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Abstract

Concurrent multi-player games with ω-regular objectives are a standard model for systems that
consist of several interacting components, each with its own objective. The standard solution concept
for such games is Nash Equilibrium, which is a “stable” strategy profile for the players.

In many settings, the system is not fully observable by the interacting components, e.g., due to
internal variables. Then, the interaction is modelled by a partial information game. Unfortunately,
the problem of whether a partial information game has an NE is not known to be decidable. A
particular setting of partial information arises naturally when processes are assigned IDs by the
system, but these IDs are not known to the processes. Then, the processes have full information
about the state of the system, but are uncertain of the effect of their actions on the transitions.

We generalize the setting above and introduce Multi-Topology Games (MTGs) – concurrent
games with several possible topologies, where the players do not know which topology is actually
used. We show that extending the concept of NE to these games can take several forms. To this end,
we propose two notions of NE: Conservative NE, in which a player deviates if she can strictly add
topologies to her winning set, and Greedy NE, where she deviates if she can win in a previously-losing
topology. We study the properties of these NE, and show that the problem of whether a game
admits them is decidable.
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1 Introduction

Concurrent multi-player games of infinite duration over graphs are a standard modelling tool
for representing systems that consist of several interacting components, each having its own
objective. Each player in the game corresponds to a component in the interaction. In each
round of the game each of the player chooses an action and the next state of the game is
determined by the current state and the vector of actions chosen. A strategy for a player is
then a mapping from the history of the game so far to the next action.

A strategy profile (i.e., a tuple of strategies, one for each player) induces an infinite trace
of states, and the goal of each player is to direct the game into a trace that satisfies her
specification. This is modeled by augmenting the game with ω-regular objectives describing
the objectives of the players.

Unlike traditional zero-sum games, here the objectives of the players do not necessarily
contradict each other. Accordingly, the typical questions about these games concern their
stability. Specifically, the most well-known stability measure is Nash Equilibrium (NE): an
NE is a strategy profile such that no single player can improve her outcome by unilaterally
deviating from the profile. The problem of whether a multi-player game with ω-regular
objectives has an NE was shown to be decidable in [6].

In many settings, the players only have partial information about the system, or can
view only certain parts of it. This happens when e.g., the system has private and global
variables, and the players model threads that can only view the global variables. To this end,
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34:2 Concurrent Games with Multiple Topologies

games with partial information have been extensively studied in various forms [3, 5, 9, 10].
However, in contrast to the full-information setting, the problem of deciding whether a
partial-information multi-player game of infinite duration has a Nash equilibrium is not
known to be decidable, and is known to be undecidable in the case of stochastic games [25].

In this work, we introduce and study Multi-Topology Games (MTG). Intuitively, an MTG
is a concurrent multi-player game with several transition functions (i.e., topologies). Then,
players are fully aware of the possible topologies of the game, but do not know which topology
they currently play on. Thus, MTGs capture a restricted form of partial information.

As we now demonstrate, MTGs naturally model the sort of partial information that arises
in the context of process symmetry.

▶ Example 1. Consider a virtual router with multiple ports. When the router is initialized,
several processes are plugged in. The router assigns each process to a port id, but the id
is not revealed to the processes. Each process attempts to send messages, and its goal is
to have its messages delivered (where some messages may be dropped due to heavy traffic).
While the processes know exactly how the router works, they do not know which port they
are assigned to. Therefore, their strategies must be oblivious to their port number.

As a concrete example, consider the concurrent game in Figure 1 with players {blue, red}.
When both players know the port assignment, for example, blue →Port 1 and red →Port 2,
then blue can win by always taking action 1, and red will lose in any strategy. However,
if the port assignment is not known then in order for either player to win under both port
assignments, the players must coordinate e.g., by taking turns trying to send a message.
Thus, a-priori, the game has two possible topologies: Figure 1a and Figure 1b.

ready

start

send1 send2

00

10,11

01

(a) blue →Port 1, red →Port 2.

ready

start

send1 send2

00

01,11

10

(b) blue →Port 2, red →Port 1.

Figure 1 Router game from Example 1. The players are blue and red, and the router has two
ports 1, 2. In every round each player can try to send (action 1), or wait (action 0). The labels on
the edges describe the actions of the players. The first is the action of the blue player, and the
second is the action of the red player. From ready, if only the player in Port i ∈ {1, 2} tries to send,
the game transitions to sendi. If both players try to send, the router prioritizes the request from
Port 1. The objective of the player Port i is to visit sendi infinitely many times. Note that sendi is
colored according to the player that tries to reach it in each port assignment.

These type of settings are commonly referred to as process symmetry [12, 15, 18, 19, 1],
and have been studied in several contexts (e.g., model checking with symmetry reductions).
However, to our knowledge this setting has not been studied in games. In Section 3.1 we
demonstrate how MTGs can model the general setting of process symmetry in games. ⌟

In an MTG, a strategy for a player maps sequences of states to an action, and hence does
not depend on a certain topology. Unlike standard games, a strategy profile in an MTG no
longer induces a single trace, but rather a set of traces, one per topology. Thus, a player
can no longer be said to be “winning” or “losing” in a strategy profile, as this may vary
between topologies. In particular, it is not clear how analogues of Nash equilibrium and
social optimum should be defined.
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To this end, we propose two versions of Nash equilibria, corresponding to two extremities:
in a Conservative NE (CNE), a player deviates if she can increase (w.r.t. containment) the
set of topologies she wins in. In a Greedy NE (GNE), a player deviates if she can win in a
currently-losing topology (even at the cost of losing some of the currently-winning topolgies).

We study the properties of CNE and GNE and compare their strictness, showing that a
GNE is also a CNE, but the converse does not hold. We also compare their properties to
those of the standard notion of NE. Our main technical contribution is showing that the
problem of whether a game has a CNE (resp. GNE) is decidable.

Related Work. A central work concerning NE in concurrent games is [6], where the problem
of deciding whether a concurrent game admits an NE was studied for various winning
conditions. Apart from establishing tight complexity bounds, this work also introduced the
suspect game – a useful technique for reasoning about concurrent games. Interestingly, the
suspect game does not seem to be adaptable to reason about MTGs, suggesting a fundamental
difference between the models.

Zero-sum concurrent reachability games were studied in [13], where fundamental tech-
niques for reasoning about them were developed. We remark that the zero-sum setting is
technically very different to ours, due to the non-adversarial nature of the players.

Concurrent games can be formulated in the turn-based setting using partial information.
The latter were extensively studied, e.g., in [9, 22, 10, 3, 8, 14], typically in the zero-sum
setting.

Finally, the work in [3] extends strategy logic [11] with imperfect information. The
authors show that, in general, the model checking problem for this logic is undecidable, but it
is decidable in some special cases. Unfortunately, these cases do not readily capture MTGs.

Paper organization. In Section 2 we present the basic definitions of concurrent games. In
Section 3 we formally define MTGs, introduce two notions of equilibria for them, and study
their properties. In Section 4 we give our main technical result, establishing the decidability
of detecting CNE in MTGs. In Section 5 we establish the decidability of detecting GNE.
Finally, in Section 6 we discuss our results and some extensions, and detail future directions.

2 Preliminaries

A concurrent parity game is a tuple G = ⟨Pla,S, s0,Act, δ, (αp)p∈Pla⟩ where the components
are as follows. Pla is a finite set of players, S is a finite set of states, s0 ∈ S is an initial state,
Act is a finite set of actions. The transition function δ : S × ActPla → S maps a state and
an action profile (i.e., a = (ap)p∈Pla ∈ ActPla) to the next state. Every player p ∈ Pla has a
parity objective αp ⊆ Sω, as we describe below.

