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Abstract

The question to enumerate all (inclusion-wise) minimal connected dominating sets in a graph of
order n in time significantly less than 2n is an open question that was asked in many places. We answer
this question affirmatively, by providing an enumeration algorithm that runs in time O(1.9896n),
using polynomial space only. The key to this result is the consideration of this enumeration problem
on 2-degenerate graphs, which is proven to be possible in time O(1.9767n). Apart from solving this
old open question, we also show new lower bound results. More precisely, we construct a family
of graphs of order n with Ω(1.4890n) many minimal connected dominating sets, while previous
examples achieved Ω(1.4422n). Our example happens to yield 4-degenerate graphs. Additionally,
we give lower bounds for the previously not considered classes of 2-degenerate and of 3-degenerate
graphs, which are Ω(1.3195n) and Ω(1.4723n), respectively.

We also address essential questions concerning output-sensitive enumeration. Namely, we
give reasons why our algorithm cannot be turned into an enumeration algorithm that guarantees
polynomial delay without much efforts. More precisely, we prove that it is NP-complete to decide,
given a graph G and a vertex set U , if there exists a minimal connected dominating set D with U ⊆ D,
even if G is known to be 2-degenerate. Our reduction also shows that even any subexponential delay
is not easy to achieve for enumerating minimal connected dominating sets. Another reduction shows
that no FPT-algorithms can be expected for this extension problem concerning minimal connected
dominating sets, parameterized by |U |. This also adds one more problem to the still rather few
natural parameterized problems that are complete for the class W[3]. We also relate our enumeration
problem to the famous open Hitting Set Transversal problem, which can be phrased in our
context as the question to enumerate all minimal dominating sets of a graph with polynomial delay
by showing that a polynomial-delay enumeration algorithm for minimal connected dominating sets
implies an affirmative algorithmic solution to the Hitting Set Transversal problem.
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1:2 Enumerating Minimal Connected Dominating Sets

1 Introduction

The enumeration of objects that satisfy a given property has applications in many scientific
domains including biology and artificial intelligence. Enumeration can also be used as part
of an exact algorithm, e.g., confer the algorithm by Lawler [27] to compute a coloring of an
input graph using a minimum number of colors. The dynamic programming scheme used by
this algorithm needs all the maximal independent sets of the input graph. It is worth noting
that the running time depends mainly on a bound on the number of maximal independent
sets as well as on the running time of an algorithm that would produce all these sets.

Clearly, the number of outputs of an enumeration algorithm can be exponential in the
size of the given input. It is the case for the number of maximal independent sets: there are
graphs with 3n/3 such sets [30], where n is the number of vertices in the graph. The running
time of enumeration algorithms can either be measured with respect to the size of the input
plus the size of the outputted set of objects, which is called output-sensitive analysis, or it
can be measured according to the size of the input only, being called input-sensitive analysis.
In the latter, the running time upper bound often implies an upper bound on the number of
enumerated objects, i.e., the maximum number of objects that can fulfill the given property.

Given a graph G = (V, E), the problem of computing a minimum dominating set asks
for a smallest-cardinality subset S ⊆ V such that each vertex not in S has at least one
neighbor in S. This well studied NP-hard problem attracted considerable attention for
decades. Several exponential-time algorithms have been designed to solve the problem
exactly, and the most recent are based on Measure-and-Conquer techniques to analyze their
running times [15,24,31]. The problem of enumerating all inclusion-minimal dominating sets
has also caught attention for general graphs as well as for special graph classes [10,16,19].

Many variants of the dominating set problem have also gained attention [22]. In particular,
the minimum connected dominating set problem requires that the graph induced by S is
connected. The problem has attracted great attention and various methods have been devised
to solve it exactly [3,14]. A more challenging question has been posed about the enumeration
of inclusion-minimal connected dominating sets. Already designing an algorithm faster than
poly(n)2n is known to be challenging, and this specific question has been asked several
times as an open problem [6, 13, 20]. A recent result by Lokshtanov et al. [29] shows that
minimal connected dominating sets can be enumerated in time 2(1−ϵ)n · nO(1), which broke
the 2n-barrier for the first time. It is worth noting that ϵ is a tiny constant, around 10−50,
and it has remained open whether an algorithm exists that can substantially break the
2n-barrier. The enumeration of minimal connected dominating sets also received notable
interest when the input is restricted to special graph classes [20,21,32,33,34].

On the other hand, the maximum number of minimal CDS in a graph was shown to
be in Ω(3 n

3 ) [20], which is obviously very low compared to the currently best upper bound.
This gap between upper and lower bounds is narrower when it comes to special graph
classes. On chordal graphs, for example, the upper bound has been recently improved
to O(1.4736n) [21]. Other improved lower/upper bounds have been obtained for AT-free,
strongly chordal, distance-hereditary graphs, and cographs in [20]. Further improved bounds
for split graphs, cobipartite and convex bipartite graphs have been obtained in [34] and [33].
Moreover, although the optimization problem seems simpler, the best-known exact algorithm
solves the problem in time O(1.8619n) [3]. This is already much larger than the best-known
lower bounds of 3(n−2)/3 [20] to enumerate all minimal connected dominated sets.

