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Abstract
We show that List Colouring can be solved on n-vertex trees by a deterministic Turing machine
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for all v.
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1 Introduction

Various applications can be modelled as an instance of List Colouring, e.g., the vertices
may correspond to communication units, with lists giving the possible frequencies or channels
that a vertex may choose from as colours and edges showing which units would interfere if
they are assigned the same colour [17, 24].

Given a graph G = (V, E) and given a list L(v) of colours for each vertex v ∈ V , an
L-colouring c is a proper colouring (that is, c(u) ̸= c(v) when uv ∈ E) mapping every vertex
v to a colour in the list L(v). This gives rise to the following computational problem.

List Colouring
Input: A graph G = (V, E) with a list L(v) ⊆ {1, . . . , n} of available colours for each
v ∈ V .
Question: Is there an L-colouring for G?

List Colouring is computationally hard. It is NP-complete on cographs [19] and on
planar bipartite graphs, even when all lists are of size at most 3 [18]. The problem remains
hard when parameterised by “tree-like” width measures: it was first shown to be W[1]-hard
parameterised by treewidth in 2011 by [16] and recently shown to be XNLP-hard implying
W[t]-hardness for all t by [4]. On the other hand, on n-vertex trees the problem can be solved
in time linear in n (using hashing) [19], but this algorithm may use Ω(n) space.
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24:2 List Colouring Trees in Logarithmic Space

In this paper, we study the auxiliary space requirements of List Colouring on trees in
terms of the number of vertices n of the tree. We assume that the vertices of T have been
numbered 1, . . . , n, which gives a natural order on them, and that, given vertices v, v′ in
T and i, i′ ∈ {1, . . . , n}, it can be checked in O(log n) space whether the ith colour in L(v)
equals the i′th colour in L(v′). As is usual for the complexity class L (logspace), we measure
the space requirements in terms of the number of bits on the work tape of a deterministic
Turing machine, where the description of the tree and the lists are written on a (read-only)
input tape. In particular, the number of bits on the input tape is allowed to be much larger.

Since n-vertex trees have pathwidth O(log n), our problem can be solved non-
deterministically using O(log2 n) bits on the work tape (see Proposition 3). However,
doing better than this is surprisingly challenging, even in the non-deterministic case! Our
main result is as follows.

▶ Theorem 1. List Colouring for trees is in L.

Our initial interest in the space complexity of List Colouring on trees arose from a recent
result showing that List Colouring parameterised by pathwidth is XNLP-complete [4].
XNLP is the class of problems on an input of size n with parameter k, which can be solved
by a non-deterministic Turing machine in f(k)nO(1) time and f(k) log n space for some
computable f . Since the treewidth of a graph is upper bounded by the pathwidth, List
Colouring is also XNLP-hard parameterised by treewidth. This is conjectured1 to imply
that there is a constant k∗ for which any deterministic Turing machine needs ω(log n) space
in order to solve List Colouring for n-vertex graphs of treewidth k∗; this work shows
that k∗ > 1. It seems likely that List Colouring parameterised by treewidth is not in
XNLP, and we conjecture that it is complete for a parameterised analogue of NAuxPDA (also
known as SAC) from [1, 23] . Considering such classes which (also) have space requirements
(complexity classes such as XL, XNL and XNLP [4, 5, 7, 15]) has proven successful in
classifying the complexity of parameterised problems which are not known to be complete
for any classes that only consider time requirements. Since some of such classes are very
naturally modelled by instances of List Colouring, we believe the complexity class of List
Colouring on trees could be of theoretical interest as well.

Another motivation for studying space requirements comes from practice, since memory
can be much more of a bottleneck than processing time (e.g. for dynamic programming
approaches). This motivates the development of techniques to reduce the space complexity.
Although many techniques have been established to provide algorithms which are efficient
with respect to time, fewer techniques are known to improve the space complexity. Notable
exceptions include the logspace analogue of Bodlaender’s and Courcelle’s theorem [14] which
allows one to check any monadic second-order formula on graphs of bounded treewidth in
logspace (which in particular allows one to test membership in any minor-closed family) and
Reingold’s [25] work on undirected connectivity. Reachability and isomorphism questions
have also been well-studied on restricted graph classes, e.g. [8, 21, 22]. Another interesting
piece of related work [13] shows that for each graph H, List H-Colouring is either in L or
NL-hard. We remark that List H-Colouring on trees (for fixed H) is easily seen to be
solvable in logspace using an analogue of Proposition 3 or the logspace Courcelle’s theorem
[14]. The difficulty in our case comes from the fact that the sizes of the lists are unbounded.

1 The conjecture (see [23, Conjecture 2.1] or [4, Conjecture 5.1]) states that there is no deterministic
algorithm for an XNLP-hard problem that runs in XP time and FPT space. If for each k, there exists
a constant f(k) such that List Colouring can be solved in space f(k) log n on n-vertex graphs of
treewidth k, then this would in particular yield an algorithm running in nf(k) time and f(k)nO(1) space.
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We also generalise our algorithm to graphs of bounded tree-partition-width (also called
strong treewidth).

▶ Corollary 2. There is a deterministic O(k log k log n) space algorithm for List Colouring
on n-vertex graphs with a given tree-partition of width k.

The algorithm of Corollary 2 does not run in FPT time. We also include a simple proof that
List Colouring is W[1]-hard when parameterised by tree-partition-width, which shows
that it is unlikely that there exists an algorithm running in FPT time.

