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—— Abstract

We investigate the relationship between various isomorphism invariants for finite groups. Specifically,
we use the Weisfeiler-Leman dimension (WL) to characterize, compare and quantify the effectiveness
and complexity of invariants for group isomorphism.

It turns out that a surprising number of invariants and characteristic subgroups that are classic
to group theory can be detected and identified by a low dimensional Weisfeiler-Leman algorithm.
These include the center, the inner automorphism group, the commutator subgroup and the derived
series, the abelian radical, the solvable radical, the Fitting group and w-radicals. A low dimensional
WL-algorithm additionally determines the isomorphism type of the socle as well as the factors in
the derives series and the upper and lower central series.

We also analyze the behavior of the WL-algorithm for group extensions and prove that a low
dimensional WL-algorithm determines the isomorphism types of the composition factors of a group.

Finally we develop a new tool to define a canonical maximal central decomposition for groups.
This allows us to show that the Weisfeiler-Leman dimension of a group is at most one larger than
the dimensions of its direct indecomposable factors. In other words the Weisfeiler-Leman dimension
increases by at most 1 when taking direct products.
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1 Introduction

Tasks of classifying finite groups up to isomorphism and generating particular classes of
finite groups are fundamental and recurring themes in computational group theory. Yet, in
particular the computational complexity of such problems remains most illusive to date.

For example, for most orders up to 20.000 the number of non-isomorphic finite groups has
been computed and the groups have been exhaustively generated [13]. But there are currently
38 notoriously difficult, exceptional cases, for which this information is beyond our current
means (see [13]). The varying difficulty across different orders is in part caused by the erratic
fluctuation of the number of isomorphism classes of finite groups as the order increases. This
number appears to be closely linked to the multiplicities of the prime factors of the respective
order, but even estimating the number of groups of a given order is non-trivial.
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Generation tasks for classes of groups have a long tradition dating back to Cayley [7].
Nowadays, there is extensive work on generating particular classes of groups. For example
there are practically efficient algorithms for the generation of finite nilpotent or finite solvable
groups [12]. However, the algorithms come without efficient running time guarantees.

One of the difficulties for a complexity analysis stems from the group isomorphism problem.
Indeed, the group isomorphism problem for finite groups stays among the few standard tasks
in computational group theory with uncertain complexity. In principle, we desire algorithms
with an efficient worst case running time measured in the number of generators through
which the groups are given. However, we do not even have algorithms with an efficient worst
case running time when measured in the order of the group. In fact the only improvement
for the worst case complexity over Tarjan’s classic n'°&(™+O0(M) algorithm are e log(n)+0(1)
algorithms with a small constant ¢ depending on the model of computation (randomization,
quantum computing etc.) [21, 23, 24]. There is however a nearly-linear time algorithm that
solves group isomorphism for most orders [11].

A closely related problem is that of computing isomorphism invariants to distinguish
groups. Efficiently computable complete invariants are sufficient for general isomorphism
testing. However, we do not know efficiently computable complete invariants even for very
special cases, such as nilpotent p-groups of class 2. Partial invariants only give incomplete
isomorphism tests, but they still find application in generation tasks allowing for heuristic
fast pruning [13]. Given the long history of (algorithmic) group theory, there is an abundance
of partial invariants.

Generally the techniques involved in generation and isomorphism computations exploit
the existence of various characteristic subgroups classic to group theory. As outlined in [13],
these include exploiting the Frattini subgroup ®(G) [3], the exponent-p-central series [22],
characteristic series [25] and similar.

Overall, many of the techniques currently in use are ad-hoc, focused on practical per-
formance, and do not lead to efficient worst case upper bounds for the complexity of the
algorithmic problems. As a consequence, the general picture for finite groups is somewhat
chaotic. There is often no structured way of comparing or combining invariants for group
isomorphism. E.g., two given invariants may be incomparable in their distinguishing power,
making it unclear which invariant to use. Also the required time to evaluate an invariant
may be difficult to estimate and can depend significantly on the input group. Even when
we are given a class of efficiently computable invariants, it will generally be unclear which
invariants to choose or how to efficiently combine their evaluation algorithmically.

In Summary, we lack the formal means to characterize, compare, or quantify the effective-
ness and complexity of invariants for group isomorphism. We therefore propose a systematic
study of computationally tractable invariants for finite groups.