In this paper, we show that the enumeration of all inclusion-wise minimal connected
dominating sets can be achieved in time O(1.9896n). Surprisingly, achieving this improvement
was simply based on first considering the same enumeration on 2-degenerate graphs and
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proving it to be possible in time O(1.9767n). Achieving enumeration with polynomial delay
is believed to be hard, since it would also lead to the same for the enumeration of minimal
dominating sets, which has been open for several decades. We give further evidence of this
(possible) hardness by showing that extending a subset of vertices into a minimal connected
dominating set is NP-complete and also hard in a natural parameterized setting. Furthermore,
we narrow the gap between upper and lower bounds by showing that the maximum number of
minimal connected dominating sets in a graph is in Ω(1.4890n), thus improving the previous
lower bound of Ω(1.4422n). Our construction yields new lower bounds on several special
graph classes such as 3-degenerate planar bipartite graphs. For space restrictions, most
proofs are either omitted or reduced to proof sketches; full proofs can be found in the long
version of this paper [1].

2 Definitions, Preliminaries and Summary of Main Results

In this paper, we deal with undirected simple finite graphs that can be specified as G = (V, E),
where V is the finite vertex set and E ⊆

(
V
2
)

is the set of edges. The number of vertices |V |
is also called the order of graph G and is denoted by n. An edge {u, v} is usually written as
uv. Alternatively, E can be viewed as a symmetric binary relation, so that E∗ is then the
transitive closure of E, which is an equivalence relation whose equivalence classes are also
known as connected components. A graph is called connected if it has only one connected
component. A graph G′ = (V ′, E′) is a subgraph of G = (V, E) if V ′ ⊆ V and E′ ⊆ E; G′ is a
partial graph of G if V = V ′. A set of vertices S induces the subgraph G[S] = (S, ES), where
ES = {uv ∈ E | u, v ∈ S}; S is called connected if G[S] is connected. For a vertex v ∈ V ,
NG(v) = {u ∈ V | uv ∈ E} is the open neighborhood of v, collecting the vertices adjacent
to v; its cardinality |NG(v)| is also called the degree of v, denoted as degG(v). We denote the
closed neighborhood of v by NG[v] = NG(v) ∪ {v}. We can extend set-valued functions to set
arguments; for instance, NG[S] =

⋃
v∈S NG[v] for a set of vertices S; S is a dominating set if

NG[S] = V . Whenever clear from context, we may drop the subscript G from our notation.
If X ⊆ V , we also write NX(v) instead of N(v) ∩ X and degX(v) for |N(v) ∩ X|. For brevity,
we write CDS for connected dominating set. Next, we collect some observations.

▶ Observation 1. If S is a CDS of a partial graph G′ of G, then S is a CDS of G.

Proof. We can think of G = (V, E) as being obtained from G′ by adding edges. Hence, if
NG′ [S] = V , then NG[S] = V . Moreover, adding edges cannot violate connectivity. ◀

▶ Corollary 2.1. Let S be a CDS both of G and of a partial graph G′ of G. If S is a minimal
CDS of G, then it is a minimal CDS of G′.

A graph G = (V, E) is d-degenerate if there exists an elimination ordering (v1, . . . , vn),
where V = {v1, . . . , vn}, such that, for all i = 1, . . . , n, degG[{vi,...,vn}](vi) ≤ d. In other
words, we can subsequently delete v1, v2, . . . from G, and at the time when vi is deleted,
it has degree bounded by d in the remaining graph. The decision problem Connected
Dominating Set Extension expects as inputs a graph G = (V, E) and a vertex set U , and
the question is if there exists a minimal CDS S that extends U , i.e., for which S ⊇ U holds.

In the next section, we develop a branching algorithm. It is classical to analyze its
running-time by solving recurrences of type T (µ(I)) =

∑t
i=1 T (µ(I) − ri). Here, µ(I) is a

measure on the size of the instance. The value t is the number of recursive calls (t is equal
to 1 for reduction rules) and each ri is (a lower bound on) the reduction of the measure
corresponding to the recursive call. We simply denote by (r1, r2, . . . , rt) the branching vector
of the recurrence. We refer to the book by Fomin and Kratsch for further details on this
standard analysis [17].

ESA 2022



1:4 Enumerating Minimal Connected Dominating Sets

As discussed in the introduction, we shall first prove that all minimal CDS can be
enumerated in time O(1.9767n) on 2-degenerate graphs. This result is the key to our
enumeration result for general graphs. This is why we will first present the corresponding
branching enumeration algorithm for 2-degenerate graphs in a simplified form and analyze it
with a rather simple measure in order to explain its main ingredients, and only thereafter,
we turn towards a refined analysis that finally leads to the claimed enumeration result on
general graphs. We shall prove that our input-sensitive enumeration algorithm cannot be
turned into an enumeration algorithm with polynomial delay by simply interleaving the
branching with tests for extendibility. For possible applications of such extension algorithms,
we refer to the discussions in [7].

3 A CDS enumeration algorithm for 2-degenerate graphs

We are going to present an algorithm that enumerates all inclusion-wise minimal connected
dominating sets (CDS) of a 2-degenerate graph G = (V, E). Based on G, in the course of
our algorithm, an instance is specified by I = (V ′; Od, On; S) , consisting of four vertex sets
that partition V . In the beginning, I = (V ; ∅; ∅; ∅). In general, V ′ collects the vertices not
yet decided by branching or reduction rules, O := Od ∪ On are the vertices that have been
decided not to be put into the solution, while S is the set of vertices decided to go into the
solution that is constructed by the branching algorithm. The set O is further refined into On,
the set of vertices that are not yet dominated, i.e., if x ∈ On, then degS(x) = 0, and Od,
the set of vertices that are already dominated, i.e., if x ∈ Od, then degS(x) > 0. Similarly,
we will sometimes refine V ′ = V ′

d ∪ V ′
n. Notice that also vertices known to be dominated

could be still put in the dominating set, either to dominate other vertices or for connectivity
purposes. In the leaves of the branching tree, only instances of the form (∅, Od, ∅, S) are of
interest. Yet, before outputting S as a solution, one has to check if S is connected and if it
does not contain a smaller CDS.