A play of G is an infinite sequence of states ρ = s0, s1, . . . ∈ Sω such that for every step
i ∈ N there exists an action profile a such that si+1 = δ(si,a). For k ≥ 1 we denote the
length-k prefix of ρ≤k = s0, . . . , sk−1 ∈ S+. We denote by Inf(ρ) the set of states that occur
infinitely often in ρ. A parity objective is given by a function Ω : S → {0, . . . , d} for some
d ∈ N. Then, ρ satisfies the objective if min{Ω(s) | s ∈ Inf(ρ)} is even. Thus, the objective
αp is the set of all plays that satisfy the parity function of Player p. In the following, we
mostly use the parity function implicitly, and so we do not include Ω in the description of G.

The description size of G, denoted |G| is the number of bits required to represent the
components of G.

CONCUR 2022
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▶ Remark 2 (Game representation). Note that we assume an explicit representation of the
transition function as a table. In particular, we describe for every state the transition on
every action profile in ActPla. Thus, the size of the transition functions is exponential in |Pla|.

This is in contrast with a more succinct representation, i.e., representing the transition
function as a circuit. We choose this focus to eliminate the complexity effect of succinct
representation.

A history of G is a finite prefix of a play h ∈ S+. A strategy for Player p is a function
σ : S+ → Act that maps a history to the next action of Player p. A strategy profile
σ = (σp)p∈Pla is vector of strategies, one for each player. We denote the set of all strategies
by ΣG and the set of all strategy profiles by ΣPla

G (we omit the subscript G when it is clear
from context). A strategy profile σ can be thought as a function that maps histories to
action profiles: given a history h ∈ S+ we have σ(h) = (σp(h))p∈Pla ∈ ActPla.

For a strategy profile σ we define its outcome to be the infinite sequence of states
(i.e. play) in G that is taken when all the players follow their strategies in σ. Formally,
outG(σ) = s0s1 . . . ∈ Sω where s0 is the initial state, and for every i ≥ 1 we have si =
δ(si−1,σ(s0, . . . , si−1)). Consider a play ρ ∈ Sω. The set of winners in ρ is the set of players
whose objectives are met in ρ. Formally, WinG(ρ) = {p ∈ Pla | ρ ∈ αp} ⊆ Pla. The set of
winners in a strategy profile σ is then WinG(σ) = WinG(outG(σ)). Player p is said to be
losing if she is not winning.
▶ Remark 3 (Action visibility). Note that strategies are defined to “see” only the history of
visited states, and not the history of actions taken by the other players. This is a standard
and natural assumption [6, 10] for concurrent models. There are, however, works (e.g., [2])
where players can view the entire action history. The latter approach is slightly easier to
reason about, as players have full information on the game progress.

A strategy profile σ is a Nash Equilibrium (NE) if, intuitively, no single player can
benefit from unilaterally changing her strategy. Since the objectives in our setting are binary,
“benefiting” amounts to moving from the set of losers to the set of winners. We refer to such
a change as a beneficial deviation. Formally, consider a strategy profile σ, a player p ∈ Pla
and a strategy σ′

p ∈ ΣG for Player p. We denote by σ[p 7→ σ′
p] ∈ ΣPla the strategy profile

obtained from σ by replacing σp with σ′
p. Then, σ is an NE if for every player p ∈ Pla and

every strategy σ′
p ∈ ΣG for Player p, if p ∈ WinG(σ[p 7→ σ′

p]) then p ∈ WinG(σ). Viewed
contrapositively: if p loses when G is played with σ, then p also loses after changing her
strategy.

3 Multi-Topology Games

A multi-topology game (MTG) is a tuple G = ⟨Pla,S, s0,Act,Top, (δt)t∈Top, (αt,p)t∈Top,p∈Pla⟩
where Pla, S, s0, Act, are the same as in concurrent games. Top is a finite set of topologies,
and for every t ∈ Top we have a transition function δt : S×ActPla → S and objective αt,p ⊆ Sω

for every player p ∈ Pla. An MTG can be thought of as a tuple of games over the same states,
players and actions. That is, for t ∈ Top, we can define Gt = ⟨Pla,S, s0,Act, δt, (αt,p)p∈Pla⟩
to be the concurrent parity game obtained by fixing the transition function to δt and the
objective for Player p to αt,p.

Crucially, the players are assumed to have no a-priori information on which topology is
selected when the game is played. This is captured in the definition of strategies: a strategy
for Player p is identical to the setting of concurrent parity games, i.e., σp : S+ → Act. This
lifts to strategy profiles and outcomes, as per Section 2. In particular, a strategy σ in G
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can be applied to Gt for every t ∈ Top. Consider a strategy profile σ ∈ ΣPla. The winning
topologies of Player p is the set of topologies that Player p wins in when G is played with
strategy profile σ. Formally, WinTopp

G(σ) = {t ∈ Top | p ∈ WinGt
(σ)}.

3.1 Process Symmetry in Concurrent Games
As we discuss in Section 1, a central motivation for MTGs come from settings where players
plug in to the system without knowing their identity. This setting is commonly referred to
as process symmetry [12, 15, 18, 19, 1]. Symmetry in games was studied in [24, 23, 7, 17] for
strategic form games, which are games with a single turn. In [5, 26], symmetry in concurrent
games was studied by imposing restrictions on the game structure. We consider a different
setting, where processes 1, . . . , k log into a system described as a concurrent game, but the
index of the action controlled by each process is not revealed to the processes. This setting
is naturally modelled as an MTG, as follows.

Consider a concurrent game G = ⟨Pla, S, s0,Act, δ, (αp)p∈Pla⟩ with k ≥ 2 players, and that
Pla = {1, . . . , k}. We obtain from G an MTG with k! topologies by letting each topology
correspond to a different permutation of the players. Formally, consider a permutation
π ∈ Sk, were Sk is the set of permutations over {1, . . . , k}. For an action profile a ∈ ActPla

we define π(a) = (aπ−1(1), . . . , aπ−1(k)). That is, the action performed by Player i is taken
at index π(i). We now obtain the MTG G′ = ⟨Pla,S, s0,Act,Sk, (δπ)π∈Sk

, (απ,p)π∈Sk,p∈Pla⟩
where Sk is the set of topologies, δπ is obtained by applying π to the action profile of the
players, that is, for s ∈ S and a ∈ ActPla we have δπ(s,a) = δ(s, π(a)). Finally, the objective
of Player p is απ,p = απ(p). Figure 1 is an example of such game.

3.2 Solution Concepts
Recall that in NE, a beneficial deviation moves a player from losing to winning. In MTGs,
however, winning is no longer binary. Indeed, a strategy profile associates with each player
a set of winning topologies. Thus, the meaning of “beneficial deviation” becomes context
dependent. We introduce and study two notions of equilibria for MTGs that lie on two
“extremities”: in the conservative approach, a deviation is beneficial if it strictly increases
(w.r.t. containment) the set of winning topologies. In the greedy approach, a deviation is
beneficial if a previously-losing topology becomes winning. We now turn to formally define
and demonstrate these notions.