For inspiration on how to systematize such a study, we turn to algorithmic finite model
theory and specifically descriptive complexity theory. This allows us to characterize the
complexity of an invariant by considering a formula within a logic that captures the invariant.
A natural choice for a logic from which to choose the formulas is the powerful fixed point logic
with counting. Not only can this logic express all polynomial time computable languages on
ordered structures [17, 26], but in the context of graphs it has also proven to be an effective
tool in comparing invariants (see [20]). As a measure for the complexity of an invariant we
can then use the number of variables required to express the invariant in fixed point logic with
counting. Crucially there is a corresponding algorithm, the k-dimensional Weisfeiler-Leman
algorithm (WL-refinement, WL), that (implicitly) simultaneously evaluates all invariants
that are expressible by formulas requiring at most k + 1 variables in polynomial time!.

L For groups there are actually two natural, closely related versions of the logic and of the algorithm,
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Thus, to enable a quantification and comparison of the complexity of invariants we suggest
the Weisfeiler-Leman algorithm. More specifically we suggest to use the Weisfeiler-Leman
dimension, which determines how many variables are required to express a given invariant
as a formula. This gives us a natural and robust framework for studying group invariants.
In fact, the k-dimensional Weisfeiler-Leman algorithm is universal for all invariants of the
corresponding dimension, resolving the issue of how to combine invariants. With this approach
we also include an abundance of invariants that have not been considered before. However,
it is a priori not clear at all that commonly used invariants can even be captured by the
framework, i.e., that they even have bounded WL-dimension.

Contribution. The first contribution of this paper is to show that a surprising number of
isomorphism invariants and subgroups that are classic to group theory can be detected and
identified by a low dimensional Weisfeiler-Leman algorithm.

Specifically, we show first that for a small value of k, groups not distinguished by k-WLy;
have centers (k > 2), inner automorphism groups (k > 4), derived series (k > 3), abelian
radicals (k > 3), solvable radicals (k > 2), Fitting groups (k > 3) and w-radicals (k > 3)
that are indistinguishable by k-WLj;. They also have isomorphic socles (k > 5), stepwise
isomorphic factors in the derives series (k > 4), upper central series (k > 4), and lower
central series (k > 4). Our techniques regarding characteristic subgroups are fairly general.
We thus expect them to be applicable to a large variety of other isomorphism invariants.
In particular they should facilitate the analysis of combinations of invariants one might be
interested in (such as the Fitting series or the hypercenter).

Beyond these characteristic subgroups, in our second contribution we show that composi-
tion factors are implicitly computed by a Weisfeiler-Leman algorithm of bounded dimension.

» Theorem 1.1. If k > 5 and G is indistinguishable from H via k-WlL1, then G and H have
the same (isomorphism types of) composition factors (with multiplicities).

The theorem shows that the WL-algorithm, which is a purely combinatorial algorithm,
can compute group theoretic invariants that do not even appear as a canonical subset of the
group. In particular, the composition factors cannot be localized within the group, and at
first sight it might not be clear that WL grasps quotient groups.

Our third contribution, having the most technical proof and building on our other results,
regards direct products of groups. Here we consider the decomposition of a group into direct
factors. We show that direct products indistinguishable by k-WL must arise from factors
that are indistinguishable by (k + 1)-WL.

» Theorem 1.2. Let G =Gy X -+ X Gg be a direct product and k > 5. If G and H are not
distinguished by k-WLy then there are direct factors H; < H such that H = H; X --- X Hy
and such that for all i the groups G; and H; are not distinguished by (k — 1)-WLyy.

In other words, the Weisfeiler-Leman dimension increases by at most 1 when taking direct
products. The main difficulty here is that decompositions into direct products are not unique,
and thus not definable. These complications arise mainly due to central elements. However
we manage to define a canonical maximal central decomposition, that is generally finer than
a decomposition into direct factors. We then show that this canonical decomposition is
implicitly computed by the WL-algorithm.

k-WLy and k-WLyj, see Section 3.
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One way of interpreting our results is that the Weisfeiler-Leman algorithm comprises a
unified way of computing all the mentioned invariants and characteristics simultaneously.
The dimension can therefore be used to compare the complexity of invariants.

Techniques. To show the various results on characteristic subgroups, we prove a general
result on group expressions. It essentially shows that subsets that can be defined by equation
systems can be detected by k-WL (see Lemma 4.3).

The result on composition factors involves a technique that relates k-WL distinguishability
of groups to detectable normal subgroups and detectable quotients (Theorem 4.8).

To deal with direct products, we extend the technique to simultaneously relate chains
of subgroups in two indistinguishable groups (Lemma 4.9). Here we exploit well-known
connections of pebble games to Weisfeiler-Leman algorithms. However, the main difficulty
regarding our result on decompositions into direct factors is that such decompositions are
not unique. In fact in general, a group element cannot be assigned to a direct factor
in a well defined sense, making it impossible for WL to detect direct factors. For this
purpose we develop a new technical tool, component-wise filtrations (Definition 6.8), which
compensate for the non-uniqueness to extract at least the isomorphism type of the direct
factors (Lemma 6.10). We also exploit the non-commuting graph of the group and show
that certain subsets, which we call non-abelian components, can be detected by k-WL
(Lemma 6.14). These non-abelian components lead to a WL-definable maximal central
decomposition of every finite group.