The algorithm of Theorem 1 is highly non-trivial and requires several conceptual ideas
that we have attempted to separate out by first explaining some key ideas and an easier
deterministic algorithm that uses O(log2 n) space in Section 3. We assume our given tree to
be rooted and transverse it by first “recursing” on children whose subtrees are not the largest.
This bounds the number of such recursions by O(log n), and so we can “spend” O(log n)
space per recursion. When we move to the heaviest subtree, we have either already rejected,
or may forget entirely about the colour of v, or found a single colour that “works” for the
non-heavy subtrees of v (“criticality”). Along a heavy branch, we always keep at most two
such colours “per recursion depth” (the colour of v, and possibly one of its parent; once we
move to the child of v we may forget the colour of the parent of v).

There are two further main ideas that remove the additional log n-factor. Most import-
antly, when we “move” from a vertex v to one of its children u, we will let the amount of
storage allocated for storing v and its colour depend on the size of the subtree of u: the
larger the subtree, the less space we allow. In the extreme case in which the size of the
subtree of u is linear in the size of the subtree of v, we allow only a constant number of
bits. At specific points during the algorithm, when more space is available temporarily, we
use this stored information to recompute the vertex v and its colour. Suppose that v has
d children u1, . . . , ud. We define the list Lj(v) as the colours c such that when we give v

colour c, we can extend the colouring to the subtrees of u1, . . . , uj . If |Lj(v)| > d − j, then
v is “non-critical”: we will always be able to assign it a colour after colouring the subtrees
of uj+1, . . . , ud. This allows us to maintain that |Lj(v)| ≤ d − j and so the number of bits
required to store the position of c in Lj(v) decreases as j increases.

We need to be a bit more clever when we define the lists. The second main idea is to
distribute the children of v into about log log(n/2) brackets, where n denotes the number of
vertices in the subtree below v. The distribution is done based on how much smaller the
subtree of the child is compared to n. We allocate a specific number of bits per bracket: to
brackets which allow bigger subtrees, we allocate less space. When “processing” brackets of
smaller subtrees, we may need to store information as well for the brackets of bigger subtrees,
but vice versa is not allowed. We choose the bracket sizes so that if we store information for
the first j brackets, this “fits” in the space allocated to the (j + 1)th bracket. In the end, the
final algorithm is rather subtle and requires a careful analysis.

We outline some relevant definitions and background in Section 2. We give the simpler
O(log2 n) space algorithm in Section 3 and discuss the logspace algorithm in Section 4. We
prove our results concerning tree-partition-width in Section 5 and point to some directions
for future work in Section 6. Some technical details can be found in the full version [3].

2 Preliminaries

All logarithms in this paper have base 2. Let T be a rooted tree and v ∈ V (T ). We write Tv

for the subtree rooted at v and T − v for the forest obtained by removing v and all edges
incident to v. We refer the reader to textbooks for basic notions in graph theory [9] and
(parameterised) complexity [2, 12].

ESA 2022
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2.1 Simple logspace computations on trees

We repeatedly use the fact that simple computations can be done on a rooted tree using
logarithmic space, such as counting the number of vertices in a subtree. We include a brief
sketch below and refer to [22] for further details.

We first explain how to traverse a tree in logspace. Record the index of the current vertex
and create states down, next and up. We start on the root with state down. When in state
down, we go to the first child while remaining in the state down. If there is no child, we
change the state to next. When in state next, we go to the next sibling if it exists and
change state to down, or (if there is no next sibling) we change state to up. When in state up,
we simultaneously go to the parent and change the state to next. We stop when reaching
the root with state up. By keeping track of the number of vertices discovered, we can use
the same technique to count the number of vertices in a subtree. This can then be used to
compute the child with maximum subtree size and to enumerate children ordered by their
subtree size. If the input tree is not rooted, we may use the indices of the vertices to root
the tree in a deterministic way.

2.2 Graph width measures

Let G = (V, E) be a graph. A tuple (T, {Xt}t∈V (T )) is a tree decomposition for G if T is a
tree, for t ∈ V (T ), Xt ⊆ V is the bag of t, for each edge uv ∈ E there is a bag such that
{u, v} ⊆ Xt, and for each u ∈ V , the bags containing u form a nonempty subtree of T . If T

is a path, this defines a path decomposition.
The width of such a decomposition is maxt∈V (T ) |Xt| − 1. The treewidth (resp. pathwidth)

of G is the minimum possible width of a tree decomposition (resp. path decomposition) of G.
A nice path decomposition has empty bags on endpoints of the path and two consecutive

bags differ by at most one vertex. Hence, either a vertex is introduced, or a vertex is forgotten.
Let G be a graph, let T be a tree, and, for all t ∈ V (T ), let Xt be a non-empty set so that

(Xt)t∈V (T ) partitions V (G). The pair (T, (Xt)t∈V (T )) is a tree-partition of G if, for every edge
vv′ ∈ E(G), either v and v′ are part of the same bag, or v ∈ Xt and v′ ∈ Xt′ for tt′ ∈ E(T ).
The width of the partition is maxt∈V (T ) |Xt|. The tree-partition-width (also known as strong
treewidth) of G is the minimum width of all tree-partitions of G. It was introduced by Seese
[26] and can be characterised by forbidden topological minors [11]. Tree-partition-width is
comparable to treewidth on graphs of maximum degree ∆ [10, 27]: tw +1 ≤ 2 tpw ≤ O(∆ tw).
However, it is incomparable to treedepth, pathwidth and treewidth for general graphs.