The algorithm actually starts by creating n different branches, in each a single vertex is
put in S as a starting point, so that S is never empty. More precisely, the nth branch would
decide not to put the previously considered n − 1 vertices into the solution but the nth one
is put into S. This binary branching avoids generating solutions twice. Also, it is trivial to
check in each branch if the selected vertex already dominates the whole graph, so that we
can henceforth assume that G cannot be dominated by a single vertex.

We denote by c the number of connected components of G[S]. Now, we are ready to
define the measure that we use to analyze the running time of our algorithm, following a
very simple version of the measure-and-conquer-paradigm, as explained in [15,17],

µ(I) = |V ′| + α · |On| + δ · c .

We decide that 0 < α, δ < 1, but we will determine the concrete values later as to
minimize the upper-bound on the running-time. At the beginning, V ′ = V , On = ∅ and
c = 0, so that then the measure equals |V |. At the end, V ′ = On = ∅ and the measure
equals δ if the solution is connected and is bigger than δ if the solution is not connected.

For the possible branchings, we only consider vertices in a partial graph G′ of G[V ′ ∪ On].
As G is 2-degenerate, G′ is also 2-degenerate, so that we can always find a vertex of degree
at most two in G′. Some of our branchings apply to vertices of arbitrary degree, though; in
such a situation, we denote the vertex that we branch on as x. If we branch on a small-degree
vertex (due to 2-degeneracy), this vertex is called u. Clearly, a binary branch that puts a
selected vertex either into S or into O is a complete case distinction.
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x

y

· · ·

(a) x ∈ V ′
d has neighbors in On.

xS1 S2

· · ·

(b) Vertices from two different connected components
S1, S2 of G[S] dominate x in G.

Figure 1 Simple branchings for dominated vertices: Rules 1 and 2.

We are now explaining the conventions that we follow in our illustrations of subgraphs
of G′. Vertices in V ′ are depicted by and more specifically by if in V ′

n or by if
in V ′

d . We use black squares to depict vertices which are already decided to belong to
the solution S. We use for vertices from On. So, circles are used for undecided vertices
(these vertices might still be added to S), whereas squares are used for vertices being already
decided (to belong to the solution or to be discarded). Vertices in V ′ ∪ O are depicted as
half-filled diamonds , and if the vertex is from V ′

n ∪ On, then we use an unfilled diamond
to represent it. A dashed line indicates an edge that may be present. It should be clear that
one could always move to the graph where vertices in S that belong to the same connected
component in G[S] are merged. In order to avoid drawing too many vertices from S in our
pictures, we assume these mergings to have been performed. Hence, when we draw two
vertices from S, they belong to different connected components.

In the following, the branching and reduction rules require to be executed in order, so
that our instance will (automatically) satisfy some structural properties when we apply one
of the later rules. We can separate our branching and reduction rules into three parts:

A first set of rules (Branching Rules 1, 2, 3, 4, Reduction Rules 1, 2, 3, 5) that deals with
vertices of arbitrary degree that are (possibly) dominated, but only in some special cases,
as detailed later. Those rules are applied first, so that whenever we apply a rule from
the next two sets, we know that any dominated vertex is dominated by vertices from
exactly one connected component of G[S] and none of the vertices in its neighborhood
are dominated. This means that the set of vertices V ′

d as well as the set of vertices On

forms an independent set in G′, a partial graph of G[V ′ ∪ On].
A second set of rules (Branching Rules 5, 6, Reduction Rule 4) that handles the cases
where the small-degree vertex that exists by the 2-degeneracy is undominated. If we
apply a rule from the third set, every undominated vertex is of degree at least 3.
The last set of rules (Branching Rules 7, 8, 9, 10) handles only the cases where the
small-degree vertex that exists by the 2-degeneracy is dominated.

Note that even inside those three sets, rules have to be executed in the given order.

▶ Branching Rule 1. Let x ∈ V ′
d with degOn

(x) ≥ 1 (Figure 1a). Then branch as follows.
(1) Put x in Od. (2) Put x in S and every vertex in NOn

(x) in Od.

▶ Lemma 3.1. The branching of rule 1 is a complete case distinction. Moreover, it leads to
a branching vector that is not worse than (1, 1 + α) .

Proof. As degS(x) ≥ 1, we find that, if x is not put into the solution, then it is put into Od,
which decreases the measure by 1 in the first component of the branching vector. If x is put
into the solution, then its neighbors are dominated and we decrease the measure by at least
1 + α in the second component of the branching vector, as degOn

(x) ≥ 1. ◀

ESA 2022
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xyz

· · · · · ·

(a) A vertex from On in the second neigh-
borhood of x ∈ V ′

d gives still an advantage.

x ySx Sy

· · · · · ·

(b) NS(x) belongs to the same connected component Sx

of G[S], and so does NS(y) belong to Sy, but Sx ̸= Sy.

Figure 2 Branching Rules 3 and 4.

x

y

S

· · ·

· · ·

(a) x, y ∈ V ′
d are dominated by the

same connected component S in G[S].

x

y

(b) Two
neighbors
x, y ∈ On

get apart.

x

· · ·

(c) x ∈ V ′
n is

fully encircled
by O.

x

y

· · ·

(d) There is only one way
to dominate vertex x.

Figure 3 Illustrating Reduction Rules 1, 3, 4 and 5.

