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—— Abstract

We briefly describe recent advances on understanding the complexity of the reachability problem
for vector addition systems (or equivalently for vector addition systems with states - VASSes). We
present a zoo of a few involved VASS examples, which illustrate various aspects of hardness of
VASSes and various techniques of proving lower complexity bounds.
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1 Introduction

Vector addition systems and essentially equivalent Petri nets are one of the most natural
models of computation. They are also widely used in practise [21]. A convenient way to work
with vector addition systems is to consider its extension by states (which is also essentially
equivalent), namely vector addition systems with states (VASSes). A d-dimensional VASS
(shortly a d-VASS) is a finite automaton equipped with d integer counters. Each transition
can increase or decrease the counters by fixed values. Importantly, no counter can be ever
decreased below zero. The counter represents the current number of items of some resource
in the modelled system, thus it is natural to assume that this number is nonnegative.

» Example 1. The following 3-VASS was introduced in [9], we call it the HP-gadget after
the names of authors of [9]. This VASS has interesting properties, which we use in the sequel.

Transition colours are just to distinguish particular transitions, they have no semantics in
the VASS behaviour.

(0,0,0)

(—1,1,0) quQ(z,Lo)
(0,0, 1)

The following is an example of a run
p(27 07 7) — p(la 17 7) — p(07 2a 7) — q(07 27 7) — q(27 17 7) — Q(47 07 7) — p(43 07 6)

Observe that in a similar way there is a run from p(k,0,n) to p(2k,0,n — 1): we apply k
times the blue transition reaching p(0, k,n), then once the black transition reaching ¢(0, k, n),
then k times the green transition reaching ¢(2k,0,n) and finally once the red transition
reaching p(2k,0,n — 1). Intuitively in the state p we transfer value k from the first counter
to the second one and then jump to state ¢g. In the state ¢ we transfer back value k to the
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first counter while multiplying it by 2. Finally we jump back to the state p decreasing the
third counter by one. We will use similar approach many times in the sequel. Notice that
repeating this process n times we have the following run

p(1,0,n) — p(2,0,n — 1) — ... — p(2"71,0,1) — p(2",0,0),

where each black arrow represents a sequence of transitions (in the sequel we often draw a
sequence of transitions as one arrow). We also have

p(2",0,0) — p(z,y,0)

for any x +y = 2", so the set of configurations reachable from p(1,0,n) is of at least
exponential size.

On the other hand the size of the reachability set of p(1,0,n) (set of configurations
reachable from p(1,0,n)) is finite. Indeed, the red transition can be fired at most n times and
it is easy to see that in between of two firings of the red transition all the other transitions
also have to be fired only finitely many times. Thus the above example is the first interesting
one: the reachability set is finite, but of at least exponential size (in that case of exactly
exponential size).

Various decision problems for VASSes are studies since the 70-ties (with the proviso that
in those times they were known under the name of Petri nets). Probably the most central
one is the reachability problem. It asks whether in a given VASS there is a run from a given
source configuration, to a given target configuration. A configuration is a state together
with a counter valuation. Another related fundamental problem is the coverability problem,
which asks whether in a given VASS there is a run from a given source configuration to a
configuration which is above a given target configuration. We say that one configuration is
above the other one if it has the same state, but counter values may be higher.

2 History of the problem

The reachability and coverability problems are considered since the 70-ties. The first milestone
result was ExpSpace-hardness of the coverability problem by Lipton in 1976 [17]. Notice that
this implies ExpSpace-hardness of the reachability problem, as coverability can be reduced
to reachability by adding to a VASS additional transitions decreasing counters in the target
state (one transition for each counter). In 1978 Rackoff has proven that the coverability
problem is in ExpSpace [19]. He achieved it by showing that if there is a run from the source
configuration s to some configuration ¢’ > ¢ (namely ¢’ is above t) then there is also some
short run from the source configuration s to some configuration ¢ = t, where by short be
mean at most doubly-exponential in the input size. This approach, by small witness (which
is often a short run) turns out to be successful in many cases for the reachability problem in
VASSes. In 1982 finally decidability of the reachability problem was proved by Mayr [18].
The construction was very involved, so the follow-up works by Kosaraju and Lambert tried
to simplify the solution and phrase it in a bit simpler setting [10, 11]. This construction is
currently often known by the name KLM decomposition, as it decomposes the input VASS
into many simpler ones.