Outline. Section 2 provides preliminaries. Section 3 treats WL-refinement in the context
of colored groups. In Section 4, we show that invariants generated via WL-refinement
fulfill group theoretic closure properties. Section 5 is an extensive collection of specific
structure properties and invariants which Weisfeiler-Leman algorithms detect in finite groups.
Finally, in Section 6 we investigate the ability of WL-refinement to detect direct product
decompositions, building on the results of the previous sections. Throughout the paper
various lemmas have been condensed and proofs are omitted. Attached is a full version of
the paper (sections agree but the sections are expanded and numbers may disagree.).

Further related work. We should point out that there are various results in the literature
on decomposing groups into indecomposable direct factors for various input models of groups.
For example there is a polynomial time algorithm to decompose permutation groups into direct
products [28]. Finally, there is a recent algorithm that finds direct product decompositions of
permutation groups with factors having disjoint support [8]. There is also a polynomial time
algorithm that computes direct factors efficiently for groups given by multiplication table [19].
Aspects of this algorithm are related to arguments we use for studying the behavior of WL
on direct products (see the beginning of Section 6 for a discussion).

Regarding group isomorphism problems, for isomorphism of Abelian groups a linear
time algorithm is known [18] and there are near linear time algorithms for some classes
of non-abelian groups (e.g, [10]). Recent directions relate group isomorphism to tensor
problems [15]. The Weisfeiler-Leman algorithm has also been incorporated as a subroutine
within other sophisticated group isomorphism algorithms [6].

Regarding Weisfeiler-Leman algorithms, the literature is somewhat limited when it comes
to groups [4, 6] but quite extensive when it comes to graphs. In [2], for example the authors
investigate some graph invariants that are captured by the Weisfeiler-Leman algorithm. We
refer to [20] for an introduction and extensive overview over recent results for WL on graphs.
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2 Preliminaries

Sets & Partitions. We denote multisets as {{...}}. Given disjoint sets M and N, their
union is M & N. The m-th Cartesian power of M is M (™),

Graphs. We use V(T') and E(T) to refer to the vertices or edges of a graph I'. For a subset
S C V(T), let T'[S] denote the subgraph induced by the set S.

Groups. Groups are assumed to be finite. The symmetric group on m symbols is denoted
by Sp,. The order of a group element g € G is the order of the group generated by g, i.e.,
lg|l :==[{g)|. Given a finite set of primes 7, a w-group is a group whose order is only divisible
by primes in 7. A group element is called a w-element if it generates a m-group. For any
d € 7, set (G)?:= ({g%| g € G}) in contrast to the d-fold direct power G¢. Given g,h € G,
we define the commutator [g, h] := ghg~'h~!. Conjugation is denoted by g" := hgh~—1. If
M,N C G we set [M,N]:={[m,n] | m € M,n € N) and we write G’ := [G, G].

3 Colored Groups & Weisfeiler-Leman Algorithms

We recapitulate various notions regarding WL-algorithms on groups. For WL on graphs we
refer to [20]. For uncolored groups, versions of WL were defined in [4]. For our purpose, we
need to generalize the concepts to the setting of colored groups. Let us point out that in the
case of graphs, colors can be replaced by gadget constructions to obtain uncolored graphs
while maintaining the graph’s combinatorial properties. However, for groups it is unclear how
to do this. Nevertheless, we can still use colors to restrict the set of possible automorphisms.

3.1 Colorings on Finite Groups

Given a natural number k£ and a finite group G, a (k-)coloring (over G) is just a map
v : G®) — C where C denotes some finite set of colors. A k-coloring v partitions G*) into
color classes. We refer to 1-colorings as element-colorings.

The color set C is often omitted. Considering two natural numbers m < k, a k-
coloring v : G*) — C induces an m-coloring v™ : G(™) — C via 7™ ((g1,...,9m)) =
v((91,- -+ 9m>1,...,1)). To simplify notation, we may write v again instead of (™ and
instead of (") we use 7(%) to emphasize that the coloring is pulled back to group elements.

» Definition 3.1. A colored group is a group G together with an element-coloring v over G.
We say M C G is y-induced if y(M)Ny(G\M) = 0 holds, i.e., M is a union of y-color classes.
Colored groups (G,~va) and (H,~vg) are isomorphic if there is a group isomorphism ¢ : G — H
that respects colors, i.e., yg o ¢ = va. We set Aut,,(G) = {p € Aut(G) | v o v =va}-

3.2 Weisfeiler-Leman Refinement on Colored Groups

In [4], three versions of Weisfeiler-Leman algorithms on groups were defined. For us it is
sufficient to consider two of these versions. The relevant definitions and results are discussed
below. They are essentially taken from [4], but we added colorings.