Conservative NE. A conservative NE (CNE) is a strategy profile σ where no player can
deviate from σ and have her winning topologies be a strict superset1 of her winning topologies
when obeying σ. Formally, σ ∈ ΣPla is a CNE if the following holds:

∀p ∈ Pla ∀σ′
p ∈ Σp

G ((∀t ∈ Top p ∈ WinGt(σ[p 7→ σ′
p]) → WinGt(σ))∨

(∃t ∈ Top p /∈ WinGt
(σ[p 7→ σ′

p]) ∧ p ∈ WinGt
(σ)))

Equivalently, this condition can be written in terms of the set of winning topologies:

∀p ∈ Pla ∀σ′
p ∈ Σp

G ¬(WinTopp
G(σ) ⊊ WinTopp

G(σ[p 7→ σ′
p]))

We refer to this notion as conservative since a deviating player wants to conserve her
existing winning strategies.

1 we emphasize that the relation ⊊ means “strictly contained”.

CONCUR 2022
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Greedy NE. A greedy NE (GNE) is a strategy profile σ where no player can unilaterally
deviate and win in a previously-losing topology. Formally, σ ∈ ΣPla is a GNE if the following
holds:

∀p ∈ Pla ∀σ′
p ∈ Σp

G ∀t ∈ Top (p ∈ WinGt
(σ[p 7→ σ′

p]) → p ∈ WinGt
(σ))

Equivalently, this condition can also be written in terms of the set of winning topologies:

∀p ∈ Pla ∀σ′
p ∈ Σp

G (WinTopp
G(σ[p 7→ σ′

p]) ⊆ WinTopp
G(σ))

The latter formulation shows that in a GNE, for every player and for every deviation, the
player’s winning topologies when deviating are a subset of the player’s winning topologies
when obeying σ. It refer to this notion as greedy since it assumes that a player deviates if
she improves her outcome in a single topology, disregarding the outcome in other topologies.

▶ Example 4 (CNE and GNE). Recall the router game from Figure 1. The strategy profile
where Player blue repeatedly plays (0, 0, 1, 1)ω and red plays (1, 1, 0, 0)ω is a CNE, since
the set of winning topologies of this profile is {1, 2} for both players. Thus, no deviation can
win in strictly more topologies.

Note that the same strategy profile is also a GNE, since every set of winning topologies
is a subset of {1, 2}.

▶ Remark 5 (Additional notions of NE). CNE and GNE are based on the ⊆ preorder on the
sets of topologies, 2Top. In Section 6 we discuss other notions of NE in MTGs.

3.3 Properties of CNE and GNE
We start by examining some properties and relationships between the notions of CNE and
GNE, as well as their relation to standard NE.

Consider an MTG ⟨Pla,S, s0,Act,Top, (δt)t∈Top, (αt,p)t∈Top,p∈Pla⟩. The following obser-
vation is immediate from the definitions of GNE and CNE, since if there is only a single
topology, the MTG collapses into a concurrent game.

▶ Observation 6. If Top = {t}, i.e. there is only a single topology t, then the definitions of
NE in Gt coincides with that of CNE and of GNE in G.

Next, we observe that GNE is a stricter notion than CNE. Indeed, a beneficial deviation
in the conservative setting (namely increasing the set of winning topologies) implies a
beneficial deviation in the greedy setting (namely winning in a previously-losing topology).
Contrapositively, if there is no greedy beneficial deviation, there is also no conservative
beneficial deviation. We thus have the following.

▶ Observation 7. Let G be an MTG. If σ is a GNE in G then σ is a CNE in G.

The following example shows that the implication of Observation 7 is strict. That is, there
are MTGs with a CNE but without a GNE.

▶ Example 8 (CNE without GNE). Consider the single-player game depicted in Figure 2.
The outcome of the game depends only on the first action that the player takes and the
topology that the game is played in. If the player takes action 1, then the set of winning
topologies is {t1}. If the player takes action 2, then the set of winning topologies is {t2}.
Since {t1} ̸⊆ {t2} and {t2} ̸⊆ {t1}, there is no GNE in the game, as the player can switch
strategies from t1 to t2 and vice versa to win in a previously-losing topology.

However, since there is no strategy for the player such that the set of winning topologies
is {t1, t2} (the only strict superset of {t1} and {t2}), then every strategy is a CNE.
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s0

start

s1 s2
1 2

(a) t1.

s0

start

s1 s2
2 1

(b) t2.

Figure 2 A single player MTG with two topologies, t1 and t2. In both topologies, the objective
of the player is to reach s1 (it is easy to capture this using a parity objective).

▶ Remark 9 (Best-response dynamics in GNE). Example 8 demonstrates that, in stark contrast
to NE, an MTG might not have a GNE even when there is only a single player. This has
to do, in particular, with the notion of best-response dynamics: in standard games, one can
approach an NE by starting from some profile, and repeatedly letting players deviate to their
best-response strategy, until this process converges. While this does not always converge, it
does so for a large class of games (e.g., finite-potential games [21]).

Thus, Example 8 shows that best-response does not converge even for a single player
in MTGs, whereas it does converge for a single player both for standard NE, as well as in
CNE for MTGs. Indeed, the best-response of a single player in the conservative setting will
increase her set of winning topologies to the maximum, and from there she will no longer
have incentive to deviate.

Remark 9 reflects the intuition that a GNE must be stable in each topology separately.
That is, it captures the notion “NE on all topologies”, in the following sense.

▶ Observation 10. A GNE σ is also an NE in Gt for every t ∈ Top.

Indeed, if σ was not an NE in Gt for some t ∈ Top, then a player that deviates from σ in Gt

would similarly deviate from σ in G, greedily winning in the previously-losing topology t.
In contrast, we now show that CNE is a more intricate notion, and might hold even when

there is no NE in the separate topologies.

s0

start

s1 s2
00,11 01,10

(a) t1.

s0

start

s1 s2
00,11 01,10

(b) t2.

Figure 3 Symmetric XOR game. The players are blue and red. In topology t1, the objective
of blue is to reach s1, and the objective of red is to reach s2. In topology t2 the objectives of the
players are swapped. The game starts from s0. If both players take the same action, then the game
transitions to state s1 and gets stuck there. If the players take different actions then the game
transitions to s2 and gets stuck there.

▶ Example 11 (CNE without NE). Consider the Symmetric XOR game G depicted in Figure 3.
Note that neither Gt1 nor Gt2 have a NE, since if a strategy for a single player is fixed, the
other player can respond to it and win.

On the other hand, any strategy profile is a CNE, since every player always wins in
exactly one topology. Thus, there is no way for a player to deviate and get strict superset of
winning topologies.

CONCUR 2022
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There are MTGs without CNE. For example, every concurrent game G without an NE can
be viewed as an MTG with a single topology t1. Since there is no NE in G, then for every
profile σ there exists a player p that loses with σ, which corresponds to WinTopp

G(σ) = ∅ but
p can deviate and win G, which corresponds to WinTopp

G(σ[p 7→ σ′
p]) = {t1}. Since ∅ ⊊ {t1},

then σ is not a CNE.

4 Existence of Conservative NE is Decidable

We now turn to our main technical contribution – showing that the existence of a CNE is a
decidable property.

▶ Theorem 12. The problem of deciding, given an MTG G, whether there exists a CNE in
G is in 2-EXPTIME.

The remainder of the section is devoted to proving Theorem 12. Our solution is based on
a reduction to the problem of solving a restricted form of partial-information game. We
then employ a result from [10], and obtain the complexity result by a careful analysis of the
construction. The rest of the section is organized as follows. In Section 4.1 we present the
model of partial-information games and the result of [10]. In Section 4.2 we give an overview
of the reduction and in Section 4.3 we describe and analyze the reduction from our setting.

4.1 Partial-Information Games
Partial-information games (also known as games with incomplete information) are a ubiquitous
model for settings where the players cannot fully observe the state of the game due to e.g.,
private/hidden variables, unknown parameters or abstractions of part of the system.