We will have similar lemmas for each of the branching rules; we will summarize them at
the end of this section instead of formulating them separately and point to the long version
of the paper.
▶ Branching Rule 2. Let x ∈ V ′

d such that x is adjacent to two different connected components
of G[S]; see Figure 1b. Then branch as follows. (1) Put x in Od. (2) Put x in S.

We are now presenting two branching rules that could be viewed as variations of the first
two; they always give worse branchings.
▶ Branching Rule 3. Let x ∈ V ′

d , y ∈ NV ′
n
(x), z ∈ NOn

(y) (Figure 2a). Then branch as follows.
(1) Put x in Od. (2) Put x in S, y in Od. (3) Put x, y in S and thus z ∈ Od.

▶ Branching Rule 4. Let x, y ∈ V ′
d , xy ∈ E, such that z ∈ {x, y} is adjacent to a connected

component Sz of G[S], with Sx ̸= Sy, see Figure 2b. Then branch as follows. (1) Put x

in Od. (2) Put x in S and y in Od. (3) Put x in S and y in S.
Notice that in the last branch, the number of connected components decreases.
▶ Reduction Rule 1. If x, y ∈ V ′

d and xy ∈ E, then delete the edge xy; see Figure 3a.

▶ Lemma 3.2. Reduction Rule 1 is sound and the measure does not change.

Proof. Let M be a minimal CDS of G such that M \ V ′ = S. Define e = xy and G̃ =
(V, E \ {e}). Now we want to show that M is also a minimal CDS in G̃. Since x and y are
already dominated by S, the deletion of the edge e would not affect domination, nor could x

ever be the private neighbor of y or vice versa. The connectivity is only important if x, y ∈ M .
Vertices x, y are dominated by the same connected component of S, as otherwise Branching
Rule 4 would have applied with priority. Hence, there exists a path p = (x, p1, . . . , pl, y),
with internal vertices in S. Let q = (q1, . . . , qk) be a path in G[M ] such that there exists an
i ∈ {1, . . . , k − 1} with qi = x and qi+1 = y. Then q̃ = (q1, . . . , qi, p1, . . . , pl, qi+1, . . . , qk) is a
walk in G̃[M ]. Thus, G̃[M ] is connected and M is a CDS of G̃. As G̃ is a partial graph, M

is also a minimal CDS of G̃ by Corollary 2.1. ◀
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u

v1 v2

(a) Branching if u ∈ V ′
n has two

neighbors in V ′ and none in On.

u

v1 v2

(b) A similar rule for u ∈ On.

u v

· · ·

(c) We branch on u and on v if
u ∈ S. Note: degV ′∪On

(v) ≥ 3
by Observation 2.

Figure 4 Branching Rules 5, 6 and 7.

We can formulate and prove similar lemmas for the following reduction rules, as well. We
will summarize this in one single lemma below instead.
▶ Reduction Rule 2. If x is an isolated vertex in G[V ′ ∪ On], do the following:

If x is dominated, put x into Od.
If x is not dominated, skip this branch. (This will always happen if x ∈ On.)

▶ Reduction Rule 3. Let x, y ∈ On be with xy ∈ E; see Figure 3b. We delete the edge xy.
▶ Reduction Rule 4. If x ∈ V ′

n obeys N(x) ∩ V ′ = ∅, then skip this branch (Figure 3c).
The next rule will even decrease the measure by at least 1 − δ.
▶ Reduction Rule 5. Let x ∈ V ′

n ∪ On, with NV ′(x) = {y}. Then, put y into S.
▶ Branching Rule 5. Let u ∈ V ′

n with degV ′(u) = 2, degOn
(u) = 0 and NV ′(u) = {v1, v2};

see Figure 4a. Then branch as follows. (1) Put u in Od, v1 in S. (2) Put u in Od, v1 in O,
v2 in S. (3) Put u in S, v1 in S. (4) Put u in S, v1 in Od, v2 in S.
More precisely, in the second branch, we put v1 into Od if v1v2 ∈ E or if v1 was already
dominated and we put v1 into On, otherwise. The same is done in the Branching Rules 6, 7,
8, 9 and 10, as it can be decided whether the vertex goes into On or into Od.
▶ Branching Rule 6. Let u ∈ On with NV ′(u) = {v1, v2} (Figure 4a). Then branch as follows.
(1) Put v1 in S, and thus u in Od. (2) Put v1 in O, v2 in S, and thus u in Od.

▶ Observation 2. For each rule below, as it is applied in particular after Branching Rule 5
and Reduction Rule 5, we observe: for any vertex v ∈ V ′

n ∪ On, we have degV ′∪On
(v) ≥ 3.

▶ Branching Rule 7. Let u ∈ V ′
d with NV ′

n
(u) = {v} and degOn

(v) = 0; see Figure 4c. Then
branch as follows. (1) Put u in Od. (2) Put u in S and v in Od and thus all the vertices of
NV ′(v) \ {u} in O. (3) Put u in S and v in S.
▶ Branching Rule 8. Let u ∈ V ′

d , with NV ′(u) = {v1, v2} and degOn
(u) = 0 (Figure 5a). If

NV ′(v1) ∩ NV ′(v2) contains a vertex y ∈ V ′ different from u, then branch as follows. (1) Put
u in Od. (2) Put u in S, v1 in S. (3) Put u in S, v1 in Od, v2 in S. (4) Put u in S, v1 in Od,
v2 in Od and thus y in O.