For k > 2 we devise a Weisfeiler-Leman algorithm of dimension k (k-WL) that takes
as input a colored group (G,~) and computes an Aut, (G)-invariant coloring on G®) . The
algorithm computes an initial coloring from isomorphism invariant properties of k-tuples and
then iteratively refines color classes until the process stabilizes. The stable colorings arising
from k-WL provide (possibly incomplete) polynomial-time non-isomorphism tests.

27:5
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Version | (k-WL). The initial coloring XI{,I?) is defined via the group’s multiplication
relation while also taking into account element-colors. Two tuples g := (¢1,...,9x) and
h:= (h1,...,hi) obtain the same initial color if and only if for all indices %, j, and m between
1 and k it holds v(g;) = v(hs), 9i = gj <= h; = hj, and g;g; = gm <= hih; = hy,. The
subsequent refinements are defined iteratively via leli (9 = (XIWE (9), M(g)) Here, M(g)

is the multiset of k-tuples of colors given by M(g) := {{(xi’z (Grea)s---s xi’j(gkﬂ)) |z € G}},
where gj., is obtained by replacing the j-th entry of g by x.

Version Il (k-WLy). The initial coloring XEYI,’(;C is defined in terms of colored, ordered
isomorphism of tuples. Thus, g = (g1,...,9x) and h = (hy, ..., hy) obtain the same initial
color if and only if there exists an isomorphism of colored subgroups ¢ : () — (h) such that
©(gi) = h; for all i. The refinement step is unchanged from Version I.

For finite G there is a smallest ¢ such that X{/lz and xlvli 41 induce the same color class
partition on G(*). At this point color classes become stable and we obtain the stable coloring
1Lk . o Tk 1Lk .

- analogously. For uncolored groups write x4 and x5, respectively.
By definition, the initial colorings are invariant under isomorphisms that respect . This

Lk
X{;k = X,,;- Define x

property then holds for the iterated colorings as well. In particular, whenever (G, ~vg) and
(H,~) are isomorphic as colored groups, there is a bijection f : G — H®*) such that
X5E = x4E o f (and the same holds for Version II). So we obtain a non-isomorphism test by
comparing stable colorings computed by k-WL; or k-WLj; as follows.

» Definition 3.2. Let (G,v¢g) and (H,~vg) be colored groups. We say G is distinguished
from H by k-WLy if there is no bijection f : G*) — H®) with X%g = xi,’j o f. We say
k-WLy identifies G if it distinguishes G from all other (non-isomorphic) groups. We write
G =L H to indicate that G and H are not distinguished by k-WLy. Furthermore, for m < k,
tuples of group elements g € G and h € H™) are distinguished by k- WLy if they obtain
different colors in the respective induced m-colorings (xL*)™ and (xLE)™) . All definitions
also apply to Version I1 in the obvious way.

Lk Lk
G YH

The different versions of WL on groups are closely related: in particular, (k + 1)-WL;
subsumes k-WLj;. For the colored versions this is briefly discussed in Lemma 3.4 below.

Finally, we note that in [4], a run time bound of O(|G|**!log(|G])) is given for both
versions of k-WL to compute the stable coloring on G*). The same bound applies to colored
groups. In particular, the initial coloring of k-WLy; is efficiently computable, since we only
have to compute isomorphism types of k-generated subgroups relative to a fixed and ordered
generating set of size k.

3.3 Bijective k-Pebble Games

As with graphs and uncolored groups, WL-algorithms on colored groups can be characterized
via pebble games. For details we refer to the full version (contained in the appendix).

» Lemma 3.3 (see [4, Theorem 3.2]). Let J € {L,II} and k > 2. Consider colored
groups (G,vq) and (H,vg) with g € G® and h € H*. Then ch’“(g) = Xﬂf(h) if
and only if Spoiler has a winning strategy in the configuration [(g1,. .., gk, L), (h1,..., hg, L)]
in the (k + 1)-pebble game (Version J).

In [4] (see [5, Section 3]), relationships for the different versions of WL for uncolored
groups are discussed, for the convenience of the reader we sketch the corresponding statement
for colored groups here.
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» Lemma 3.4. Let (G,v¢q) and (H,vm) be colored groups.

1. Consider g € G, h € H™ and k > m. If g is distinguished from h by k-WLy then
G is distinguished from h by k-WLy. If g is distinguished from h by k-WLy then g is
distinguished from h by (k + 1)-WL;.