Formally, a partial-information game is a tuple G = ⟨Pla,S, s0,Act, δ, (Op)p∈Pla⟩ where
Pla, S, s0, Act and δ are the same as in concurrent games. For every player p ∈ Pla, the set
of observations Op ⊆ 2S is a partition of S. We omit the acceptance condition, and we will
include it explicitly in Theorem 13 below.

Intuitively, when the play of G is at state s ∈ S, Player p can only observe o ∈ Op

such that s ∈ o, and needs to select an action according to o. Thus, we distinguish
between state histories, S+ and observation histories (of Player p), (Op)+. For s ∈ S we
define obsp(s) = o ∈ Op to be the unique observation of Player p such that s ∈ o. We
extend obsp to histories: let h = s0s1...sk ∈ S+ be a state history, we define obsp(h) =
obsp(s0)obsp(s1), . . . , obsp(sk) ∈ (Op)+ to be the corresponding observation history.

Strategies are observation based, that is, a strategy for Player p is a function σp : O+
p → Act.

Since different players may have different observation sets, we denote by Σp
G the set of all

strategies for Player p. We denote by ΣPla
G the set of all strategy profiles.

Similarly to concurrent games, a strategy profile σ can be thought of as a function
that maps histories to action profiles σ(h) = (σp(obsp(h)))p∈Pla ∈ ActPla, and we define
outG(σ) ∈ Sω similarly to concurrent games.

We say that Player p ∈ Pla has perfect information if Op = {{s} | s ∈ S}. That is, Player
p can observe the exact state of the game. If all players have perfect information then the
game is a perfect information game, and coincides with our definition of concurrent games.
We say that Player i is less informed than Player j if Oj is a refinement of Oi. That is, for
every oj ∈ Oj there exists oi ∈ Oi such that oj ⊆ oi.

Finally, consider an objective α ⊆ Sω, we say that α is visible to Player p if for every
ρ, ρ′ ∈ Sω such that obsp(ρ) = obsp(ρ′) we have that ρ ∈ α if and only if ρ′ ∈ α. That is, the
objective can be defined according to observation sequences rather than plays.
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The following theorem is a result from [10] that will serve as the target of our reduction.

▶ Theorem 13. Let G = ⟨Pla,S, s0,Act, δ, (Op)p∈Pla⟩ be a partial information game, with
Pla = {1, 2, 3} where Player 1 less informed than Player 2. Let α ⊆ Sω be parity objective
over S. The problem of deciding whether ∃σ1 ∈ Σ1

G ∀σ2 ∈ Σ2
G ∃σ3 ∈ Σ3

G outG(σ1, σ2, σ3) ∈ α

is 2-EXPTIME complete.

4.2 Overview of the Reduction

We now turn to describe a reduction from the CNE existence problem to the setting of
Theorem 13. We start with a high-level description. Consider an MTG G. Instead of asking
directly whether G admits a CNE, we first fix a set of “intended” winning topologies Tp ⊆ Top
for each player p ∈ Pla. Then, we ask whether G admits a CNE σ in which WinTopp

G(σ) = Tp

for every p ∈ Pla. If we are able to answer the latter problem, we can iterate over every
possible tuple (Tp)p∈Pla (or nondeterministically guess a set) and conclude whether G admits
a CNE. We remark that this approach is reminiscent of the technique in [6], where the
existence of an NE in a game is decided by first guessing a “witness” path.

Once the set of intended topologies is fixed, we construct a 3-player partial-information
game whose players are Eve, Adam and Snake, with the following roles:

Eve controls the coalition of all players, and suggests a strategy profile σ by selecting the
actions for all the players at each step.
Adam selects a deviating player p, and the deviating strategy σ′

p for that player. In
addition, Adam selects a set T ⊆ Top in which Player p tries to win when playing σ′

p.
Snake helps2 Eve by selecting a concrete topology t from the set T picked by Adam.

The game starts with Adam and Snake choosing p, T and t ∈ T . It then proceeds with Eve
and Adam choosing σ and σ′

p, respectively, while playing on Gt. The observation sets of the
players are such that both Eve and Adam can only observe the current state of the game, so
Eve is ignorant of p, T and t, and Adam is ignorant of t (except knowing that t ∈ T ).

The objective of Eve and Snake is then composed of three conditions:
1. Snake must choose a topology t ∈ T .
2. If the strategy σ′

p proposed by Adam does not in fact deviate from the profile σ proposed
by Eve (dubbed “Adam obeys Eve”), and if t ∈ Tp, i.e., p was intended to win in t, then
the outcome must be winning for Player p.

3. If Adam selected T to contain a topology not in Tp (i.e., Player p potentially tries to win
in a superset of Tp), then the outcome must be losing for Player p.

The overall idea is that if Eve can find a strategy for all the players, from which any deviation
choice of Adam can be shown to be non-beneficial by an appropriate choice by Snake, then
there is a CNE with the intended winning topologies, and vice-versa.

There are, however, some caveats: first, in order to allow Adam to choose any set of
topologies, the size of the game would be exponential, which is undesirable. Second, it is
not immediate that the conjunction of conditions above can be captured by a small parity
objective (since the parity condition does not allow conjunction without a change of state
space [4]). Third, we need to separate the cases where Adam obeys Eve. In the following we
give the complete construction, which overcomes these caveats.

2 It is arguable whether this matches the biblical interpretation. This work makes no theological claims.
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4.3 Reduction to Partial Information Game
Consider an MTG G = ⟨Pla,S, s0,Act,Top, (δt)t∈Top, (αt,p)t∈Top,p∈Pla⟩. For every Player
p ∈ Pla, fix Tp ⊆ Top to be the intended set of winning topologies.

Game construction. We construct a 3-player partial-information game H with the following
components. The players are Eve, Adam and Snake. The states of H are QH = {q0} ∪ Q,
where q0 is a designated initial state and Q ⊆ S × Pla × 2Top × Top × {true, false} is
described in the following. A state (s, p, T, t, b) ∈ Q comprises s ∈ S which tracks the state of
G, a player p ∈ Pla that is controlled by Adam, a set T ⊆ Top of topologies that Adam picks,
t ∈ Top is a topology picked by Snake and determines the topology G is played in, and a bit
b ∈ {true, false} which tracks whether Adam obeys Eve.

In order to restrict the state space to a polynomial size in |G|, i.e. reduce the 2Top

component, we define Tp = {Tp ∪ {t} | t ∈ Top} ⊆ 2Top and T = (
⋃

p∈Pla Tp) ∪ {{t} | t ∈ Top}.
Note that |T | ≤ (|Pla| + 1) · |Top| ≤ 2 · |Pla| · |Top|. We now define Q = S × Pla × T × Top ×
{true, false}. Intuitively, the restriction of 2Top to T is sound, since if a Player p is able to
deviate and increase her winning topologies from Tp to some T , then she can also increase
her winning topologies by just one topology, and thus we can assume T ∈ Tp.

We now turn to define the transitions in H. The actions are defined implicitly by the
transitions.3 From q0, Adam selects a player p ∈ Pla and a set of topologies T ∈ Tp. As
explained in Section 4.2, Adam controls Player p and attempts to show that p wins in T . Still
in q0, Snake selects a topology t ∈ Top that G will be played in. Then, H transitions to state
(s0, p, T, t, true) ∈ Q.