The treedepth of a graph is the minimum height of a forest F with the property that
every edge of G connects a pair of nodes that have an ancestor-descendant relationship to
each other in F .

3 Warm up: first ideas and a simpler algorithm

3.1 Storing colours via their position in the list

It is not too difficult to obtain a non-deterministic algorithm that uses O(log2 n) space.

▶ Proposition 3. List Colouring can be solved non-deterministically using O(log n log ∆)
space on n-vertex trees of maximum degree ∆.

The proposition follows from the following two lemmas.
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▶ Lemma 4. List Colouring can be solved non-deterministically using O(k log ∆ + log n)
space for an n-vertex graph G of maximum degree ∆ if we can deterministically compute a
path decomposition for G of width k in O(log n) space.

A deterministic logspace algorithm for computing an optimal path decomposition exists for
all graphs of bounded pathwidth [20], but this does not apply directly to trees (since their
pathwidth may grow with n).

▶ Lemma 5. If T is an n-vertex tree, we can deterministically construct a nice path
decomposition of width O(log n) using O(log n) space.

We remark that ∆ may be replaced by a bound on the list sizes in Proposition 3 and Lemma
4. The main observation in the proof of Lemma 4 is that for a vertex v, we only need to
consider the first d(v) + 1 colours from its list so that we can store the position of the colour
rather than the colour itself. Note that we cannot keep the path decomposition in memory,
but rather recompute it whenever any information is needed. We keep in memory only the
current position in the path decomposition and the list positions of the colours we assigned
for vertices in the previous bag.

3.2 Heavy children, recursive analysis and criticality
Suppose that we are given an instance (T, L) of List Colouring. We fix a root v∗ of T in
an arbitrary but deterministic fashion, for example the first vertex in the natural order on
the vertices. Let v ∈ V (T ). We see v as a descendant and ancestor of itself. We write Tv for
the subtree with root v.

▶ Definition 6 (Heavy). A child u of a vertex v in a rooted tree T is called heavy if
|V (Tu)| ≥ |V (Tu′)| for all children u′ of v, with strict inequality whenever u′ < u in the
natural order on V .

Each vertex has at most one heavy child. We also record the following nice property.

▶ Observation 7. If u is a child of v which is non-heavy, then |V (Tu)| ≤ (|V (Tv)| − 1)/2.

An obvious recursive approach is to loop over the possible colour c ∈ L(r) for the root r and
then to recursively check for all children v of r whether a list colouring can be extended to
the subtree Tv (while not giving v the colour c). We wish to prove a space upper bound of
the form S(n) = f(n) log n on the number of bits of storage required for trees on n vertices
(for some non-decreasing function f). We compute

S(n/2) = log(n/2)f(n/2) ≤ log(n/2)f(n) = log nf(n) − log 2f(n) ≤ S(n) − f(n). (1)

This shows that while performing a recursive call on some subtree Tv with |V (Tv)| = n/2, we
may keep an additional f(n) bits in memory (on top of the space required in the recursive
call). In particular, we can store the colour c using O(log n) bits when f(n) = Θ(log n), but
can only keep a constant number of bits for such recursions when proving Theorem 1.

We next explain how we can ensure that we only need to consider recursions done on
non-heavy children. Suppose v has non-heavy children v1, . . . , vk and heavy child u. We will
write Gv = Tv − Tu. Suppose the parent v′ of v needs to be assigned colour c′. One of the
following must be true.

There is no colouring of Gv which avoids colour c′ for v. In this case, we can reject.
There is a unique colour c ̸= c′ that can be assigned to v in a list colouring of Gv. We
say v is critical and places the colour constraint on u that it cannot receive colour c.

ESA 2022



24:6 List Colouring Trees in Logarithmic Space

There are two possible colours unequal to c′ that we can give v in Gv. We then say v is
non-critical: it can be coloured for each colour we might wish to assign its heavy child u.

One example of non-criticality is if the list of available colours |L(v)| ≥ k + 2. In this case,
Tv is list colourable if and only if Tv1 , . . . , Tvk

, Tu are all list colourable (using lists L).

3.3 A deterministic algorithm using O(log2 n) space and polynomial
time

We define a procedure solve(v, p) which given a vertex v and number p ∈ {0, 1, . . . , n},
determines whether the subtree Tv rooted on v can be list coloured; for p ≥ 1 there is an
additional constraint that v cannot receive the pth colour in L(v); for p = 0 the vertex v

may receive any colour.
Suppose we call solve(r, p) for some r ∈ V (T ). Let v1, . . . , vk denote the non-heavy

children of r and u the heavy child. The algorithm works as follows.
1. For i = 1, . . . , k, we recursively verify that Tvi can be list coloured (solve(vi, 0)); we

reject if any of these rejects.
2. If |L(r)| ≥ d(r) + 1 = k + 2, then we are “non-critical”: we free up our memory (removing

also (r, p)) and recursively verify whether Tu can be list coloured by calling solve(u, 0).
3. From now on, |L(r)| ≤ k + 1. We check that there is some p1 ∈ {1, . . . , |L(r)|} for which

we can assign v the p1th colour in its list, and extend to a list colouring of T \ Tu. This
involves recursive calls solve(vi, pi,1) where pi,1 places the appropriate constraint2 on vi.
If no such p1 exists, we reject.