After these breakthrough results there was a long period of not much progress on the
reachability problem. The community tried to improve the state of art, but it was hard, so
results about VASSes are scarce in the 90-ties. In 2009 Haase at al. proved that in 1-VASSes
with numbers on transitions encoded in binary (we call such VASSes binary) the reachability
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problem is NP-complete [8]. It is easy to show that for unary 1-VASSes the problem is
NL-complete. More progress on low dimensional VASSes followed. In 2015 Blondin at el.
proved that in binary 2-VASSes the reachability problem is PSpace-complete [1], while a year
later this result was improved by Englert at el. to NL-completeness in unary 2-VASSes [6].
Both the upper complexity bounds in dimension two were shown by the use of short run
approach: authors of [1] proved that if there is any run from the source to the target in
binary 2-VASS then there is also one of at most exponential length, while in [6] the same
was shown for unary 2-VASSes and polynomial length runs.

Recently there was also a big progress in fixing complexity of the reachability problem.
In 2015 Leroux and Schmitz have obtained first complexity upper bound on the problem [15].
By careful analysis of the KLM decomposition algorithm they proved that it runs in cubic-
Ackermann time. In 2019 the same authors improved their previous result. They proposed
a slight modification of the KLM decomposition algorithm and elegantly analysing the
dimension a some vector spaces proved that the modified version runs in Ackermann time [16].
Also in 2019 Czerwiniski et al. proved that the reachability problem is Tower-hard [2]. This
was a surprise as many people felt that the problem should rather be ExpSpace-complete,
but we probably lack some insight to prove the upper bound. In [2] we have used the
technique of multiplication triples described later. Just two years later the complexity of
the problem was finally settled to be Ackermann-complete. Two teams have independently
shown Ackermann-hardness using slightly different techniques: Leroux [13] and Czerwinski
and Orlikowski [4]. In [4] we have used the technique of controlling-counter and amplifiers,
the technique of controlling-counter is described later.

3 Remaining challenges

Despite the fact that the complexity of the reachability problem is VASSes was established
the problem still remains elusive in my opinion. The gap in our understanding is most striking
in dimension three. For binary 2-VASSes the problem is PSpace-complete [1]. However for
binary 3-VASSes the best complexity lower bound is still PSpace-complete inherited from the
dimension two, while the best known upper bound is higher than Tower, namely in the F7
complexity class of the fast growing hierarchy [16]. We define the hierarchy of fast growing
functions as Fy(n) = 2n and Fjy1(n) = Fx_10...0 Fy_1(1) for any & > 1. One can easily
—_—

see that in particular Fh(n) = 2" and Fs(n) = TFL[‘ower(n). Based on the hierarchy of fast
growing functions F; one defines a hierarchy of fast growing complexity classes F;, which
roughly speaking is the class of problems solvable in time F; closed under a few natural
operations [20]. Thus in particular we do not know whether existence of a run from the
source to the target always implies existence of exponential length run or not. Or maybe
length of this short run is doubly-exponential or tower size. Similarly we lack knowledge
about other low dimensions.

Generally in dimension d the best upper bound for the reachability problem is Fyy4 [16]
(that is how we get F7 in dimension three). The current best lower complexity bound
is F4-hardness in dimension 2d + 4, so F(4_4)/2-hardness for d-VASSes [14]. The current
research goal here is to find out whether we can get Fy;-hardness in dimension d + C for
some constant C' € N.

Recently we worked with co-authors on the reachability problem for low dimensional
VASSes [3, 5] motivated by the following two main ideas: 1) low dimensional VASSes
are by itself a natural computation model, 2) understanding problems in low dimensional
VASSes often turns out to be the best way of developing techniques very useful in general
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dimension. Indeed, understanding low dimensions was actually the triggering point for our
results [2] and [4]. Current best complexity lower bounds for low dimensional VASSes are
proven in our work with Lukasz Orlikowski [4]:

NP-hardness for unary 4-VASSes;

PSpace-hardness for unary 5-VASSes;

ExpSpace-hardness for binary 6-VASSes;

Tower-hardness for unary 8-VASSes.

The rest of this text focuses on presenting techniques of proving lower complexity bounds
from the perspective of concrete low dimensions or concrete examples of involved low
dimensional VASSes. We believe this perspective is the best way to illustrate the intuitions
behind various approaches and to introduce various techniques useful in general.

