using Linear Temporal Logic (LTL)
formulas, the PRV problem retains the PSPACE-completeness of the LTL model-checking
problem, and the UPRV problem retains the 2EXPTIME-completeness of solving LTL games.
We do not investigate the fixed-parameter complexity in this context as the completeness to
PSPACE (resp. 2EXPTIME) already holds when Player 1 has a single objective.

LTL (Universal) Pareto-Rational Verification Problem. A labeled game arena Gλ is a
game arena where a labeling function λ : V → 2AP maps each vertex to a set of propositional
variables in AP . An LTL SP game G = (Gλ, ϕ0, ϕ1, . . . , ϕt) is composed of a labeled game
arena Gλ, an LTL formula ϕ0 for Player 0 and t ≥ 1 LTL formulas ϕ1, . . . , ϕt for Player 1.
The difference with regular SP games is thus that the goal of the players is expressed using
LTL formulas over the set of propositional variables AP . The payoff of plays in Gλ is defined
as expected. Given an LTL SP game, we consider the two verification problems described in
Section 2 and call them the LTL PRV problem and LTL UPRV problem.

▶ Theorem 14. The LTL UPRV problem is 2EXPTIME-complete.

Proof. We first prove that the LTL UPRV problem is in 2EXPTIME. Given an LTL SP game
G and a nondeterministic Moore machine M, we proceed as follows. We first perform the
Cartesian product G′ = Gλ×A0×A1×· · ·×At of the arena Gλ with a Deterministic Parity
Automaton (DPA) Ai for each LTL formula ϕi, i ∈ {0, . . . , t}. The size of each automaton is
at most double exponential in the size of its corresponding LTL formula, and the number of
priorities it uses is exponential [48, 42, 28]. We thus have a parity SP game G′ with arena G′

of double exponential size. We then use the FPT algorithm of Theorem 13 on this SP game G′,
which is polynomial in |G′| and exponential in the parameters t and max d′

i (the maximum
priority used in the parity objectives). Therefore this algorithm is polynomial in |Gλ|, single
exponential in t, and double exponential in the size of LTL formulas ϕi, i ∈ {0, . . . , t}. This
shows the 2EXPTIME-easyness.

Let us now prove the 2EXPTIME-hardness result by adapting the reduction of Proposi-
tion 12 for the case of the LTL UPRV problem.

We consider the problem of deciding whether Player 0 has a winning strategy from v0 in
a two-player zero-sum game (Gλ, ϕ) where the ϕ is the LTL objective of Player 0. This
problem is 2EXPTIME-complete [43].
Given such a zero-sum game (Gλ, ϕ) and a vertex v0, we construct an instance of the
UPRV problem on the same game arena G′ depicted in Figure 3. In this arena, G is
replaced by Gλ and both v′

0 and g1 are labelled with the set {x} containing the single
atomic proposition x which does not appear in ϕ. The nondeterministic machine M
considered in the reduction is again the one with a single memory state that embeds every
possible strategy of Player 0. The objective Ω0 of Player 0 is defined by LTL formula ϕ0
and the single objective Ω1 of Player 1 is defined by LTL formula ϕ1 as follows:
ϕ0 = ¬⃝ x,
ϕ1 = (¬⃝ x) ∧ (¬⃝ ϕ)

where ⃝ is the next operator in LTL. It is direct to see that objective Ω0 is not satisfied
by the play v′

0g
ω
1 and is satisfied by all plays reaching Gλ. The objective Ω1 is not satisfied

by the play v′
0g

ω
1 and is satisfied by plays reaching Gλ if and only if the formula ϕ is not

satisfied in those plays.
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Using similar arguments as used in the proof of Proposition 12, the following holds.
A strategy σ0 ∈ JMK makes the instance of the LTL UPRV problem negative if every
play v′

0ρ reaching Gλ and consistent with this strategy falsifies objective Ω1 of Player 1
(as no payoff is then strictly larger than that of play v′

0g
ω
1 , lost by Player 0). If this is

the case, it follows that strategy σ0 is a winning strategy for Player 0 from v0 in the
zero-sum game (Gλ, ϕ) as every play ρ consistent with this strategy satisfies formula ϕ.
The converse is also true. Player 0 therefore has a winning strategy from v0 in (Gλ, ϕ) if
and only if the corresponding instance of the LTL UPRV problem is negative. It follows
that the LTL UPRV problem is 2EXPTIME-hard for LTL SP games (as co-2EXPTIME =
2EXPTIME). ◀

▶ Theorem 15. The LTL PRV problem is PSPACE-complete.

The proof of this theorem relies on two variants of the LTL model-checking problem that
are both PSPACE-complete [47].

LTL Model-Checking Problem. Given a finite transition system T , an initial state, and an
LTL formula ψ, the LTL existential (resp. universal) model-checking problem is to decide
whether ψ is satisfied in at least one infinite path (resp. all infinite paths) of T starting from
the initial state. Notice that a finite transition system is the same model as a single-player
labeled game arena and that an infinite path in T corresponds to a play in this arena.

Proof of Theorem 15. We first show that the LTL PRV problem is in PSPACE. Given an
LTL SP game G, we proceed as follows. For each payoff p ∈ {0, 1}t, we check (i) whether it
is realizable and Pareto-optimal, if yes (ii) whether there exists a play ρ such that pay(ρ) = p

and won(ρ) = 0. If for some payoff p, both tests succeed, then the given instance G is negative,
otherwise it is positive (this approach is similar to the simpler FPT algorithm for the PRV
problem provided in the full version). Checking that a payoff p is realizable reduces to solving
the LTL existential model-checking problem for the formula ψ = (

∧
pi=1 ϕi) ∧ (

∧
pi=0 ¬ϕi),

this test can be performed in polynomial space. The second check in (i) and the last check in
(ii) are similarly executed in polynomial space. The LTL PRV problem is hence in PSPACE.

We now prove that the LTL PRV problem is PSPACE-hard by showing that we can
transform any instance of the LTL universal model-checking problem into an instance of
the LTL PRV problem such that the instance of the former is positive if and only if the
corresponding instance of the latter is positive as well. Let T be transition system and ψ be
an LTL formula. Given our previous remark, T can be seen as a single-player labeled arena
Gλ for some labeling function λ. We create the following LTL SP game G = (Gλ, ψ, ϕ1)
played on Gλ = T where the objective of Player 0 is to satisfy the formula ψ and the sole
objective of Player 1 is to satisfy the formula ϕ1 = true. It is direct to see that any play in
Gλ satisfies the objective of Player 1 and therefore that every play in Gλ is Pareto-optimal.
It follows that the given instance of the LTL PRV problem is positive if and only if every play
in Gλ satisfies the formula ψ. This corresponds exactly to the LTL universal model-checking
problem. ◀
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