Henceforth, p, T and t remain fixed throughout the play, and Snake has no further effect
on the play. From state (s, p, T, t, b) ∈ Q, Eve chooses an action profile a ∈ ActPla and
Adam selects an action a′

p ∈ Act. Then, the game transitions to state (s′, p, T, t, b′) ∈ Q such
that s′ = δt(s,a[p 7→ a′

p]), and b′ = b ∧ ap = a′
p. That is, Eve chooses an action profile,

Adam chooses a possible deviation, and the game proceeds according to Gt. If Adam actually
deviates, the bit b becomes false and remains so throughout the play. Adding {{t} | t ∈ T }
to T is to make sure that if Player p is supposed to win in topology t (that is, t ∈ Tp),
then, the profile suggested by Eve must lead to player p winning in topology t. If not, Adam
can choose {t} and Player p at the start of the game, and obey Eve, falsifying one of Eve’s
winning conditions (ψ2).

Next, we define the observation sets of H. For a state q = (s, p, T, t, b) ∈ Q we define the
projection of q on G to be proj(q) = s. For every state s ∈ S of G, let os = {q ∈ Q | proj(q) =
s} ⊆ Q. The observation sets in H are OAdam = OEve = O = {{q0}} ∪ {os | s ∈ S}. That is,
Adam and Eve can observe the initial state q0, and for every q ∈ Q they can only observe
proj(q). Snake has perfect information.

This completes the construction of the game H (recall that H does not have an objective).
We proceed to formalize the connection between G and H.

Correspondence between H and G. We lift the definition of projection to plays: for a play
ρ = q0q1q2... ∈ q0 ·Qω of H define proj(ρ) = proj(q1)proj(q2)... (note that we skip the initial
state q0). We also define the predicate obey(ρ) =

∧
i≥1 bi, where bi is the true/false bit of

qi. That is, obey(ρ) is true if and only if Adam always takes the actions suggested by Eve.
When obey(ρ) is true, we say that Adam obeys Eve.

3 In the model we describe, actions are identical for all players. However, the model of [10] allows different
actions as well as enabled and disabled actions in each state, so it is easy to accommodate our actions.
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Since the observation of Eve and Adam correspond to states of G, there is a correspondence
between plays, observation-histories and strategies in H to plays, histories and strategies
in G. We make this precise in the following. Consider the function γobs : {q0} · Oω → Sω

defined γobs({q0}, os0 , os1 , . . .) = s0, s1, . . .. Since os = {q | proj(q) = s} for every s ∈ S, we
have that γobs is a bijection between observation-plays of Eve and Adam in H, and plays of G.
By looking at finite sequences, namely histories, we can refer to γobs as a bijection between
observation-histories of Adam and Eve in H, and histories in G. Moreover, since strategies in
H are observation based, the following functions are also bijective:

γEve : ΣEve
H → ΣG defined by γEve(σEve) = σEve ◦ γ−1

obs.
γAdam : ΣAdam

H →
⋃

p∈Pla{p}×Tp ×Σp
G defined γAdam(σAdam) = (p, T, σ′

p) such that σAdam(q0) =
(p, T ) are the player and the set of topologies selected by Adam in state q0, and σ′

p =
σAdam ◦ γ−1

obs is the deviating strategy in G induced by the deviation proposed in σAdam in H.
γSnake : ΣSnake

H → Top defined by γSnake(σSnake) = σSnake(q0) (recall that Snake only acts
in q0).

For readability, we omit the the subscript and write γ instead of γobs, γAdam, γEve, γSnake. The
correct subscript can be resolved from context. Intuitively, γ is the correspondence from
strategies/histories/plays in H to their counterpart in G.

The connection between strategies and outcomes in H and G is formalized in the following
lemma (see Appendix A.1 for the proof).

▶ Lemma 14. Consider strategies σEve ∈ ΣEve
H , σAdam ∈ ΣAdam

H and σSnake ∈ ΣSnake
H . Let

σ = γ(σEve), (p, T, σ′
p) = γ(σAdam) and t = γ(σSnake). Let ρ = outH(σEve, σAdam, σSnake),

π′ = outGt(σ[p 7→ σ′
p]), and π = outGt(σ). Then proj(ρ) = π′. Furthermore, if Adam obeys

Eve on ρ then proj(ρ) = π = π′.

Objective for H. As sketched in Section 4.2, the objective α in H is constructed so that
Eve and Snake can win if and only if there is a CNE in G with winning topologies (Tp)p∈Pla.

We define α as a conjunction of three conditions α = {ρ ∈ q0 · Qω | ψ1(ρ) ∧
ψ2(ρ) ∧ ψ3(ρ)}, where the conditions are defined as follows. Consider a play ρ =
q0, (s0, p, T, t, b0), (s1, p, T, t, b1), . . . of H.

ψ1(ρ) := t ∈ T . That is, ψ1 forces Snake to choose a topology from the set of topologies
selected by Adam.
ψ2(ρ) := (obey(ρ) ∧ t ∈ Tp) → proj(ρ) ∈ αt,p. That is, ψ2 is satisfied if whenever Adam
obeys Eve then Player p wins in any topology t ∈ Tp selected by Snake.
ψ3(ρ) := Tp ⊊ T → proj(ρ) /∈ αt,p. That is, ψ3 is satisfied if whenever Adam tries to win
in a strict superset of Tp, then Player p loses in the topology selected by Snake.

As mentioned in Section 4.2, it is not clear that α can be expressed as a single parity
objective over QH. Nonetheless, we prove that this is possible. The key observation is
that the “postconditions” of ψ2 and ψ3 contradict, hence one of them must hold vacuously.
This allows us to decouple the parity conditions for each of them and obtain a single parity
objective that captures both, as follows.

For each objective αt,p in G we write αt,p = Parity(Ωt,p) such that Ωt,p : S → {0, . . . , d}
is the parity ranking function, where d ∈ N. We define a new ranking function Ω : QH →
{0, ..., d+ 1}, and show that α = Parity(Ω).

First, observe that q0 occurs only once in each play, so its parity rank has no effect. We
arbitrarily set Ω(q0) = 0. Let ρ ∈ q0 ·Qω be a play of H and (s, p, T, t, b), (s′, p′, T ′, t′, b′) ∈
Inf(ρ). It must be that p = p′, T = T ′ and t = t′ since those are constant throughout the
play, and b = b′ since it is either always true or from some point in ρ it turns into false
and stays that way to the rest of the play.
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Let q = (s, p, T, t, b) ∈ Q. We define Ω(q) by cases according to p, T, t, b, and show that
in each case, ρ ∈ α if and only if ρ ∈ Parity(Ω), concluding that α = Parity(Ω). For a
formula of the form ψ = φ1 → φ2, we refer to φ1 as the precondition of ψ, and φ2 as the
postcondition of ψ.

t /∈ T : In this case, if q ∈ Inf(ρ) then ρ does not satisfy ψ1, thus, ρ /∈ α. We set Ω(q) = 1
to get ρ /∈ Parity(Ω).
t ∈ T , b = true, t ∈ Tp and Tp ⊊ T : In this case, if q ∈ Inf(ρ) then ρ satisfies the
preconditions of both ψ2 and ψ3, but the postconditions of ψ2 and ψ3 contradict, thus,
ρ /∈ α. We set Ω(q) = 1 to get ρ /∈ Parity(Ω).
t ∈ T , b = true ∧ t ∈ Tp and ¬(Tp ⊊ T ): In this case, if q ∈ Inf(ρ), then ρ ∈ α ⇐⇒
proj(ρ) ∈ αt,p. So we set Ω(q) = Ωt,p(s), to apply the objective αt,p over proj(ρ).
t ∈ T , ¬(b = true ∧ t ∈ Tp) and Tp ⊊ T : In this case, if q ∈ Inf(ρ), then ρ ∈ α ⇐⇒
proj(ρ) /∈ αt,p. So we set Ω(q) = Ωt,p(s) + 1, to apply the complement of the objective
αt,p over proj(ρ).
t ∈ T , ¬(b = true ∧ t ∈ Tp) and ¬(Tp ⊊ T ): In this case, if q ∈ Inf(ρ) then ψ2 and ψ3
are vacuously satisfied, and ρ ∈ α. So we set Ω(q) = 0 to get that ρ ∈ Parity(Ω).