▶ Branching Rule 9. Let u ∈ V ′
d , NV ′

n
(u) = {v1, v2}, NV ′

d
(u) = NOn

(u) = ∅ and NV ′(v1) \
{u, v2} = {y}; see Figure 5b. Then branch as follows. (1) Put u in Od. (2) Put u in S, v1
in S. (3) Put u in S, v1 in Od, v2 in S. (4) Put u in S, v1 in Od, v2 in Od and y in O.
(5) Put u in S, v1 in Od, v2 in Od and y in S and thus the vertices of NV ′(v2) \ {u, v1} in O.

▶ Branching Rule 10. (Figure 5c) Let u ∈ V ′
d , NV ′

n
(u) = {v1, v2}, NV ′

d
(u) = NOn

(u) = ∅,
such that |NV ′(v1) \ {u, v2}| ≥ 2, as well as |NV ′(v2) \ {u, v1}| ≥ 2. Then branch as follows.
(1) Put u in Od. (2) Put u in S, v1 in S. (3) Put u in S, v1 in Od, v2 in S. (4) Put u in S,
v1 in Od, v2 in Od and all of NV ′(v1) \ {u, v2} in O. (5) Put u in S, v1 in Od, v2 in Od and
all of NV ′(v2) \ {u, v1} in O.

ESA 2022



1:8 Enumerating Minimal Connected Dominating Sets

u

v1 v2

y
· · · · · ·

(a) Possibly adjacent v1, v2
have ≥ 2 common neighbors.

u

v1 v2

y · · ·

(b) v1 of adjacent v1, v2 has
only one more V ′-neighbor: y.

u

v1 v2

· · ·· · ·

(c) When v1, v2 have ≥ 2 “outside
neighbors” each for better branching.

Figure 5 Branching Rules 8, 9 and 10.

The next and final rule will never be applied when this algorithm is applied to a
2−degenerate graph. It rather prepares the ground for the general case. However, with our
current measure, this would yield an O(2n) algorithm in the general case. With a modified
measure, as described in the next section, we will achieve a better running time.

▶ Branching Rule 11. Let x ∈ V ′
d . Then we branch as follows. (1) Put x in Od. (2) Put x

in S and thus the vertices of NV ′(x) in V ′
d .

▶ Lemma 3.3. Each of the mentioned branching rules covers all cases in their described
respective situation. The branching will lead to a branching vector as listed in Table 1.

▶ Lemma 3.4. The mentioned reduction rules are sound and their application never increases
the measure.

A case analysis shows the correctness of our algorithm in the following sense:

▶ Lemma 3.5. The Reduction and Branching Rules cover all possible cases.

Proof. As explained below, Branching Rule 11 serves as a final catch-all. For the 2-degenerate
case, we should focus on all other rules and prove that they cover all cases. This means that
we have to show that the proposed algorithm will resolve each 2-degenerate graph completely.
Our rule priorities might remove vertices of arbitrary degree from the graph G′ that is a
partial graph of the graph G[V ′ ∪ On]. This way, we again arrive at a 2-degenerate graph.
Yet, what is important for dealing with 2-degenerate graphs is to consider all cases of a
vertex u of degree at most 2. The degree conditions in the following case distinction refer
to G′. Degree-0 vertices are treated with Reduction Rule 2. We now discuss vertices u of
degrees one or two. There are two different cases: either u is in V ′

n ∪ On, or u ∈ V ′
d .

Case 1: u is not dominated by S. Now we discuss its degree in G′, either it is 1 or it is 2.
Case 1.1: deg(u) = 1 and we denote by v the neighbor in G′ of u. If v ∈ On, then either u is

in On and then satisfies the conditions of Reduction Rule 3, or it is in Vn and thus satisfies
the conditions of Reduction Rule 4. If v /∈ On, v satisfies the conditions of Reduction
Rule 5.

Case 1.2: deg(u) = 2. Now we discuss the number of neighbors of u in On. If both neighbors
are in On, Reduction Rule 4 applies if u ∈ V ′

n and Reduction Rule 3 applies otherwise. If
only one neighbor of u is in On, then this means that if u ∈ On Reduction Rule 3 applies,
and otherwise Reduction Rule 5 applies. If none of the neighbors are in On, then either
u ∈ V ′

n and then Branching Rule 5 applies, or otherwise u ∈ On and thus Branching
Rule 6 applies.

Case 2: u is dominated by S.
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Table 1 Collection of all branching vectors for the 2-degenerate case; the branching numbers are
displayed for the different cases with α = 0.106 and δ = 0.106.

Branching Rule # Branching vector Branching number
1 (1, 1 + α) always better than 3
2 (1, 1 + δ) always better than 4
3 (1, 2, 2 + α) < 1.9766
4 (1, 2, 2 + δ) < 1.9766
5 (2 − δ, 3 − δ − α, 2 − δ, 3 − δ) < 1.8269
6 (1 + α − δ, 2 − δ) < 1.6420
7 (1, 4 − 2α, 2) < 1.7691
8 (1, 2, 3, 4 − α) < 1.9333
9 (1, 2, 3, 4 − α, 5 − δ − α) < 1.9767
10 (1, 2, 3, 5 − 2α, 5 − 2α) < 1.9420
11 (β, 3 − 2β) where β = 1 = 2 not for 2-degenerate graphs

Case 2.1: deg(u) = 1. We denote by v the neighbor in G′ of u. If v is dominated by S then
Reduction Rule 1 applies. If v is not dominated by S, then either it has no neighbors
in On and then Branching Rule 7 applies, or it has at least one neighbor in On and
Branching Rule 3 applies.