2. It holds that (G,v¢) =} (H,vu) = (G,7¢) =} (H,vu) = (G,¢) =}, (H,vr)-

Proof Sketch. Part 2) follows from Part 1). For Part 1), the first claim is true by definition.
For the second claim, using Lemma 3.4, we compare the (k + 1)-pebble game (ver. II) and
the (k 4+ 2)-pebble game (ver. I) with initial configurations given by placing pebble pairs on
(gi, h;) for all 4. In the version I game, Spoiler copies the winning strategy from the version II
game. By assumption, Spoiler eventually reaches a winning configuration in the version II
game, meaning that the pebble pairs in this eventual configuration induce a map that does
not extend to an isomorphism between the subgroups generated by the respectively pebbled
group elements. Then, for each bijection Duplicator may further choose, there must be a
witness of this fact, i.e., a word over the currently pebbled group elements in G that is not
mapped multiplicatively by Duplicator’s bijection. Spoiler can use the extra pebble to win
immediately or reduce the length of the witness. A very similar argument is spelled out in
the proof of [5, Lemma 3.10, Part 3)] in full detail. <

3.4 Induced Colorings & Refinements

We say that a coloring s : G**¥) — Cy refines a coloring 71 : G®) — C;, denoted 75 =< 7, if
each ~;-color class is a union of ~ys-color classes.

» Lemma 3.5. Let v1,72 be colorings on G such that (X}Y’f)(G) =< v =X 1. Then Xfﬂk and
ng induce the same color classes on G,

4 WL-Refinement on Quotient Groups

We investigate the interplay between WL and basic group structure, e.g., subgroups, normal
closures or quotients. We use subset selectors to compare substructures of different groups.

» Definition 4.1. A subset selector S associates with each colored group (G,v) a subset
S(G,v) € G. For each version J € {1,11}, a subset selector S is called k-WL j-detectable, if
XTE(S(Gve) IXZF(HN\S(H, v#)) = O holds for all pairs of colored groups (G,~a), (H, va).

When the dependency of S(G,vg) on (G,~¢g) is clear from the context, we also say that
S(G,vg) is k-WLj-detectable (instead of (G,v) — S(G,~) being detectable). Examples
of 2-WL j-detectable subset selectors include the association of every group with its center

(J = 1I) or the subset selector associating with each group the subset of elements of order 2.

We should remark that in our sense detectable means that the subset of interest is a union
of X%“—color classes, but we make no statement on how to algorithmically determine which

color classes form the set. It might a priori not be clear that the subset is even computable.

If S is k-WL-detectable then S(G,v¢) is xJF-induced, hence Aut,, (G)-invariant. If S
and T are k-WL j-detectable, so are their union (intersection) in G and G\ S(G,va)-

» Definition 4.2. A group expression & := (Sy,...,S; R) of length t is a sequence of subset
selectors S; together with a set R of words w(xy,...,x) over t variables x1,...,x¢, allowing
inverses. Let (G,7) be a colored group, then a t-tuple (g1, ...,q;) € G is a solution to £ if
for each i it holds that g; € S;(G,~) and for each w € R it holds that w(gy,...,g9:) = 1. Let
Solg(G,~) € G denote the set of all solutions to & over (G,7).

27:7
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» Lemma 4.3. Consider a group expression £ := (S1,...,St;R). Let k >t and assume that

each S; is k-WLii-detectable.

1. Let (G,vg) and (H,vm) be colored groups. Then all t-tuples in Solg(G,~vg) can be
distinguished from all t-tuples in H" \ Solg (H, vy ) via k-WLy.

2. For 1< j <t and colored groups (G,7) define

SOZ?(G,’}/) ={z € G|3(x1,...,x¢) € Sole(G,7) : z; =z}
Soly(G, v):i={x € G| (Vz; € Si(G,V))1<i<t : (T1,-..,Tj—1,2,Tjq1,...,2) € Solg(G,v)}.

Then Solf— and Sol}’ are k-WLi-detectable subset selectors for all j.
The same holds for k-WLy, provided k > t.

We can now argue that WL is powerful enough to incorporate various basic group theoretic
concepts. This in particular includes generated subgroups, normal closures, powers, conjugacy
classes, centralizers, and normalizers. All these statements are relative to inductively detected
structures, so the processes can be iterated. Let us record this in the following lemma.