4 Big finite reachability sets

We start the involved examples zoo from a family of examples, which is a folklore since years.
These are VASSes, which have finite reachability set, but this set is very big. We first present
a 3-VASS with finite, but doubly-exponential reachability set. For simplicity we do not write
a vector on the transition if it does not change the counters at all (we often colour such
transitions black).

» Example 2. The following 3-VASS has doubly-exponential reachability set.

Crnl =00
(—1,1,0) D1 q1 (2,—1,0)
~_

(0,0, 1)
r Q (-1,0,1)
(1,0,0)

PQ/\(D
\/

(0,0, 1)

(—1,1,0) (2,-1,0)

Notice that the above example consists of two copies of the HP-gadget from Example 1.
Thus we have the following run:

p1(1,0,n) — ... — ¢1(2",0,0) — r(2",0,0) — ... — 1(0,0,2")
— p2(1,0,2") — ... 42(2%",0,0).

In other words in the first copy of the HP-gadget from p;(1,0,n) we reach p2(2",0,0). Then
in state r we transfer value from the third counter to the first one. The transition from r to
p2 adds one to the first counter such that we start from po(1,0,2") in the second copy of the
HP-gadget.

It is easy to show that the reachability set of p;(1,0,n) is finite, the proof goes as in
Example 1.
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In a similar way one can constructs a 3-VASS which has k-fold exponential reachability
set, we just take k copies of the HP-gadget and connect them by states r; as above. However
this requires a growing number of states in a VASS. Here comes another idea: by adding just
one additional counter we can simulate any number of copies on this counter.

» Example 3. The following 4-VASS has finite, but tower size reachability set. It is just a
slight modification of Example 2.

(=1,1,0,0) CpC g Q (2,-1,0,0)

(0,0,—1,0)

r Q (~1,0,1,0)

In this 4-VASS we have added the fourth counter and the only transition which modifies
this counter is the orange transition. The rest is exactly like in the HP gadget with additional
state r. Thus for any k& we have to following run:

p(1,0,k,n) — ... — q(2",0,0,n) — r(2",0,0,n) — ... — (0,0,2",n) — p(1,0,2",n—1).

In other words we can exponentiate the first counter for the cost of decreasing the forth
counter by one. Thus for any n € N there is also the following run:

p(1,0,1,n) — p(2,0,1,n — 1) — p(4,0,1,n — 2) — ... — p(Tower(n),0, 1,0).

This easily implies that the reachability set from p(1,0,1,n) is of at least Tower(n) size. It
remains to show that this reachability set is finite. To see this notice first that the orange
transition can be fired at most n times. Now it is easy to see that in between of any two
firings of the orange transition other transitions can be fired at most exponentially many
times wrt. the current counter values, which finishes the argument.

The Example 3 already shows that a very simple VASS can have a pretty complicated
behaviour. It is not hard to see that in a similar vein one can construct in any dimension d a
unary d-VASS with finite reachability set of size around F;_1(n), where n is the size of the
source configuration.

5 Finite reachability sets are enough

It is a good moment to emphasise that authors of [16] not only have shown that the
reachability problem in d-VASSes can be solved in Fyi4, but they proved that if there is
a run from the source to the target then there is also one of length bounded by roughly
speaking Fyy4(n). Using this result and the generalised Example 3 one can show that
VASSes with finite reachability sets are actually not much simpler than VASSes without that
restriction. More concretely speaking one can reduce the reachability problem for d-VASSes
to the reachability problem for (d + 6)-VASSes with finite reachability sets. Assume we need
to check whether s — ¢ in a d-VASS V. We construct a (d + 6)-VASS U as follows. First
part of U behaves like generalised Example 3 in dimension d + 5, thus on one of the counters
(say counter number d + 5) can have values up to Fyi4(n). We use the last (d+ 6)-th counter
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to keep the sum of all the dimensions numbered from 1 to d + 4. In the second part U
simulates V' on dimensions from 1 to d. In the target configuration of U we demand that
dimension d + 6 is equal to zero, so after the first part all the dimensions from 1 to d + 4
need also to be zero. The only change of the second part of U wrt. to V is that to simulate
any transition of V' in U we decrease the (d 4+ 5)-th counter by one. Notice now that if there
is a run from s to ¢ in U by [16] there is also one of length at most F,4(n) thus there is also
one in V. Of course no run in U implies no run in V as the simulation is faithful. On the
other hand the reachability set of any configuration in V is finite as in each step we decrease
the (d + 5)-th counter. This finishes the argument.