We are now ready to characterize the existence of a CNE in G by winning strategies in H.

▶ Lemma 15. Consider an MTG G = ⟨Pla,S, s0,Act,Top, (δt)t∈Top, (αt,p)t∈Top,p∈Pla⟩. Let
(Tp)p∈Pla be sets of topologies for each player and let H be the corresponding partial-information
game. There exists a strategy profile σ in G such that σ is a CNE and for every p ∈ Pla we
have WinTopp

G(σ) = Tp if and only if the follwing holds:

∃σEve ∈ ΣEve
H ∀σAdam ∈ ΣAdam

H ∃σSnake ∈ ΣSnake
H outH(σEve, σAdam, σSnake) ∈ α.

Proof. Assume σ is a CNE in G such that for every p ∈ Pla, WinTopp
G(σ) = Tp, and

fix σEve = γ−1(σ) to be the corresponding strategy for Eve in H. Consider a strategy
σAdam ∈ ΣAdam

H for Adam, and let (p, T, σ′
p) = γ(σAdam). We show that there exists a strategy

σSnake ∈ ΣSnake
H so that the outcome satisfies α. Recall that a strategy for Snake amounts to

choosing a topology. We divide to cases according to the choice of T by Adam.
If ¬(Tp ⊊ T ), then ψ3 is satisfied vacuously. Choose t ∈ T for Snake, then ψ1 is satisfied.
If Adam does not obey Eve or t /∈ Tp then ψ2 is vacuously satisfied. Otherwise, if Adam
obeys Eve and t ∈ Tp, let ρ = outH(σEve, σAdam, σSnake). In order to show that ψ2 is
satisfied we need to show that proj(ρ) ∈ αt,p. Let π = outGt(σ). Since Tp = WinTopp

G(σ)
and t ∈ Tp we have that π ∈ αt,p. From Lemma 14 we have that proj(ρ) = π, so we get
that proj(ρ) ∈ αt,p, as required.
If Tp ⊊ T , denote T ′ = WinTopp

G(σ[p 7→ σ′
p]). Since σ is a CNE, we have that ¬(Tp ⊊ T ′),

so T \ T ′ ≠ ∅, as otherwise we would have that Tp ⊊ T ⊆ T ′. Choose t ∈ T \ T ′ for
Snake, then ψ1 is satisfied. Let ρ = outH(σEve, σAdam, σSnake), π′ = outGt

(σ[p 7→ σ′
p]) and

π = outGt(σ). From Lemma 14 we have that proj(ρ) = π′ and if Adam obeys Eve then we
have proj(ρ) = π = π′. Note that since t /∈ T ′ = WinTopp

G(σ[p 7→ σ′
p]) then π′ /∈ αt,p, so

ψ3 is satisfied. Finally, ψ2 is satisfied vacuously since we cannot have t ∈ Tp and that
Adam obeys Eve simultaneously, as this would yield T ′ = Tp = WinTopp

G(σ), but t /∈ T ′.
We conclude that in all cases ρ ∈ α, as required.

Conversely, assume that σEve ∈ ΣEve
H is such that for every σAdam ∈ ΣAdam

H there exists
σSnake ∈ ΣSnake

H such that outH(σEve, σAdam, σSnake) ∈ α. Let σ = γ(σEve). We start by showing
that for every p ∈ Pla it holds that WinTopp

G(σ) = Tp. Indeed, let p ∈ Pla and t ∈ Top.



S. Almagor and S. Guendelman 34:13

If t ∈ Tp, take σAdam ∈ ΣAdam
H that selects player p and T = {t}, and obeys Eve. The only

strategy σSnake for Snake that satisfies ψ1 is to select t. Let ρ = outH(σEve, σAdam, σSnake).
From ψ2 we get that proj(ρ) ∈ αt,p, and by Lemma 14 we have proj(ρ) = outGt

(σ). Thus,
t ∈ WinTopp

G(σ).
If t /∈ Tp, take σAdam ∈ ΣAdam

H that selects Player p and T = Tp ∪ {t}, and obeys Eve. Since
Adam obeys Eve, in order for ψ1, ψ2 and ψ3 to be satisfied, Snake must choose t, otherwise
both preconditions of ψ2 and ψ3 hold, which means that in order to win we must have
both proj(ρ) ∈ αt,p (by ψ2) and proj(ρ) /∈ αt,p (by ψ3), which cannot hold. Thus, Snake
chooses t, and from Lemma 14 we have proj(ρ) = outGt

(σ). By ψ3 we have proj(ρ) /∈ αt,p,
so outGt

(σ) /∈ αt,p. Thus t /∈ WinTopp
G(σ). Therefore, WinTopp

G(σ) = Tp.
It remains to show that σ is a CNE. Assume by way of contradiction that there exists

a player p ∈ Pla with a beneficial deviation σ′
p ∈ Σp

G . That is, T ′ = WinTopp
G(σ[p 7→ σ′

p])
satisfies Tp ⊊ T ′. We will construct a strategy of Adam such that every strategy of Snake
is losing, thereby reaching a contradiction. Let T = Tp ∪ {t′} for some t′ ∈ T \ Tp and
fix σAdam = γ−1(p, T, σ′

p). Consider a strategy σSnake, denote t = γ(σSnake) and let ρ =
outH(σEve, σAdam, σSnake). By Lemma 14 we have proj(ρ) = outGt

(σ[p 7→ σ′
p]), and because

t ∈ T ⊆ WinTopp
G(σ[p 7→ σ′

p]) it holds that proj(ρ) ∈ αt,p. However, Tp ⊊ T , so ψ3 is
violated, and ρ /∈ α, which is a contradiction. We conclude that σ is a CNE. ◀

Using Lemma 15 we can decide whether a given MTG G has a CNE, by iterating over all
possible sets of candidate winning topologies (Tp)p∈Pla, and repeatedly applying the reduction,
and using the decision procedure of Theorem 13. It remains to analyze the complexity of
this procedure.

To this end, observe that the size of H is polynomial in the size of G. Indeed, |Q| ≤
|S| · |Pla| · |T | · |Top| · 2 where |T | ≤ 2|Pla||Top|. and the description of the actions is also
polynomial in that of G (note that Eve has exponentially more actions than each player in G,
but the overall description of the transition table in G is similarly exponential, cf. Remark 2).

Finally, by Theorem 13, solving H takes double-exponential time in |G|, and we have a
single-exponential number of iterations, so the overall complexity remains double-exponential
time in |G|. This completes the proof of Theorem 12.
▶ Remark 16 (Lower bounds and improving the upper bound). We do not have a lower bound
for the 2-EXPTIME complexity of Theorem 12. Indeed, we suspect that this bound can be
lowered. This is due in part to the fact that game H we construct does not utilize the full
scope of Theorem 13 from [10]. Unfortunately, the decision procedure in [10] goes through
three nontrivial reductions, one of which involves Safra’s determinization, that is notoriously
difficult to analyze: The first reduction [9, 10] transforms the objective to a visible objective
for Adam which involves the determinization of a parity automaton. The second reduction [10]
reduces the three-player partial-information game into a two-player partial-information game.
The third reduction uses the results of [22] to reduce the two-player partial-information game
to a two-player perfect-information game.