» Lemma 4.4. Consider k-WLyi-detectable subset selectors S, T. Then the following subset
selectors are k- WLir-detectable:
1. 8¢ for each e € Z, where S¢(G,v) :== {s¢| s € S(G,7)},
2. Cs(T), where Cs(T)(G,7) :=={s € S(G,7) | [s, T(G,7)] = {1}}.
Provided k is at least 3, k- WLy further detects the following subset selectors:
3. {s1...8¢ | 8: € S(G,7)} for each e € N, in particular also (S(G,~)),
4. {st:=tst™' | s € S(G,7),t € T(G,7)}, hence the normal closure (S(G, 7)),
5. Ns(T), where Ns(T)(G,v) :={s € S(G,7) |
T(G, ) =T(G M},
6. [S,T], where [S,TI(G,7) := {[s,t] | s€S(G,7),teT(G,~)).
All statements remain true if we replace Version I1 by Version 1 everywhere (including the
assumptions), provided k > 2 in Parts 1 and 2 and k > 3 in Parts 3—6.

We point out how to identify groups as direct products of detectable subgroups.

» Example 4.5. Let G =1 H and assume that G = G; x Go with Xg’?’—induced subgroups
G;. We use element-colors in G; to define a detectable subset selector K — K; := {z €
K | X%’k(x) € xg’k(Gi)}. Since G =I! H, also H; =L G;. By the previous lemma, 3-WLy
detects [G1, G2] and G1 N G2, which are both trivial, as well as (G1, G2), which is equal to
G. By definition of detectability, the same must hold for H; and Hs, thus H = H; X Hs.

In Section 6 we discuss the (much harder) case of arbitrary direct decompositions, without
the assumption that each direct factor is detectable as a subgroup.

Next, we prove that WL is capable of exploiting properties of quotients over detectable
subgroups. Later, this can be inductively leveraged along chains of subgroups.

» Definition 4.6. Given a coloring v : G — C and a normal subgroup N < G define the
induced quotient coloring ¥ on G/N wia ¥(gN) := {{y(gn) | n € N}}.

» Lemma 4.7. Let k > 4 and consider colored groups (G,v¢g) and (H,~vm). Assume that there
are normal subgroups Ng < G and Ny < H which are induced by vo and vy, respectively,
such that v6¢(Ng) = vya(Ng). Then

X (91NG, - gk NG) 7 Xom (MNp, - heNa) = X5E (g1, g) 7 X58 (- )

for all choices of g; € G and h; € H.
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Proof sketch. The idea is to simulate the pebble game on quotient groups in the pebble
game on G and H. Spoiler can first win modulo Ng and Ny, respectively, and then use a
constant number of pebbles to manipulate the configuration into one that fulfills the winning
condition over the original groups. For details, we refer to the full version. |

We synthesize the previous results into our first main theorem, stating that whenever
G E}C H holds, there is a color preserving correspondence between detectable substructures.

» Theorem 4.8. Let k be at least 4.

1. Consider subset selectors N,U and U/N such that for all (G,~) it holds that N(G,~v) < G,
N(G,v) < U(G,v) and U/N(G/N(G),5) = U(G)/N(G). If N and U/N are k-WL;-
detectable then so is U.

2. Consider colored groups (G,va) =k (H,ym). Let ¥ : G — H be a bijection with
(ARG oW = (R - Then M C G is x5E-induced if and only if W(M) C H s
X}H’j -induced. In this case it holds that W((M)) = (¥ (M)). In particular, if M is a
subgroup then so is W(M) and it holds (M, va|an) =), (¥(M), vi|w (). Additionally, M
is normal if and only if W(M) is and then it also holds that (G/M,~g) =k, (H/Y(M),vm).

Finally let us point out that detectable substructures can be used to limit Duplicator-

strategies. This technique will be needed towards the main result of Section 6. More precisely,

we show that Spoiler can “trade off” one pebble pair to enforce that Duplicator’s bijections
are simultaneously compatible with detectable substructures in the following sense.

» Lemma 4.9. Let k > 3 and J € {I,11}. Consider groups G and H with G ={ H, so
Duplicator has a winning strategy in the (k + 1)-pebble game (Version J). Assume Xék and
Xﬁk induce chains of subgroups Gy < --- < G1 < G and Hy < --- < H; < H, respectively,
such that Xék(Gl) = Xijk(Hi) for all i. Then Duplicator has a winning strategy in the k-
pebble game (Version J) on (G, H) such that each bijection f : G — H chosen by Duplicator’s
strategy fulfills the following condition: Yax € G Vi : f(xG;) = f(x)H;.

The proof actually works in a context more general than groups, replacing subgroup
chains by nested equipartitions. This generalization might find applications in different
contexts.

5 WL-dimension of certain isomorphism invariants

We just briefly summarize our results in what follows. A detailed treatment can be found in
the full version, for group theoretic foundations see for example [16].

» Lemma 5.1. For k > 2, k-WLy identifies all finite k-generated groups and all finite
abelian groups.

5.1 Derived & Central Series

» Lemma 5.2.