4. Next, we check whether r is “non-critical”, that is, whether there is some p2 ̸= p1 for
which there is a list colouring of T \ Tu in which r receives the p2th colour from its list.
If such p2 exists, we free up our memory and recursively verify whether Tu can be list
coloured.
If p2 does not exist, then we know that r must get colour p1. If p1 = p, we reject.
Otherwise, we free up our memory and run solve(u, p′

1), where p′
1 is either 0 or the

position in the list of u of the p1th colour of L(r).
We give a brief sketch of the space complexity; more precise arguments including also
pseudocode and the time analysis of this algorithm are given in the full version [3].

For the sake of analysis, suppose we keep a counter r that keeps track of the “recursion
depth”. We increase this by one each time we do a call on a non-heavy child (decreasing it
again once it finishes), but do not adjust it for calls on a heavy child.

Suppose r has been increased due to a sequence of recursive calls on
(v1, 0), (v2, p2), . . . , (vℓ, pℓ), with v1 the root of the tree and vi+1 a non-heavy child of some
heavy descendant of vi for all i ∈ [ℓ − 1]. Then |V (Tvℓ

)| ≤ 1
2 |V (Tvℓ−1)| ≤ · · · ≤ 1

2ℓ−1 |V (T )|.
In particular, r is always bounded by log n.

Crucially, if a call solve(u, p′) is made on the heavy descendant u of some vi, the only
information we need to store relating to the part of the tree “between vi and u” is p′.
Therefore, if we distribute our work tape into ⌈log n⌉ parts where the ith part will be used
whenever r takes the value i, then each part only needs to use 10 log n bits, giving a total
space complexity of O(log2 n).

2 Let c1 be the p1th colour in L(r). If c1 ̸∈ L(vi), let pi,1 = 0. Otherwise, let pi,1 be the position of c1 in
L(vi).
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4 Proof of Theorem 1

In this section, we describe our O(log n) space algorithm. This also uses the ideas of using
positions in a list (rather than the colours themselves), criticality and starting with the
non-heavy children described in the previous section. However, we need to take the idea of
first processing “less heavy” children even further.

The main idea is to store the colour c that we are trying for a vertex v using the position
pj of c in some list Lj(v), and to reduce the size of the list (and therefore the storage
requirement of pj) before we process “heavier” children of v. There are two key elements:

We can recompute c from pj in O(log n) space. This is useful, since we can do a recursive
call while only having pj (rather than c) as overhead, discover some information, and
then recompute c only at a point where we have a lot of memory available to us again.
The space used for pj will depend on the size of the tree that we process. It is too expensive
to consider all sizes separately, and therefore we will “bracket” the sizes. Subtrees whose
size falls within the same bracket are processed in arbitrary order. For example, we put
all trees of size O(

√
n) in a single bracket: these can be processed while using O(log n)

bits of information about c (which is trivially possible). At some point we reach brackets
for which the subtrees have size linear in n, say of size at least 1

4 n. Then, we may only
keep a constant number of bits of information about c. Intuitively, this is possible because
at most four children of r can have a subtree of size ≥ 1

4 n, so the “remaining degree” of
v is small. In particular, if more than six colours for v work for all smaller subtrees, then
v is “non-critical”.

We first explain our brackets in Section 4.1. We then explain how we may point to a colour
using less memory in Section 4.2 and how we keep track of vertices using less memory in
Section 4.3. We then sketch the proof of Theorem 1 by outlining the algorithm and its space
analysis in Section 4.4.

4.1 Brackets
Recall that we fixed a root for T in an arbitrary but deterministic fashion.

Let v ∈ V (T ) and u the heavy child of v. Let Gv = Tv − Tu and nv = |V (Tv)|. Each
subtree T ′ of Gv − v is rooted in a non-heavy child of v and will be associated to a bracket
based on |V (T ′)|. By Observation 7, 1 ≤ |V (T ′)| ≤ (nv − 1)/2. Let Mv = ⌈log log(nv/2)⌉.
The brackets are given by the sets of integers in the intervals

[1, nv/22Mv−1
), [nv/22Mv−1

, nv/22Mv−2
), . . . , [nv/256, nv/16), [nv/16, nv/4), [nv/4, nv/2).

There are Mv brackets: [nv/22j

, nv/22j−1) is the jth bracket for j ∈ {1, . . . , Mv − 1} and
[1, nv/22Mv−1) is the Mvth bracket. Note that nv/22Mv−1 = O(√nv). This implies that while
doing a recursive call on a tree in the Mvth bracket, we are happy to keep an additional
O(log nv) bits in memory.

We aim to show that for some universal constant C, when doing a recursive call on a tree
in the jth bracket, we can save all counters relevant to the current call using at most C2j

bits (which depending on the value of j, could be Ω(log n)). In our analysis, we save the
counters in a new read-only part of the work tape. The recursive call cannot alter this (and
will have to work with less space on the work space). We can then use our saved state to
continue with our calculations once the recursive call finishes.

We short-cut M = Mv for legibility; the dependence of M on v is only needed to ensure
that we do not start storing counters for lots of empty brackets when nv is much smaller
than n, and can be mostly ignored.

ESA 2022



24:8 List Colouring Trees in Logarithmic Space

4.2 The information pj stored about a colour c

Let v ∈ V (T ) with heavy child u and c ∈ L(v). Recall that Gv = Tv − Tu. We will loop over
j = M, . . . , 0 and consider subtrees of Gv whose size falls in the jth bracket in an arbitrary,
but deterministic order (e.g. using the natural order on their roots). When j decreases, we
will perform recursions on larger subtrees of Gv − v and can therefore keep less information
about c. We first define “implicit” lists.