Therefore, it is likely that improving the bound (if indeed possible) will involve devising
an ad-hoc procedure, possibly using some key ideas from [9, 10, 22].

5 Existence of Greedy NE is Decidable

We now turn our attention to Greedy NE (GNE). Recall that a greedy beneficial deviation is
one that wins in a previously-losing topology, even at the cost of losing in previously-winning
topologies. That is, given an MTG G = ⟨Pla,S, s0,Act,Top, (δt)t∈Top, (αt,p)t∈Top,p∈Pla⟩, a
profile σ ∈ ΣPla

G is a GNE if for every p ∈ Pla, σ′
p ∈ ΣG and t ∈ Top, if p ∈ WinGt

(σ[p 7→ σ′
p])

then p ∈ WinGt(σ).
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Intuitively, reasoning in the greedy approach is much less delicate than the conservative
approach, since a deviating player need not concern itself with keeping the current winning
topologies. As we show in the following, this allows for an exponentially faster solution.

▶ Theorem 17. The problem of deciding, given an MTG G, whether there exists a GNE in
G is in EXPTIME.

Similarly to Section 4, our approach is to reduce the problem at hand to solving a partial-
information game. In the greedy setting, however, it suffices to use two-player games.
Specifically, we employ the following result from [9].

▶ Theorem 18. Let G = ⟨Pla,S, s0,Act, δ, (Op)p∈Pla⟩ with Pla = {1, 2}. Let α ⊆ Sω be a
parity objective. The problem of deciding whether ∃σ1 ∈ Σ1

G ∀σ2 ∈ Σ2
G outG(σ1, σ2) ∈ α is

EXPTIME-complete.

We sketch the proof of Theorem 17. The complete construction and analysis are detailed in
Appendix B.

Proof sketch. As in Section 4.3, we first fix a set of “intended” winning topologies Tp ⊆ Top
for each player p ∈ Pla. Then, we ask whether G admits a GNE σ in which WinTopp

G(σ) = Tp

for every p ∈ Pla. We then construct a 2-player partial-information game whose players are
Eve, Adam, where Eve again controls the coalition of all players.

The behaviour of Adam is different than in the conservative setting. Here, Adam starts by
choosing a deviating player p ∈ Pla and a single topology t ∈ Top where p attempts to win.
The topology t is unobservable by Eve. The observations sets of Eve and Adam are again
only the current state of G. Then, the game is played on topology t with Eve suggesting an
action profile, and Adam possibly deviating with Player p.

The objective for Eve now comprises two conditions:
ψ1 requires that whenever Adam obeys Eve and t ∈ Tp, the outcome is winning for Player
p in Gt.
ψ2 requires that if t /∈ Tp, then Player p loses in Gt.

Intuitively, Adam tries to cause Player p to win in a new topology t in which Player p is
not intended to win, while Eve is trying to prevent Player p from achieving this, provided
that Player p is actually deviating. Note that Eve must do this without knowing which
topology is chosen, nor which player deviates (if at all). ◀

6 Discussion, Extensions and Future Work

We introduced MTGs and notions of NE pertaining to them, and showed that deciding
whether an MTG admits either notion is decidable (in 2-EXPTIME for CNE and in EXPTIME
for GNE). We have also explored the relationships and properties of these notions of NE. We
now turn to explore several extensions, and remark about future research directions.

Social optimum. A standard solution concept for concurrent games, apart from NE, is
social optimum, namely what is the maximum welfare the player can obtain by cooperating.
Since in MTGs the winning sets of topologies may be incomparable, we formulate this as
follows: given sets (Tp)p∈Pla, is there a strategy profile σ such that WinTopp

G(σ) = Tp for
every p ∈ Pla?
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Fortunately, the techniques we developed enable us to readily solve this problem. Indeed,
we can modify the reduction used to decide the existence of GNE (Section 5) so that Adam
chooses a player and a topology, but does not attempt to deviate and has no further effect
on the game. Intuitively, Adam “challenges” Eve to show that the winning topologies for the
players are exactly the intended ones. The complexity of this approach remains EXPTIME.

Lower bounds. As discussed in Remark 16, we do not provide lower bounds for our results.
Trivial lower bounds on the existence of CNE and GNE can be obtained from those of NE
existence in concurrent games, namely PNP

|| -hardness [6]. This, however, is unlikely to be
tight. A central open challenge is to determine the exact complexity of CNE and GNE
existence in MTGs.

Additional notions of equilibria. The notions we propose, namely CNE and GNE, lie on
two extremities: in the conservative setting a deviation is very strict, and in the greedy
setting it is very lax. Generally, one can obtain a notion of equilibrium using any binary
relation on 2Top, which describes what the beneficial deviations are for each player. Moreover,
different players can have different relations.

Of particular interest is a quantitative notion of NE, whereby a player deviates if she can
increase the number of her winning topologies. This notion is fundamentally different from
CNE and GNE, as it is not based on set containment, which is key to the correctness of our
approach.

Succinct representation of topologies. A central motivation for MTGs, demonstrated
in Example 1 and in Section 3.1 concerns process symmetry. There, from a game with k

players, we construct an MTG with k! topologies. However, these topologies can be succinctly
represented by computing them on-the-fly. An interesting direction for future work is to
determine whether we can devise a symbolic approach that is able to handle such MTGs
without incurring an exponential blowup.

Logic for partial information games. Another approach to solve the CNE and GNE
existence problems might be to formulate those problems with a logic for partial information
games [3, 16, 20]. The most promising of those is [3], as it is the most expressive and the
complexity of different fragments has been studied. From the complexity of the decision
procedures for those logics, it not likely that this approach can be used to lower the EXPTIME
complexity for GNE and the 2-EXPTIME complexity for CNE.
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A Proofs

A.1 Proof of Lemma 14
Proof. We prove by induction that for every k ≥ 1, proj(ρ≤k+1) = π′

≤k, and if Adam obeys
Eve then proj(ρ≤k+1) = π′

≤k = π≤k. For k = 1, ρ≤2 = q0, (s0, p, t, T, b0) and π′
≤1 = π≤1 = s0

and we have that proj(ρ≤k+1) = π′
≤k. Assuming that proj(ρ≤k+1) = π′

≤k for k ≥ 1, the next
state of proj(ρ) will depend on the transition function δt and action profile σ[p 7→ σ′

p](π′
≤k)

from the way γ and the transitions of H are defined, and the next state in π′ will also depend
on the same transition function and action profile. Thus, it holds that proj(ρ≤k+2) = π′

≤k+1.
Farther more, if Adam obeys Eve then in every step the action that Adam takes is identical to
the action that Eve suggests for Player p, so we have that σ[p 7→ σ′

p](π′
≤k) = σ(π′

≤k), and
π≤k+1 = π′

≤k+1, thus, proj(ρ≤k+2) = π≤k+1 = π′
≤k+1. ◀

B Proof of Theorem 17

Consider an MTG G = ⟨Pla,S, s0,Act,Top, (δt)t∈Top, (αt,p)t∈Top,p∈Pla⟩. For every Player
p ∈ Pla fix Tp ⊆ Top to be the intended set of winning topologies.