1. For k>3, G' :==[G,G)] is k-WLy-detectable.

2. Assume that k > 4 and G =L H hold. Let Gog > Gy > --- > G, denote the derived, upper
central or lower central series of G (without redundancies, starting at Gy := G). Define

the corresponding series of H via Hy > --- > Hg. Then s =t holds and for all i we have
that G; =L H;, as well as G;/Giy1 = H;/H;11.
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The requirement k > 3 is necessary in the first statement as computations on
SmallGroup(128,171) and SmallGroup(128,1122) from the Small Groups Library in GAP [14]
show.

» Corollary 5.3. For k > 4, k-WLy distinguishes solvable from mon-solvable groups and
k-WLy distinguishes between groups of different nilpotency classes.

5.2 Radicals

Let F be a class of finite groups that is closed under isomorphism and normal products.
Then the F-radical Ox(G) of G is defined as the largest normal F-subgroup in G.

» Lemma 5.4. Let k > 3. If F is closed under normal subgroups and (k — 1)-WLy;
distinguishes F-groups from all non-F-groups, then k-WLy detects Ox(G) in G.

» Lemma 5.5. The solvable radical is 2- WLii-detectable. The nilpotent radical Fit(G) and
all w-radicals O (G) (m a collection of primes) are 3-WLyr-detectable.

» Lemma 5.6. If G contains a unique mazimal abelian normal subgroup, then it is 3-Wiy-
detectable.

5.3 Simple Groups & Composition Factors
Recall that finite (almost) simple groups can be generated with 2 (respectively 3) elements [9].

» Lemma 5.7. 2-WLy; identifies finite simple groups. 3-WLyy identifies finite almost simple
groups and finite direct products of simple groups.

In the case of simple groups there is a stronger result, stating that simple groups are
uniquely identified among all groups up to isomorphism by their order and the orders of
their elements [27].

» Theorem 5.8. The socle of a finite group G is 4-WLyi-detectable. Let k > 5 and G =}, H,
then G and H have the same composition factors (with multiplicities).

6 WL-Refinement and Direct Products

In this final section we study the detectability of direct product structures in finite groups.
The section is organized similar to [19], in the sense that we first consider direct products
where one factor is an abelian group (the semi-abelian case) and reduce to these in the
general case later on. A crucial difference between our setting and the one in [19] is that in
the latter, computations can be executed as long as they are efficient, where in our case, we
are analyzing a fixed algorithm that cannot make non-canonical choices.

» Definition 6.1. A group G is the (internal) central product of subgroups G1,G2 < G, if it
holds that G = (G1,G2) and [G1,Gs] = {1}.

Our main difficulty is that a group can admit several inherently different central decom-
positions. In contrast to that recall that indecomposable direct decompositions are unique in
the following sense.

» Lemma 6.2. Let G=G; X -+ X Gy, = Hy X --- x Hy be two decompositions of G into

directly indecomposable factors. Then n = m and there is a permutation o € Sy, such that
for all i we have G; = H, @y and G;Z(G) = H, ) Z(G).
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Proof. The first part is the well-known Krull-Remak-Schmidt Theorem and the addition
that G;Z(G) = H,(;yZ(G) can be easily derived (see for example [19, Corollary 6]) <

In particular, the collection of subgroups {G;Z(G)}1<i<m is invariant under automorph-
isms as a whole. Later we show that |J;~; G;Z(G) is 5-WLi-detectable.

» Lemma 6.3. If J € {L1I}, k > 3, Gy =] Hy and G2 ={ Hs, then G1 x Go =] Hy x Hs.

The opposite direction is investigated below and turns out to be highly non-trivial.

6.1 Abelian and Semi-Abelian Case
Direct products with abelian groups serve as a basis for reduction later on.

» Definition 6.4. An element x € G splits from G if there is a complement H < G of x in
G, ie,G=(z)x H.

A detailed treatment of splitting elements can be found in the full version.
» Corollary 6.5. The set of elements splitting from a finite group is 4- WLi-detectable.
The splitting of elements can reveal information about direct decompositions of a group.

» Lemma 6.6. Consider a direct product G = G1 X G and a p-element z := (z1,22) € Z(G).
Then z splits from G if and only if z; splits from G; for some i € {1,2} which fulfills |z;| = |z|.

This can be inductively leveraged to handle the semi-abelian case, by which we mean
groups of the form H x A where A is abelian and H does not have abelian direct factors.

» Lemma 6.7. Let G = H x A with A a maximal abelian direct factor. The isomorphism
type of A is identified by 4-WLy, i.e., if G =} G then G has a mazximal abelian direct factor
isomorphic to A.

Controlling the non-abelian part is more complicated and led us to introduce a new technical
framework.