The above reasoning does not show that considering VASSes with finite reachability sets is
enough, because we have added six additional dimensions. However it suggests that in order
to understand well low dimensions it might be sufficient to look sometimes at this special
case of finite reachability set. Notice that this is a strong statement, as the reachability
problem can be easily solved for VASSes with finite reachability set: we just compute the
whole set of configurations reachable from the source and after this computation stops (it
has to, as the reachability set is finite) we check whether the target belongs to the set.
Moreover we have a pretty good complexity upper bounds for this very naive algorithm.
By [7] the longest sequence of configurations in a d-VASS without a domination (situation
that a configuration further in the sequence is strictly bigger than a configuration earlier in
the sequence) is bounded roughly speaking by Fy41(n), where n upper bounds the size of
VASS and the source configuration. Notice that in VASSes with finite reachability set no run
has a domination, as domination allows for pumping counters up and would imply an infinite
reachability set. Thus [7] shows that exploring the whole space of reachable configurations in
a d-VASS can be achieved in the complexity class Fgi1.

Notice however that for 3-VASSes even assuming finite reachability set we still get
complexity Fy, which is much higher than the known lower bound of PSpace-hardness. Thus
there might be a possibility of constructing a 3-VASS or other lower dimensional VASS with
shortest run being exponential, doubly exponential or even Tower length. Below we show
a few current, still very weak, techniques which can lead in the future to some involved
examples.

6 Telescope equations

Example 3 and its generalisations exhibit a complicated behaviour of low dimensional VASSes.
Notice however that it does not eliminate a possibility that in low dimensional VASSes there
are always some short paths. Imagine the following slight modification of Example 3.

(-1,1,0,0) Cp O q Q (2,-1,0,0)

(0,0,—1,0)

(—l,0,0,0)Ct rQ (=1,0,1,0)



W. Czerwinski

From Example 3 we know that in the above VASS there are Tower(n)-long paths
from p(1,0,1,n) to ¢(0,0,1,0): such a path first reaches p(Tower(n),0,1,0), then goes
to t(Tower(n),0,1,0) and then in a loop decreases the first counter. However there are also
some very short runs: we n times apply the sequence

p(¢,0,1,k) — ¢q(£,0,1,k) — r(£,0,1,k) p({+1,0,1,k—1)

then go to state ¢ and quickly decrease the first counter.

This illustrates the main challenge with proving lower bounds for the reachability problem
in VASSes: it is very hard to force a VASS to take some long run from the source to the
target. Here we present one approach how to force a VASS to have only long runs, the
example is taken from [3]. It is based on the following simple telescope equation:

k k—1 3 2
= ... ...2.2 1
K k—1 k-2 2 1 (1)
Based on (1) we build a 3-VASS Vj, with size of all the transitions bounded by k and a
property that the shortest path from the source to the target is of length exponential in k.

» Example 4. In this example the source configuration is s(0, 0, 0) and the target configuration

is (0,0,0).
(1(15) 0,—(k—1),k) (0,—(k—2),k—1) (0,—1,2)
(1, 170)‘ | | / ¢
S k qk—1 q2

Let us analyze how a run from the source to the target in VASS Vj can look like. In
the state s we fire the blue transition to s'(1,1,0) and then some number N — 1 times the
blue loop in state s’ reaching the configuration s'(N, N,0). So the prefix of our run is the
following

$(0,0,0) — s'(1,1,0) — ... —> s(N, N,0) — pp(N, N, 0).

States s and s’ are distinguished to assure that N > 1. Notice now that the only other
transition in V; which modifies the first counter is the red transition in state ¢. Thus the
considered run need to finish in the following way:

¢2(N,NE,0) — t(N,Nk,0) — ... — ¢(0,0,0).