Case 2.2: deg(u) = 2. We denote {v1, v2} = NV ′(u). If either v1 or v2 is dominated, then
Reduction Rule 1 applies. If both of them are not dominated by S, either they have at
least one neighbor in On and then Branching Rule 3 applies or they do not have any
neighbor in On. So we know that degV ′(v1) ≥ 3, and degV ′(v2) ≥ 3, otherwise we could
apply one of the rules of the previous case to v1 or v2. Now, either v1 and v2 have a
common neighbor outside of u and Branching Rule 8 applies, or they do not and then
either at least one of them has exactly one neighbor that is not u or v1 (or v2, respectively)
and Branching Rule 9 applies, or they both have at least two neighbors outside of u, v1
and v2, so that Branching Rule 10 applies.

We finally have to prove the correctness of the algorithm for a general graph. If any
vertex satisfies the conditions of any Branching or Reduction Rule apart from Branching
Rule 11, then we apply such a rule, otherwise no such rule applies, which means that the
minimum degree of G′[V ′ ∪ On] is 3. If at least one vertex is in Vd, then we can apply
Branching Rule 11. Assume it is not the case, that means Vd is empty, so every vertex of
V ′ ∪ On is not dominated (and it is not empty, otherwise the algorithm would have ended).
Since in the beginning, S was not empty, S is never empty. Moreover, at any point in the
algorithm, N(S) = Vd ∪ Od. So in our case, we have N(S) = Od. This means that S is not a
dominating set (there are vertices in Vn ∪ On) and S cannot have any neighbor added, so
there is no CDS M ⊂ V such that M \ V ′ = S. This branch has to be discarded. ◀

▶ Theorem 3.6. Connected Dominating Set Enumeration can be solved in time
O(1.9767n) on 2-degenerate graphs of order n, using polynomial space only. The claimed
branching number is attained by setting α = 0.106 and δ = 0.106; see Table 1.

▶ Corollary 3.7. 2-degenerate graphs have no more than O(1.9767n) minimal CDS.

▶ Remark 3.8. We could deduce a corresponding CDS enumeration result for subcubic graphs,
as they can be dealt with as 2-degenerate graphs after the initial branching. There is a clear
indication that the bound that we derive in this way is not tight. Namely, Kangas et al.
have shown in [25] that there are no more than 1.9351n many connected sets of vertices in a
subcubic graph of order n.
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4 Getting β into the game: the general case

As indicated above, we are now refining the previous analysis by splitting the set of vertices
of the currently considered graph further. More precisely, the set of vertices V ′ that have not
been decided to come into or to be out of the solution S is split into the set of vertices V ′

n

that is still undominated and the set V ′
d of vertices that is already dominated. From the

viewpoint of the original graph, the neighbors of the solution set S are therefore partitioned
into the sets V ′

d and Od. However, observe that although we do not consider Od anymore in
the present graph, we do care about V ′

d , since V ′
d-vertices can still be either placed into S or

into Od by future branching or reduction rules. This is also reflected in the measure of the
instance I, which is now defined as:

µ(I) = |V ′
n| + α · |On| + β · |V ′

d | + δ · c

We set α = 0.110901, β = 0.984405 and δ = 0.143516. We are next working through
the branching rules one by one, as in particular the branching vectors will now split off into
different cases, as in our preliminary analysis, we only took care of the worst cases, not
differentiating between V ′

n or V ′
d (which was summarized under the set name V ′ before).

For the convenience of the reader, we repeat the formulation of the branching rules in the
following, adapting the notations.

We start with a table stating the branching vectors according to this new measure for
some branching rules for which it is straightforward. Branching Rule 3 and Branching Rule 4
are the tight cases in our Measure-and-Conquer analysis.

Rule Branching vector Br. number Rule Branching vector Br. number
# 1 (β, β + α) < 1.9489 # 2 (β, β + δ) < 1.9297
# 3 (β, β + 1, β + 1 + α) < 1.9896 # 4 (β, 2β, 2β + δ) < 1.9896

Branching Rule 5 Let u ∈ V ′
n with degV ′(u) = 2, degOn

(u) = 0 and NV ′(u) = {v1, v2}. The
branching vector is different when v1, v2 ∈ V ′

d or v1, v2 ∈ V ′
n. We will assume v1v2 /∈ E, as

this is always the worst case. A similar analysis applies to Branching Rule 6.

Condition Branching vector for # 5 Br. number Br. vector for # 6 Br. number
v1, v2 ∈ V ′

n (2 − δ, 3 − δ − α, 2 − δ, 3 − δ) < 1.8463 (1 + α − δ, 2 − δ) < 1.6635
v1 ∈ V ′

n, v2 ∈ V ′
d (2 − δ, 2 − α + β, 2 − δ, 2 + β) < 1.8236 (1 + α, 1 + β) < 1.5855

v1, v2 ∈ V ′
d (1 + β, 1 + 2β, 1 + β, 1 + 2β) < 1.7785 (β + α, 2β + α) < 1.5817

Branching Rule 7 We look at u ∈ V ′
d , {v} = V ′

n ∩ N(u) and the neighbors of v; we know that
N(v) contains at least u, v1, v2 /∈ O; differentiating between vi ∈ V ′

n or vi ∈ V ′
d (as before),

we arrive at three cases never leading to a branching number worse than 1.78.
Branching Rule 8 Let u ∈ V ′

d be with degV ′∪On
(u) = 2, such that v1, v2 ∈ NV ′

n
(u) and

NV ′(v1) ∩ NV ′(v2) contains a vertex y ∈ V ′ different from u. We differentiate y ∈ V ′
n or

y ∈ V ′
d and arrive at a branching number not worse than 1.9403.