Set LM (v) = L(v).
For j ∈ [0, M − 1], let Lj(v) be the set of colours α ∈ L(v) such that all subtrees T ′ of
Gv − v with |V (T ′)| < n/22j can be coloured without giving the colour α to the root of
T ′ (so that v may receive colour α according to those subtrees).

Note that Lj(v) = L(v) if there are no subtrees T ′ with |V (T ′)| < n/22j . Since the subtrees
associated to brackets 1, . . . , j have size at least n/22j , there can be at most 22j of them. If
|Lj(v)| ≥ 22j + 3 and all subtrees T ′ of Gv − v can be coloured, then v is “non-critical”: after
the parent and heavy child of v have been coloured, the colouring can always be extended to
v and the rest of Gv.

Suppose we are testing if we can give colour c to v. If c ̸∈ Lj(v), then we may reject:
c is not a good colour for one of the subtrees. We define pj = pj(c, v) as the integer
x ∈ {1, . . . , |Lj(v)|} such that the xth element in Lj(v) equals c. In particular, pM is the
position of the colour c in the list LM (v) = L(v) and p0 gives the position of c in the list of
colours for which all subtrees of Gv allow v to receive c. For j < M , we will reserve at least
log(22j + 3) bits for pj . This is possible, because we can maintain that |Lj(v)| ≤ 22j + 2 by
going into a “non-critical subroutine” if we discover the list is larger.

4.3 Position of the current vertex

Next, we describe how to obtain efficient descriptions of the vertices in the tree. When
performing recursions, we find it convenient to store information using which we can retrieve
the “current vertex” of the parent call. Therefore, we require small descriptions for such
vertices if the call did not make much “progress”.

For any v ∈ V (T ), define a sequence h(v, 1), h(v, 2), . . . of heavy descendants as follows.
Let h(v, 1) = v. Having defined h(v, i) for some i ≥ 1, if this is not a leaf, we let h(v, i + 1) be
the heavy child of h(v, i). Note that given the vertex h(v, i), we can find the vertex h(v, i + 1)
(or conclude it does not exist) in O(log n) space. We give a deterministic way of determining
a bit string pos(v, i) that represents h(v, i), where the size of the bit string will depend on
the “progress” made at the vertex h(v, i) that it represents. This “progress” is measured by
the size ti of the largest subtree T ′ of a non-heavy child of h(v, i), that is, T ′ is the largest
component of T − h(v, i) which does not contain h(v, j) for j ̸= i. We define pos(v, i) as
follows.

Let j be given such that ti ∈ [nv/22j

, nv/22j−1). Start pos(v, i) with j zeros, followed by
a 1.
There are at most 22j values of i for which ti ≥ 22j . We add a bit string of length 2j

to pos(v, i), e.g. the value x for which h(v, i) is the xth among h(v, 1), . . . , h(v, a) with
ti ∈ [nv/22j

, nv/22j−1).
Note that, given v, we can compute pos(v, i) from h(v, i) and h(v, i) from pos(v, i) using
O(log n) space. If we do a recursive call, it will be on a non-heavy child u of some h(v, i).
By definition, |V (Tu)| ≤ ti and pos(v, i) depends on ti in a way that we are able to keep it
in memory while doing the recursive call.
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We use the encoding (pos(v∗, i), j, ℓ) for the ℓth child u of h(v∗, i) whose subtree has a
size that falls in the jth bracket. We can also attach another such encoding, e.g.

((pos(v∗, i), j, ℓ), (pos(u, i′), j′, ℓ′)),

to keep track of u and the ℓ′th child v of h(u, i′) whose subtree has a size that falls in the
j′th bracket. We can retrieve v from the encoding above in O(log n) space and therefore can
retrieve it whenever we have such space available to us.

4.4 Description of the algorithm
During the algorithm, the work tape will always start with the following.

r: the recursion depth r written in unary. At the start, r = 0.
pos = pos0| · · · |posr: encodes vertices as described Section 4.3. At the start, this is
empty and points at the root v∗ of the tree on the input tape.
p = p0| . . . |pr: encodes colour restriction information for the vertices encoded by pos.
At the start, this is empty and no restrictions are given. We maintain throughout the
algorithm that pi gives us colour restrictions for the vertex v pointed at by posi. The
restriction can either be “no restrictions” or “avoid c′’; in the latter case pi contains a
tuple (j, p′

j) with p′
j the position of c′ in Lj(v′), where v′ is the parent of v.

aux = aux0| . . . |auxr: further auxiliary information for parent calls that may not be
overwritten.

We define a procedure process. While the value of r equals r, the bits allocated to
posi, pi, auxi for i < r will be seen as part of the read-only input-tape. In particular, the
algorithm will not make any changes to posi, pi or auxi for any i < r, but may change the
values for i = r.

We will only increase r when we do a recursive call. If during the run of the algorithm
r = r and a recursive call is placed, then we increase r to r + 1 and return to the start of
our instructions. However, since r has increased it will now see a “different input tape”.
When the call finished, we will decrease r back to r and wipe everything from the work space
except for r, posi, pi, auxi for i ≤ r, and the answer of the recursive call (0 or 1). We then
use auxi to reset our work space and continue our calculations.

We will ensure that r is always upper bounded by log n. Indeed, the vertex vr encoded
by posr will always be a non-heavy child of a descendant of the vertex encoded by posr−1.