Observe now that for each i € {2,...,k} the orange transitions in g; do not change the sum
of the second and the third counter while the violet transitions in p; can multiply this sum
by at most ﬁ Moreover this is the case if and only if the run enters p; in the configuration
of the form p;(0, K, 0) where K is divisible by ¢ — 1 and leaves it in the configuration of the

form p;(0,0, K - ijl ). In other words in the state p; the whole value of second counter needs
to be transferred to the third counter while multiplying it by ﬁ Notice now that from
pr(N, N,0) till g2(N, Nk,0) the second counter needs to be multiplied by exactly k. Using

Equation (1) we derive that in any run from pg(N, N,0) to g2(N, Nk,0) in all the states the
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whole value of the second counter have to be transferred to the third counter or vice versa.
In particular each loop have to be fired the maximal number of times. So the run needs to
look as follows:

(N, N,0) — p(N,0, F ) qu(iv, 0, &) O AL SN o, XE o)
Pk ) ) Pk 77]{:71 qk ) ’k}*l qk ’k?*l’ Pr—1 7]9715

— (N,0 Nk ) — (N,0 Nk ) (N Nk 0) — (N Nk 0)

Prk—1 T o qk—1 T o qk—1 " E_9’ Pr—2 "E_ o’
Nk Nk Nk Nk

—>I73(N7077)_)QS(N,O,7) QS(Na770)—>I72(N7770)

— pa(N,0, Nk) —> q2(N,0, Nk) a2(N, Nk, 0).
Now notice that in the run for each i € {2,...,k — 1} we have a configuration g;(N, NT’“, 0),

which means that Nk is divisible by each i € {2,...,k —1}. Thus Nk is a multiplicity of the
lem(2,. ..,k — 1), which is known to be exponential wrt. k (see [3], Claim 6). This finishes
the proof that any run from the source to the target needs to be of length exponential wrt. k.

The above example can also be expressed by another formalism, which is often much
more convenient to present VASSes then drawing them as automata. This formalism is called
the counter programs. We do not introduce counter programs formally, instead we present
VASS from Example 4 as a counter program hoping that this clarifies the issue. We assume
that the three counters are named z, y and z. For more details look into [3].

Lrx4+=1 y+4+=1

2: loop

3: z4+=1 y+=1

4: for i := k down to 2do
5: loop

6: y—=1—1 z+4+=1

7: loop

8: y+=1 2z—=1

9: loop

10: x—=1 y—==%

Using similar trick with the telescope equation (but a bit more involved) we have shown
in [3] an example a 4-VASS in which the shortest run from the source to the target is of
doubly-exponential length.

7 Controlling-counter

VASSes, in contrast to counter machines lack zero-tests, thus it is pretty hard to force their
runs to be exact. Notice that with zero-tests we can easily force the modified Example 3
(mentioned in paragraph Telescopic equations) to have only runs of Tower length. We just
enforce that all the loops are fired maximally by zero-testing appropriate counters after the
loops. Of course we cannot hope to simulate zero-tests by VASSes as VASSes with zero-tests
(called counter machines) have undecidable reachability problem.

However, we are able to simulate some restricted number of zero-tests in VASSes. First
of all notice that in the reachability problem we ask whether we can reach the target
configuration, so we already have some very weak for of zero-tests: if we set the target
configuration to be zero at some counter then we can test this counter to be zero at the end
of the run. Now the idea is to boost this single zero-test to simulate more zero-tests during
the run.
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Let us assume that we have a d-VASS V' with some the counter z and we want to zero-test
counter x in some three moments during the run. First very naive idea is to add three
additional counters 1,2, x3 to V', which are copies of z and modify them exactly as z. The
first one is stopped being modified after the first moment, the second one is not modified
after the second moment and the third one is not modified after the third moment. In this
way if in the modified (d + 3)-VASS we set the target configuration to be zero on counters
1, %2, x3 then we enforce that any run reaching the target indeed have value zero in the
three considered moments. The main drawback of this idea is that it introduces additional
counters, so is too costly. However, already this technique illustrates that zero-test in the
target configuration can be used to simulate zero-tests in other moments in the run.

Here we introduce the technique of the controlling-counter, which was proposed in [4].

Assume we have a run p in our d-VASS V of the following form:
5&01 &02&03&1'

and we want to zero-test the counter z in the configurations ¢y, cs, c3. Let us assume that the
value of the counter = in the source configuration s is zero. Let the value of the counter z in
configurations ¢; be x;, for ¢ € {1,2,3}. We need to check whether z; = 23 = 23 = 0. Notice

that it is enough to check if 1 4+ xzo + x3 = 0 as all the counter values x; are nonnegative.