Branching Rule 9 Let u ∈ V ′
d be with degV ′∪On

(u) = 2, such that v1, v2 ∈ NV ′
n
(u) and

NV ′(v1) \ {u, v2} = {y}. We distinguish y ∈ V ′
n and y ∈ V ′

d ; the first case leads to another
tight-case branching for our algorithm. In the last branch of each vector, min(β, 1 − α)
corresponds to whether z ∈ N(v2) \ {u, v1} belongs to V ′

d or to V ′
n.

Condition Branching vector Branching number
y ∈ V ′

n (β, 1 + β, 2 + β, 3 + β − α, 3 + β − δ + min(β, 1 − α)) < 1.9896
y ∈ V ′

d (β, 1 + β, 2 + β, 2 + 2β, 2 + 2β + min(β, 1 − α)) < 1.9813
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Branching Rule 10 Let u ∈ V ′
d , NV ′

n
(u) = {v1, v2}, NV ′

d
(u) = NOn(u) = ∅. We further

assume that |NV ′(v1) \ {u, v2}| ≥ 2, as well as |NV ′(v2) \ {u, v1}| ≥ 2. The only thing to
discuss here is whether the vertices of NV ′(v1) \ {u, v2} NV ′(v2) \ {u, v1} are in V ′

n or V ′
d .

This leads to nine subcases, which never produce a branching vector worse than 1.9453.
Branching Rule 11 When this branching rule applies, the sets in which the different vertices
reside are all already known: as it is applied after Branching Rule 1 and Branching Rule 4,
all the neighbors of x ∈ V ′

d are in V ′
n, moreover, degV ′

n
(x) = degV ′∪On

(x) ≥ 3, as it is applied
after every other rule. The branching vector (β, 3 − 2β) gives a branching number < 1.9896,
which is the last tight-case branching.

▶ Theorem 4.1. Connected Dominating Set Enumeration can be solved in time
O(1.9896n) on graphs of order n, using polynomial space only.

▶ Corollary 4.2. There are no more than O(1.9896n) many minimal connected dominating
sets in a graph of order n.

5 Achieving polynomial delay is not easy

How could we achieve polynomial delay for enumeration problems? If Connected Domi-
nating Set Extension would be solvable in polynomial time, then we might cut search
tree branches whenever it is clear that no solution is to be expected beyond a certain node
of the search tree, as we can associate to such a node also a set of vertices U that is decided
to go into the solution. For example, it has been recently exemplified with the enumeration
problem of minimal Roman dominating functions in [2] that a polynomial-time algorithm
for the corresponding extension problem can be adapted so that polynomial delay can be
achieved for this type of enumeration problem. However, we can show that Connected
Dominating Set Extension is NP-complete by a reduction from 3-Sat. This means that
new ideas would be needed for showing polynomial delay for enumerating minimal connected
dominating sets.

▶ Theorem 5.1. The Connected Dominating Set Extension problem is NP-complete,
even when restricted to 2-degenerate graphs.

Due to the parsimonious nature of the reduction, we can also conclude the following
result.

▶ Corollary 5.2. Assuming that the Exponential Time Hypothesis1 holds, there is no algorithm
that solves the Connected Dominating Set Extension problem in time O(2o(n)) on
(2-degenerate) graphs of order n.

Hence, even any subexponential delay seems to be hard to achieve.
Furthermore, the Connected Dominating Set Extension with the standard parame-

terization |U |, where U is the given subset of V , is even W[3]-hard on split graphs. To show
this, we need the W[3]-completeness of Hitting Set Extension [4, 5, 7] with standard
parameterization; in this problem, the input consists of a hypergraph (X, S), with S ⊆ 2X ,
and a set U ⊆ X, and the question if there exists a minimal hitting set H (this means that
H ∩ S ̸= ∅ for all S ∈ S) that extends U , i.e., U ⊆ H.

▶ Theorem 5.3. Connected Dominating Set Extension (with standard parameteriza-
tion) is W[3]-hard, even on split graphs.

1 For a discussion of this hypothesis, we refer to [23,28].
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On split graphs, we can also prove W[3]-completeness of Connected Dominating Set
Extension. Few natural parameterized problems are known to be W[3]-complete [4, 5, 7, 8].
There is yet another stroke against hopes for obtaining a polynomial-delay enumeration
algorithm for minimal CDS. Namely, we could see the reduction presented for Theorem 5.3
also as a reduction that proves the following statement, which connects our enumeration
problem to Hitting Set Transversal, a problem notoriously open for decades.

▶ Theorem 5.4. If there was an algorithm for enumerating minimal CDS with polynomial
delay in split graphs, then there would be an algorithm for enumerating minimal hitting sets
in hypergraphs with polynomial delay.

6 Lower bounds

Several attempts to construct lower bound examples are known from the literature, leading
to 3(n−2)/3 ∈ Ω(1.4422n) many minimal connected dominating sets in n-vertex graphs [20,33].
We now present an improved lower bound on the maximum number of minimal connected
dominating sets in a graph. Given arbitrary positive integers k, t, we construct a graph Gk

t

of order n = k(2t + 1) + 1 as follows. The main building blocks of Gk
t consist of k copies

of a base-graph Gt, of order 2t − 1. The vertex set of Gt consists of three layers. The first
one is a set X = {x1, . . . , xt} that induces a clique. The second one is an independent set
Y = {y1, . . . , yt}, while the third layer consists of a singleton {z}. Each vertex xi ∈ X has
exactly t − 1 neighbors in Y : N(xi) = {yj ∈ Y : i ̸= j}. Hence, X ∪ Y induces a copy of Kt,t

minus a perfect matching. Finally the vertex z is adjacent to all vertices in Y . Figure 6a
shows the graph Gt for t = 4. To finally construct the graph Gk

t , we introduce a final vertex s

that is connected to all vertices of each set X of each copy of the base-graph.