While r = r, the algorithm is currently doing calculations to determine whether the
vertex v pointed at by posr−1 (v∗ for r = 0) has the property that Tv can be list coloured,
while respecting the colour restrictions encoded by pr−1 (none if r = 0). Recall that rather
than writing down v explicitly, we use a special encoding from which we can recompute v

whenever we have C log n space available on the work tape (for some universal constant C).
Similarly, pr−1 may give a position p′

j in Lj(v′) for some j < M (for v′ the parent of v), and
we may need to use our current work tape to recompute the corresponding position p′

M of
the colour in L(v′), so that we can access the colour from the input tape. This part will
make the whole analysis significantly more technical.

We define an algorithm which we call process as follows. A detailed outline is given in
the full version [3], whereas an informal description of the steps is given below.
0. Let v be the vertex pointed at by posr. We maintain that at most one colour c′ has been

encoded that v must avoid. Handle the case in which v is a leaf. If not, it has some heavy
child h. We go to 1, which will eventually lead us to one of the following (recall that
Gv = Tv − Th):
(rej) There is no list colouring of Gv avoiding c′ for v. We return false.
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(nc) The vertex v can get two colours (unequal to c′) in list colourings of Gv. In this
case, we say v is non-critical. We update posr to h, set pr to “none” and repeat from
0.

(cr) There is a unique colour c ̸= c′ that works. Then {c} ⊆ L0(v) ⊆ {c, c′} and so can
represent p0 = p0(c, v) with a single bit. We update posr to h, update pr to (0, p0)
and repeat from 0.

1. We check that all subtrees can be coloured if we do not have any colour restrictions
(necessary for the non-critical subroutine). This involves recursive calls on process where
we have no colour constraint on the root of the subtree.

2. We verify that L0(v) is non-empty. We iteratively try to compute pM from p0 = 1 via
p1, . . . , pM−1. Starting from p0 = 1 and j = 0, we compute pj+1 from pj as follows.

(i) Initialise currj = 1. This represents a position in Lj(v) (giving the number of
“successes”).
Initialise prevj = 1. This represents a position in Lj+1(v) (giving the number of
“tries”).

(ii) We check whether the prevjth colour of Lj+1(v) works for the trees in the jth
bracket. This involves a recursive call on process for each tree T ′ in the jth bracket,
putting (j + 1, prevj) as the colour constraint for the root of T ′. (The colour
restriction gives a position in Lj+1(v); we do not store the corresponding colour
and rather will recompute it in the recursive call!)

(iii) If one of those runs fails, we increase prevj ; if this is now > 22j+1 + 3, then this
implies a lower bound on |Lj+1(v)| which allows us to move to (nc).
If currj < pj we increase both currj and prevj .
Once currj = pj , we have succesfully computed pj+1 = prevj and continue to
compute pj+2 if j + 1 < M . Otherwise we repeat from (ii).

Once we have pM , we can access the corresponding colour from the input tape by looking
at the pM th colour of L(v). If pM > |L(v)|, we go to (rej).

3. We verified |L0(v)| ≥ 1. We establish whether |L0(v)| ≥ 3 in a similar manner. If so, we
can go to (nc); else we need to start considering the colour constraints of the parent v′ of
v. Note that we can use auxr to store auxiliaries such as α = |L0(v)| ∈ {1, 2}.
It remains to explain how we check whether the first or second colour from L0(v) satisfies
the colour constraint from v′. Suppose a colour c′ has been encoded via the position p′

j′

of c′ in Lj(v′) for some j′ ∈ [0, M ′] (where M ′ = Mv′).
We can recompute p′

M ′ from p′
j in a similar manner to the above. However, once we store

p′
M ′ , we may no longer be able to compute pM from p0 = 1 or p0 = 2, since p′

M ′ may
take too much space3. Therefore, we first recompute pj′ from p0 and then simultaneously
recompute pj′+1 from pj′ and p′

j′+1 from p′
j′ until we computed pM and p′

M ′ . We then
check whether the pM th colour of L(v) equals c′, the p′

M ′th colour of L(v′). (It may be
that M ̸= M ′, meaning that we may finish one before the other.)
The computation of p′

x+1 from p′
x for the parent v′ of v is a bit more complicated if v is

a non-heavy child of v′. In this case, v is in the (j′ − 1)th bracket of v′. The algorithm
calls again on itself for subtrees in the xth bracket of v′, but now we see a resulting call
to process as a same-depth call rather than a “recursive call”. The computations work
the same way, but we do not adjust r and will add the current state from before the call
in auxr.

3 This is one of the issues that made this write-up more technical and involved than one might expect
necessary at first sight; if we do a recursion on a child in the jth bracket of v or v′, then we are only
allowed to keep O(2j) bits on top of the space used by the recursion. This means we cannot simply
keep p′

M ′ in memory if j is much smaller than M ′.
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By an exhaustive case analysis, the algorithm computes the right answer. It remains to argue
that it terminates and runs in the correct space complexity.

We first further explain the same-depth calls on process. When we make such call, we do
not adjust r. When the call is made, posr will encode a vertex v1 which is a non-heavy child
of v′. After the call, posr will point to some other non-heavy child v2 of v′. Importantly,
the bracket of v2 will always be higher than the bracket of v1, so that at most M such
same-depth calls are made before changing our recursion level. Each same-depth call may
stack on a number of auxiliary counters which we keep track of using auxr; since for each j,
there is at most one vertex from the jth bracket which may append something to this, it
suffices to ensure a vertex from bracket j adds at most C2j bits. Indeed, this ensures that
the size of auxr takes at most C

∑j′

j=1 2j ≤ C2j′+1 = O(2j′) bits once posr encodes a vertex
from bracket j′.