Let A; be the effect of the run p; on the counter z. Thus we have 1 = Ay, 0 = Ay + Ay
and x3 = A1 + Ay + Agz. Therefore z1 + x5 + z3 = 3A1 + 2A5 + A3 and it is enough to
check whether this expression has value zero. In order to do that we introduce one additional
controlling-counter y which is tested for zero in the target configuration t. We set the value
of the counter y in the configuration s to be zero. Each change of x by C' in p; is matched
by change of y by 3C. Similarly, each change of x by C in py is matched by change of y by

2C. Finally, each change of z by C in p3 is matched by change of y by the same value C.

Thus indeed final value of y is exactly 3A; + 2As + Ag and it is enough to check y for zero
in the target configuration in order to assure that 1 = zo = x3 = 0.

It is easy to observe that this reasoning can be extended to any number of zero-tests.

In general if we are in the part of the run p such that after this part still k zero-tests are

performed on = then each change of x by C' needs to be matched by the change of y by k- C.

We only need that configurations ¢y, o, c3, ... are distinguishable in the sense that we can
change behaviour of counter y after any ¢;. This can be often easily implemented by use of
states.

It is also not hard to see that one controlling-counter can control many original counters,
not just one.

Below we present the simplest possible application of the controlling-counter to 3-VASSes.

Consider the following 2-VASS with two counters x and y starting in the counter valuation
(z,y) = (1,0).
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It is easy to see that if all the loops are fired maximally then before entering line 6
counter values are (z,y) = (2¥,0) and loop in lines 6-7 can be fired 2* times. Thus if we
want to reach values (0,0) at the end of the counter program there exists an exponential run.
However, there is also a very short run, the one totally ignoring the loops in lines 2-3 and in
lines 4-5 and immediately jumping to the loop in lines 6-7 which is fired just once. However,
introducing a controlling-counter z we may enforce the loops to be fired maximal number of
times and thus obtain another example of a VASS with shortest one run being exponential.

» Example 5. In the 2-VASS above both counters z and y are tested exactly k times. Thus
as the starting valuation is (z,y) = (1,0) we should start from value z = k. Therefore in
the i-th iteration of the for-loop in the line 3 the counter x is still waiting for k — (i — 1)
zero-tests as well as the counter y. Similarly as in the line 3 the counter x in the line 5 is still
waiting for k — i zero-tests while the counter y is waiting for k — (i — 1) zero-tests. Therefore
in the line 3 we should increase z by (—=1)-(k—i+1)+2-(k—i+1) = k—i+ 1 while in the
line 5 we should increase z by 1- (k —4) 4+ (—1) - (k — i+ 1) = —1. Therefore the resulting
3-VASS have the property that the shortest (and the only) run from (1,0, k) to (0,0,0) is
exponential in k.

1: for 7 := 1 to kdo
2 loop
3 r—=1 y4+=2 z4=k—i+1
4: loop
5 z4+=1 y—=1 z-—=1
6: loop

7 r—=1

The use of the controlling-counter technique may be much more intricate, however the
above Example 5 presents its main idea. In [4] the whole Ackermann-hardness idea was based
on controlling-counters. Lasota in [12] simplified our approach and presented it without
the use of controlling-counters. It turns however that in low dimensions controlling-counter
technique can be very convenient as it uses only one additional dimension to control others
in contrast to the multiplication triple technique (explained below), which requires three
dimensions (at least in its classical version). Below we briefly describe the multiplication
triple technique. We also show how to use it together with the controlling-counter technique
to obtain Tower-hardness for the reachability problem in VASSes already in dimension eight.

8 Multiplication triples

Both the above presented techniques of telescope equations and controlling-counter are useful
for designing VASSes with long runs, but it is not clear how they solely can be used to get
some complexity lower bounds.

Here we briefly introduce the technique of multiplication triples and show how to use
it to get pretty easily PSpace-hardness lower bound for the reachability problem in unary
7-VASSes. Notice that it is not hard to improve this result, in [4] we have show PSpace-
hardness for unary 5-VASSes. Here we present this simple result to illustrate briefly an
application of the multiplication triple technique.