▶ Lemma 6.1. For each t > 0, the graph Gt has exactly t3+t2

2 − t minimal connected
dominating sets that have non-empty intersection with the set X.

Proof. The set X cannot have more than two vertices in common with any minimal CDS,
since any two elements of X dominate X ∪ Y . Any minimal CDS that contains exactly one
vertex xi of X must contain the vertex z, to dominate yi, and one of the t − 1 neighbors
of xi (to be connected). There are t(t − 1) sets of this type. Moreover, each pair of elements
of X dominates Y . So a minimal CDS can be formed by (any) two elements of X and any of
the elements of Y (to dominate z). There are t t(t−1)

2 such sets. ◀

The hub-vertex s in Gk
t must be in any CDS, being a cut-vertex. Therefore, there is no

need for the set X in Gt to induce a clique, being always dominated by s. In other words,
the counting used in the proof above still holds if each copy of Gt is replaced by Gt − E(X)
in Gk

t . Here, E(X) denotes the set of edges in Gt[X]. Figure 6b shows G3
3 without the edges

between pairs of element of X in each copy of G3. With the help of Lemma 6.1, we can show:

▶ Theorem 6.2. The maximum number of minimal CDS in a connected graph of order n is
in Ω(1.4890n); an example family of graphs is (Gk

4).

Proof. By Lemma 6.1, each copy of the graph Gt has t3+t2

2 − t minimal CDS. There are k

such graphs in Gk
t , in addition to the vertex s that connects them all. Every minimal CDS

must contain s and at least one element from N(s) in each Gt. Therefore, the total number
of minimal CDS in Gk

t is ( t3+t2

2 − t)k = ( t3+t2

2 − t)
n−1
2t+1 . The claimed lower bound is achieved

when t = 4, which gives a total of 36 n−1
9 ∈ Ω(1.4890n). ◀
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z

y1 y2 y3 y3

x1 x2 x3 x4

(a) The graph G4.

z1

y12 y13 y11

x11 x12 x13

z2

y22 y23 y21

x21 x22 x23

z3

y32 y33 y31

x31 x32 x33

s

(b) The graph G3
3.

Figure 6 How our lower bound examples are composed.

We note that Gk
t is a t-degenerate graph that is also bipartite (since the set X in each

copy of Gt can be an independent set). Furthermore, Gk
3 is planar, as intentionally drawn in

Figure 6b. Our general formula (Lemma 6.1) yields that Gk
3 has 15n/7 = Ω(1.4723n) minimal

CDS, improving on the previously mentioned construction for 3-degenerate graphs in [33].

▶ Corollary 6.3. The maximum number of minimal connected dominating sets in a 3-
degenerate bipartite planar graph of order n is in Ω(1.4723n).

Finally, Gk
2 is a 2-degenerate graph of order n with 4n/5 = Ω(1.3195n) many minimal

CDS, incidentally matching the best known lower bound in cobipartite graphs [9].

7 Conclusions and Open Problems

In our paper, we focused on developing an input-sensitive enumeration algorithm for minimal
CDS. We achieved some notable progress both on the running time for such enumeration
algorithms and with respect to the lower bound examples. However, the gap between lower
and upper bound is still quite big, and the natural question to ask here is to bring lower and
upper bounds closer; in an optimal setting, both would match. We are working on a further
refined version that will bring down the upper bound a bit, but not decisively. This question
of non-matching upper and lower bounds is also open for most special graph classes.

One particular such graph class that is studied in this paper is the class of 2-degenerate
graphs. We like to suggest to study this graph class also for other enumeration problems,
or, more generally, for problems that involve a measure-and-conquer analysis of branching
algorithms, because this was the key to break the 2n-barrier significantly for enumerating
minimal CDS with measure-and-conquer, something that seemed to be impossible with other
more standard approaches, like putting weights to low-degree vertices.

As we also proved that the extension problem associated to CDS is computationally
intractable even on 2-degenerate graphs, it is not that straightforward to analyze our
enumeration algorithm with the eyes of output-sensitive analysis. Conversely, should it be
possible to find an efficient algorithm for an extension problem, also on special graph classes,
then usually polynomial-delay algorithms can be shown; as a recent example in the realm of
domination problems, we refer to the enumeration of minimal Roman dominating functions
described in [2]. So, in the context of our problem, we can ask: Can we achieve polynomial
delay for any enumeration algorithm for minimal CDS? Can we combine this analysis with
a good input-sensitive enumeration approach? Notice that the corresponding questions for
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enumerating minimal dominating sets are an open question for decades. This is also known
as the Hitting Set Transversal problem; see [11, 12, 18, 26]. We therefore also presented
relations between polynomial-delay enumeration of minimal dominating sets and that of
minimal CDS, again explaining the difficulty of the latter question. Finally, we also briefly
discussed the possibility of subexponential delay. We propose to discuss this question further
also for other enumeration problems when polynomial delay is not achievable, as it might
well be a practical solution to know that the delay time is substantially smaller than the
time needed to enumerate all solutions, but not polynomial time.

We also discussed parameterized complexity aspects of Connected Dominating Set
Extension, leaving W[3]-membership an an open question in the general case.
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