We now argue that it terminates. Each time we do a same depth call, the value of
the bracket j will increase by at least one. We therefore may only do a finite number of
same-depth calls in a row. When r = 0, each time we reach (nc) or (cr), we move one
step on the heavy path from the root to a leaf, so this will eventually terminate. A similar
observation holds for r > 0 once we fix pos1| . . . |posr−1: this points to some vertex v and
posr will initially point to a non-heavy descendent u or v, and then “travel down the heavy
path” from u to a leaf.

We next consider the space used by the algorithm. Let S(n) be the largest amount of
bits used for storing r, pos, p and aux during a run of process on an n-vertex tree. We
can distribute our work space into two parts: C1 log n space for temporary counters and for
doing calculations such as computing the heavy child of a vertex, and S(n) bits for storing
r, pos, p and aux. It suffices to prove that S(n) ≤ C2 log n; this is the way we decided to
formalise keeping track of the “overhead” caused by recursive calls.

Note that r is bounded by log n if the input tree has n vertices: each time it increases,
we moved to a non-heavy child whose subtree consists of at most n/2 vertices.

Suppose we call process with pos pointing at some vertex v whose subtree has size nv.
We will show inductively that the number of bits used by pos, p and aux is in O(log nv)
throughout this call (note that nv may be much smaller than n, the number of vertices of
the tree on the input tape). Whenever we do a recursive call, this will be done on a tree
whose size is upper bounded by nv/22j−1 for some 1 ≤ j ≤ M = ⌈log log(nv/2)⌉. Since by
induction the recursive call requires only

S(n/22j−1
) = C2 log(n/22j−1

) ≤ S(n) − C22j−1

additional bits, we will allow ourselves to add at most C22j−1 bits to r, pos, p and aux before
we do a recursive call that divides the number of vertices by at least 22j−1 . The constant C2
will be relatively small (for example, 1000 works).

Fix a value of j. From the definitions in Section 4.2 and 4.3, at the point that we do a
recursion on a subtree whose size is upper bounded by nv/22j−1 , posr and pr store at most
three integers (they are of the form (pos(v′, i), j, ℓ) and (x, px) respectively) that are bounded
by 22j + 3. Therefore, these require at most C ′2j−1 bits for some constant C ′ (e.g. C ′ = 50
works).

The worst case comes from auxr which may get stacked up on by the “same-depth calls”.
There is at most one such same-depth call per x ∈ {1, . . . , j}. For such x, we add on a bounded
number of counters (e.g. currx and prevx) which can take at most 22x+1 + 3 ≤ 2 · 22x+1

values. Since C
∑j

x=1 2x ≤ 4C2j−1, auxr also never contains more than O(2j−1) bits while
doing a call on a tree whose size falls in bracket j.
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5 Graphs of bounded tree-partition-width

5.1 Proof of Corollary 2
Here we sketch the proof of Corollary 2. Let (T, (Xt)t∈V (T )) be a tree-partition of width k

for an N -vertex graph G, where it will be convenient to write n = |V (T )| ≤ N . We prove
that there is an algorithm running in O(k log k log n) space, for each k by induction on n.

We root T in the vertex of lowest index. We define the recursion depth, heavy children,
the brackets, M and “position” for the vertices in T exactly as we did in Section 4.

Suppose pos points at some vertex t ∈ V (T ). We aim to use O(k log k log(22j )) bits
for the information pj stored about the colouring c of the vertices in Xt while processing
subtrees in bracket j. This is done as follows. For t ∈ V (T ), let Gt,j be the graph induced
on the vertices that are either in Xt or in Xs for s a non-heavy child of t in bracket j or
above. For v ∈ Xt, we define Lj(v) to be the list of colours α ∈ L(v) such that there is a
list colouring of Gt,j that assigns the colour α to v. There are at most 22j subtrees of T

associated to brackets 1, . . . , j, and so these include at most k22j neighbours of v. Therefore,
if |Lj(v)| ≥ k(22j + 3), then G can be list coloured if and only if G − v can be list coloured
and we no longer need to keep track of the colour of v. We then establish v is non-critical.
We use k bits to write for each vertex of Xt whether or not it has been established to be
critical, and for those vertices that are critical, we use log(k(22j + 3)) bits per vertex to index
a colour from Lj(v).

We use k+log((3k)k) = O(k log k) bits of information in aux to keep track of the following.
For each v ∈ Xt, whether or not v has been established to be critical. After processing t,
the vertex v ∈ Xt will be critical if there are at most 3k colours in L(v) for which there
exists an extension to Gt. Let Ct ⊆ Xt denote the critical vertices.
For each p0 ∈

∏
v∈Ct

L0(v) (of which there are at most (3k)k), a single bit which indicates
whether or not the parent of t would allow the corresponding colouring.

While computing the information above, we still need the auxiliary information from the
parent of t, but we can discard this by the point we start processing the heavy child of t.