Recall that a d-counter machine is just a d-VASS with possibility of zero-tests. We say
that a run of a counter machine is B-bounded if at each configuration on this run the sum of
all the counter values does not exceed B. We first recall the following theorem, which is a
folklore.
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» Theorem 6. The problem whether a given three-counter machine for a given number n € N

has a 2™-bounded run from a given source configuration to a given target configuration is
PSpace-hard.

The main idea behind the multiplication triple technique is that a d-VASS equipped with
three additional counters (z,y, z) with initial values (B, C, BC) can simulate C/2 zero-tests
on B-bounded counters. Here we do not explain how this simulation exactly works and why
this is the case, explanations can be found in [12, 4]. It is important for us here that in order
to obtain PSpace-hardness for 7-VASSes it is enough to construct a family V,, of 7-VASSes
with the following properties:

transition values of V,, are bounded by 2n (any polynomial function of n is fine),

all the reachable configurations of the form ¢(x1,...,z7), where t is the target state, have

the property that if z7 = 0 then x1 = o = x3 =0, 4 = 2" and xg = 2" - 5.
Intuitively speaking by testing x7 for zero in the target configuration we get a triple of
the form (2™, C, 2™ - C) on counters (x4, 5, zg). In the latter part of the VASS run we can
simulate a three-counter machine on counters (1, z2,x3) and use the counters (x4, x5, x¢)

to check whether x1, x5, z3 are indeed 2™-bounded and for simulating zero-tests on them.

Thus in the rest of this paragraph we focus on showing how to construct the above family
V5. Recall that counter programs are just ways of presenting VASSes, so we interchangeably
speak about VASSes and counter programs.

» Example 7. The idea is simple. We only use counters x1, x4, x5, Tg, 7. We first set z4 = 1
and z5 = xg = C for some guessed value C. Then using x; as an auxiliary counter we
multiply n times counters x4 and ¢ by 2. Counter z7 is used as the controlling-counter to
assure that the multiplications are exact. During this process the counters x4 and xg are
zero-tested n times while the counter z; is zero-tested 2n times. Therefore in the line 1 the
increase of x4 by 1 results in the increase of x7 by n. Similarly in line 3 the increase of zg by
1 results in the increase of 7 by 2n. In the i-th iteration of the for-loop we have that:

in the line 6 counter x4 is waiting for n — ¢ 4+ 1 zero-tests and counter x; is waiting for

2(n — i+ 1) zero-tests, so z7 should be increased by 3n — 3i + 3,

in the line 8 counter z; is waiting for 2(n — i + 1) zero-tests and counter x4 is waiting for

n — i zero-tests, so x7 should be decreased by n — i + 2,

in the line 6 counter zg is waiting for n — i + 1 zero-tests and counter z; is waiting for

2(n —i4 1) — 1 zero-tests, so x7 should be increased by 3n — 3i + 1,

in the line 8 counter x; is waiting for 2(n — i+ 1) — 1 zero-tests and counter z¢ is waiting

for n — i zero-tests, so x7 should be decreased by n — i + 1,

Lzg4+=1 x7+=n
2: loop
3: 5 +=1 x26+=1 z74+= 2n

4: for i := 1 to ndo

5 loop

6: s ——=1 x4 4+=2 x74+=3n—-3i+3
7 loop

8 rn—=1 z4+=1 7 —=n—14+2
9: loop

10: xe—=1 1 +=2 zr+=3n—-3r+1
11: loop

12: xrn—=1 z¢4+=1 7 —=n—-14+1
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If after this counter program the controlling-counter x has value zero then it means that
indeed 1 =0, x4 = 2", x5 = 2" - x5 and clearly x5 = x3 = 0, so all the necessary conditions
for PSpace-hardness are fulfilled.

The above example shows how to join forces of controlling-counter and multiplication
triples technique to rather easily show some not entirely trivial PSpace-hardness lower bound
for 7-VASSes. By more clever constructions we can get a bit stronger lower bounds, but we
are still very far away from matching the upper and the lower bounds for the reachability
problem in low dimensional VASSes.

9 Afterthought

In this short tutorial we tried to present in the simplest possible way almost the whole
spectrum of current techniques of designing involved VASSes. Many of the applications are
more elaborate than the presented once, however it is still surprising that most of them are
not extremely complicated and some problems open for decades are solvable by techniques
which are at the end of the day rather simple. In my opinion we still need at least a few
more techniques in order to understand what phenomena are hiding in the low dimensional

VASSes.
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