Game construction. We construct a two-player partial-information game H with the
following components. The players are Eve and Adam. The states of H are QH = {q0} ∪Q

such that q0 is a designated initial state and Q = S × Pla × Top × {true, false} is described
in the following. A state (s, p, t, b) ∈ Q comprises of s ∈ S which tracks the state of G, a
player p ∈ Pla that is controlled by Adam, a topology t ∈ Top that Adam picks, and a bit
b ∈ {true, false} which tracks whether Adam obeys Eve.

We now turn to define the transitions of H. The actions are defined implicitly by the
transitions. From state q0, Adam selects a player p ∈ Pla to control and a topology t ∈ Top
that G will be played in. Then, H transitions to state (s0, p, t, true) ∈ Q. Henceforth, p and
t remain fixed throughout the play. From state (s, p, t, b) ∈ Q, Eve chooses an action profile
a ∈ ActPla, and Adam selects an action a′

p ∈ Act and H transitions to state (s′, p, t, b′) ∈ Q

such that s′ = δt(s,a[p 7→ a′
p]), and b′ = b ∧ (a′

p = ap).
The observation sets for the players, proj and obey are defined similarly as Section 4.3.

Correspondence between H and G, γobs, γEve is defined in the same way as in Section 4.3,
and γAdam : ΣAdam

H →
⋃

p∈Pla{p} × Top × Σp
H is defined for γ(σAdam) = (p, t, σ′

p) such that (p, t)
are the player and topology selected by σAdam in state q0 and σ′

p = σAdam ◦ γ−1
obs.

The connection between strategies and outcomes in H and G is formalized in the following
lemma whose proof is similar to that of Lemma 14.

▶ Lemma 19. Consider strategies σEve ∈ ΣEve
H and σAdam ∈ ΣAdam

H . Let σ = γ(σEve) and
(p, t, σ′

p) = γ(σAdam). Let ρ = outH(σEve, σAdam) π′ = outGt
(σ[p 7→ σ′

p]) and π = outGt
(σ).

Then, proj(ρ) = π′. Furthermore, if Adam obeys Eve on ρ then proj(ρ) = π = π′.

Objective for H. Let ρ = q0 · (s0, p, t, b0) · (s1, p, t, b1) · ... be a play in H. The objective α
is such that ρ ∈ α ⇐⇒ ψ1(ρ) ∧ ψ2(ρ), where

ψ1(ρ) := (obey(ρ) ∧ t ∈ Tp) → proj(ρ) ∈ αt,p.
ψ2(ρ) := t /∈ Tp → proj(ρ) /∈ αt,p.

α can be expressed as a parity objective as follows. For every t ∈ Top, p ∈ Pla, let
Ωt,p : S → {0, ..., dt,p} be the priority function for the parity objective αt,p in G. We construct
a priority function Ω : QH → {0, ..., d} such that d = max{dt,p + 1 | t ∈ Top, p ∈ Pla}. We
set Ω(q0) = 0 and for state q = (s, p, t, b) ∈ Q we have
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Ω(q) =


Ωt,p(s) + 1 t /∈ Tp

Ωt,p(s) b ∧ t ∈ Tp

Ω(q) = 0 ¬b ∧ t ∈ Tp

If t /∈ Tp, then, according to α, ρ ∈ α if and only if proj(ρ) /∈ αt,p. This is achieved by adding
1 to Ωt,p which gives us the complement of αt,p. The case where Adam obeys Eve and t ∈ Tp

is captured in the second case, where ρ ∈ α if and only if proj(ρ) ∈ αt,p. This is achieved by
setting Ω to be the same as Ωt,p. In the last case, non of the preconditions of ψ1 and ψ2
hold, so ρ ∈ α. This is achieved by setting Ω to 0, such that every such play will satisfy the
objective.

▶ Lemma 20. There exists a GNE σ ∈ ΣG in G with WinTopp
G(σ) = Tp for every p ∈ Pla,

if and only if ∃σEve ∈ ΣEve
H ∀σAdam ∈ ΣAdam

H outH(σEve, σAdam) ∈ α.

Proof. Let σ ∈ ΣG be a GNE with WinTopp
G(σ) = Tp for every p ∈ Pla. Let σEve ∈

ΣEve
H be the corresponding strategy for σ, and let σAdam ∈ ΣAdam

H be some strategy for
Adam that corresponds to (p, t, σ′

p). Let ρ = outH(σEve, σAdam). If obey(ρ) ∧ t ∈ Tp, then
from Lemma 19 we have that proj(ρ) = outGt

(σ), and since t ∈ Tp = WinTopp
G(σ) then

outGt
(σ) ∈ αt,p. Thus, ψ1 is satisfied by ρ. If t /∈ Tp then from Lemma 19 we have that

proj(ρ) = outGt
(σ[p 7→ σ′

p]) and since Player p is losing in t when G is played with σ and σ

is a GNE, then outGt(σ[p 7→ σ′
p]) /∈ αt,p. Thus, ψ2 is satisfied and ρ ∈ α.

Conversely, let σEve ∈ ΣEve
H be such that for any σAdam ∈ ΣAdam

H we have outH(σEve, σAdam) ∈
α. Let σ ∈ ΣG correspond to σEve. We show that σ is a GNE. First, we show that for
every p ∈ Pla, WinTopp

G(σ) = Tp. Let t ∈ Top and p ∈ Pla. Take σAdam ∈ ΣAdam
H that

corresponds to (p, t, σp) where σp is the strategy assigned to p in σ. Let ρt = outGt
(σ) and

ρ = outH(σEve, σAdam). We have that ρ ∈ α. Since Adam obeys Eve on ρ, from Lemma 19
we have that proj(ρ) = ρt. If t ∈ Tp then from ψ1 we get that ρt = proj(ρ) ∈ αt,p,
thus, t ∈ WinTopp

G(σ). If t /∈ Tp then from ψ2 we get that ρt = proj(ρ) /∈ αt,p, thus,
t /∈ WinTopp

G(σ). So we get that WinTopp
G(σ) = Tp. Now, we show that σ is a GNE.

Let p ∈ Pla, σ′
p ∈ Σp

G and t ∈ Top such that t /∈ Tp. Let σAdam ∈ ΣAdam
H correspond to

(p, t, σ′
p), and let ρ = outH(σEve, σAdam). We have that ρ ∈ α, thus, since t /∈ Tp then

proj(ρ) /∈ αt,p. From Lemma 19 we have that ρ′
t = outGt

(σ[p 7→ σ′
p]) = proj(ρ) /∈ αt,p, thus,

t /∈ WinTopp
Gt

(σ[p 7→ σ′
p]) = Tp, so σ is a GNE. ◀

The algorithm for solving the GNE existence problem is, for each (Tp)p∈Pla ∈ (2Top)Pla we
construct H from G and (Tp)p∈Pla, and check if there exists σEve ∈ ΣEve

H such that for every
σAdam ∈ ΣAdam

H , outH(σEve, σAdam) ∈ α, if there exists such σEve, then according to Lemma 20
is corresponding strategy profile is a GNE, then we return it. If we went through all
(Tp)p∈Pla ∈ (2Top)Pla, then return that there does not exist a GNE in G.

The size of H is polynomial in the size of G. We copy each s ∈ S for every combination
of p ∈ Pla, t ∈ Top, b ∈ {true, false}, so we get |QH| = 2 · |S| · |Pla| · |Top| + 1, which is
polynomial in the size of G. The number of actions in H is also polynomial in the number of
enabled actions in G (similarly to the analysis in Section 4.3).

The algorithm performs at most 2|Top|·|Pla| iterations, which is exponential in |G|. In each
iteration we solve H with size that is polynomial in |G|, so according to Theorem 18 this
takes exponential time in |G|, so the GNE existence problem is in EXPTIME.
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