We make two more small remarks:
We need to redefine what we mean by “increasing” pj for some j, since we now work
with a tuple of list positions. We fix an arbitrary but deterministic way to do this, for
example in lexicographical order using the natural orders on the vertices and colours.
When we check whether the colouring c of Xt corresponding to p0 ∈

∏
v∈Ct

L0(v) is
allowed by the parent t′ of t, we run over p′

0 ∈
∏

v′∈Ct′ L0(v′), and as before we need to
compute pi, p′

i from pi−1, p′
i−1 iteratively until we obtain the colourings corresponding

to pM and p′
M . If those colourings are compatible, then we know that there is a list

colouring of the graph “above t” for which Xt is coloured “according to p0”, and so we
record in aux that p0 is allowed.

The calculations in the space analysis work in the exact same way: we simply multiply
everything by Ck log k (for a universal constant C).

5.2 W[1]-hardness
We give an easy reduction for the following result.

▶ Theorem 8. List Colouring parameterised by the width of a given tree-partition is
W[1]-hard.

Proof. We reduce from Multicoloured Clique.
Consider a Multicoloured Clique instance G = (V, E), V1, . . . , Vk with k ≥ 2 colours.

We denote by G = (V, E) the complement of G.
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We now describe the construction of our instance graph H. We first add vertices v1, . . . , vk,
with lists L(vi) = Vi for all i ∈ [k]. Then for each edge e = uv ∈ E we add a vertex xuv with
list L(xuv) = {u, v}. Furthermore, for α ∈ {u, v}, let i be such that α ∈ Vi. We add the edge
xuvvi.

The resulting graph has tree-partition-width at most k: we put v1, . . . , vk in the same
bag which is placed at the centre of a star, and create a separate leaf bag containing xuv for
each uv ∈ E.

▷ Claim 9. If there is a proper list colouring of H, then there is a multicoloured clique in G.

Proof. Suppose that H admits a list colouring. Let ai ∈ Vi = L(vi) be the colour assigned to
vi for all i ∈ [k]. We will prove a1, . . . , ak forms a multicoloured clique in G.

Consider distinct i, j ∈ [k] and suppose aiaj is not an edge of G, that is, aiaj ∈ E. Then
there exists a vertex xaiaj

adjacent to both vi and vj , but there is no way to properly colour
it, a contradiction. So we must have aiaj ∈ E as desired. ◁

▷ Claim 10. If there is a multicoloured clique in G, then there is a proper list colouring
of H.

Proof. We denote by a1, . . . , ak the vertices of the multicoloured clique, where ai ∈ Vi for
all i. We assign the colour ai to vertex vi. Consider now xuv for some uv ∈ E. Let i and
j be given so that xuv is adjacent to vi and vj . Then {u, v} ̸= {ai, aj} since aiaj ∈ E and
uv ∈ E. Therefore, we may assign either u or v (or both) as colour to xuv. ◁

Since Multicoloured Clique is W[1]-hard, this proves that List Colouring paramet-
erised by tree-partition-width is W[1]-hard. ◀

We remark that the above proof also shows that List Colouring parameterised by vertex
cover is W[1]-hard.

6 Conclusion

In this paper, we combined combinatorial insights and algorithmic tricks to give a space-
efficient colouring algorithm.

By combining Logspace Bodlaender’s theorem [14], Lemma 5 and Lemma 4, List Col-
ouring can be solved non-deterministically on graphs of pathwidth k in O(k log n) space
and on graphs of treewidth k in O(k log2 n) space.4 However, we already do not know the
answer to the following question.

▶ Problem 11. Can a non-deterministic Turing machine solve List Colouring for n-vertex
graphs of treewidth 2 using o(log2 n) space?

Another natural way to extend trees is by considering graphs of bounded treedepth. Such
graphs then also have bounded pathwidth (but the reverse may be false). It has been
observed for several problems such as 3-Colouring and Dominating Set that “dynamic
programming approaches” (common for pathwidth or treewidth) require space exponential
in the width parameter, whereas there is a “branching approach” with space polynomial in

4 First compute a tree decomposition (T, (Bt)t∈V (T )) of width k for G in O(log n) space [14], and then
compute a (not necessarily optimal) path decomposition of width O(log |V (T )|) in O(log n) space for
T , and turn this into a path decomposition for G of width O(k log n) by replacing t ∈ V (T ) with the
vertices in its bag Bt. Then use Lemma 4.
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treedepth [6]. A simple branching approach also allows List Colouring to be solved in
O(k log n) space on n-vertex graphs of treedepth k. We wonder if the approach in our paper
can be adapted to improve this further.

▶ Problem 12. Can List Colouring be solved in f(k)g(n) + O(log n) space on graphs of
treedepth k, with g(n) = o(log n) and f a computable function?

Another interesting direction is what the correct complexity class is for List Colouring
parameterised by tree partition width. We do not expect this to be in the W-hierarchy
because the required witness size seems to be too large. Moreover, the conjecture [23,
Conjecture 2.1] mentioned in the introduction together with Corollary 2 would imply that
the problem is not XNLP-hard.

Finally, it would be interesting to study other computational problems than List Col-
ouring. We remark that our results are highly unlikely to generalise to arbitrary Constraint
Satisfaction Problems. Recall that there is conjectured to be a k∗ ∈ N for which List Col-
ouring requires ω(log n) space for n-vertex graphs of treewidth k∗. Since List Colouring
on n-vertex graphs of treewidth at most k∗ can be reduced in logspace to a CSP on at most
n variables, each having a lists of size at most nk∗ , and binary constraints on the variables,
such CSP problems would then also require ω(log n) space since k∗ is a constant.
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