» Definition 6.8. Let G = L x R. A component-wise filtration of U < G w.r.t. L and
R is a chain of subgroups {1} = Uy < -+ < U, = U such that for all 1 < i < r, we
have U1 < U;(L x {1}) or Uiy1 < U;({1} x R). The filtration is k- WLi-detectable if all
subgroups in the chain are.

» Lemma 6.9. Let G = H x A with maximal abelian direct factor A. There exists a
component-wise filtration of Z(G) with respect to H and A that is 4-WLi-detectable.

» Lemma 6.10. Consider G := H x A and G = H x A where A and A are mazimal abelian
direct factors. Then, for k > 5, G =L G implies H =% | H.

6.2 General Case

The general case is reduced to the semi-abelian case. Consider an indecomposable direct
decomposition G = Gy X - - - x Gq. We first show that | J; G;Z(G) can be detected by WL and
then we exploit the fact that the non-commuting graph induces components on | J, G;Z(G)
which correspond to the groups G;Z(G).

» Definition 6.11. Given a group G, we define the non-commuting graph I'¢ with vertex
set G, in which two elements g,h € G are joined by an edge if and only if [g,h] # 1.

27:11
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» Lemma 6.12 ([1], Prop. 2.1). If G is non-abelian then T'¢[G \ Z(G)] is connected.

We now approximate | J; G;Z(G) from below by constructing a canonical central decom-
position of G which is WL-detectable.

» Definition 6.13. Consider a finite, non-abelian group G. Define M1 C G to be the set of
non-central elements g whose centralizers Cg(g) have mazximal order among all non-central
elements. Iteratively define M;y1 by adding those elements g to M; that have maximal
centralizer order |Ca(g)| among the remaining elements G \ (M;). Set M := My to be the
stable set resulting from this process. Consider the subgraph of I'c induced on M and let
K ..., K, beits connected components. Set N; := (K;). We call Ny, ..., Ny, the non-abelian
components of G.

» Lemma 6.14. In the notation of the previous definition, the following hold:

1. M is detectable in G by 3-WlLyy.

2. G = Ny Ny, is a central decomposition of G. For all i, Z(G) < N; and N; is non-
abelian. In particular M generates G.

3. If G=G1 x -+ x Ggq is an arbitrary direct decomposition, then for each 1 < i < m there
is exactly one 1 < j < d with N; C G;Z(G). Collect all such i for one fized j in an index
set I;. Then the product over all N; for i € I; is equal to G; Z(G).

» Definition 6.15. Let G = Ny --- N, be the decomposition into non-abelian components
and let G = Gy X --- X Gq be an arbitrary direct decomposition. We say r € G is full
for (Gj,,...,G;.), if {1 <i<m|[z,N;] #1} = I, U---UI; . For all z € G define
Cw = H[m,Ni]:{l}Ni and ]\fz = H[m,Ni];é{l}Ni'

Overall, when grouped adequately, the full elements with maximal centralizers generate the
direct factors modulo central elements (see full version).

» Lemma 6.16. Let G = Ny --- N, be the decomposition into non-abelian components and
G =Gy x -+ x Gy a decomposition into indecomposable direct factors. For k > 5, k-WLyy
detects the set of elements that are full for only one G; as well as the pairs of elements that
are full for the same collection of direct factors.

» Corollary 6.17. If G = G1 x --- X G4 is a decomposition into indecomposable direct factors
then \J, G Z(G) is detected in G by 5-WLy.

» Theorem 6.18. Let G = G X --- X G4 be a decomposition into indecomposable direct
factors and k > 5. If G =} H then there are indecomposable direct factors H; < H such that
H=H; x---x Hy and G; E}J_l H; for alli. Moreover G and H have isomorphic mazimal
abelian direct factors and G;Z(G) =1 H;Z(H).

Proof. Since F¢ :=J; GiZ(G) is 5-WLyi-detectable, the group H must be decomposable
into indecomposable direct factors H = x;H; such that Fy = J; H;Z(H) C H is indistin-
guishable from Fg. Consider the non-commuting graphs of G and H induced on these sets
and recall that non-commuting graphs of non-abelian groups are connected (Lemma 6.12).
Since different direct factors in a fixed decomposition centralize each other, we obtain that
for each non-singleton connected component K of I'¢[F¢g] there exists a unique indecom-
posable direct factor G; such that K = G;Z(G) \ Z(G) and thus (K) = G;Z(G). Again by
Lemma 6.12, all non-abelian direct factors appear in this way.

The same holds for H and so if G is not distinguishable from H, there must be a bijection
between the components of I'¢[F¢] and I'y[Fg], such that the subgroups generated by
corresponding components are indistinguishable via 5-WLy;. This defines a correspond-
ence G;Z(G) =l H;Z(H) after reordering the factors of H in an appropriate way. From
Lemma 6.10 it follows that G; =l | H;. By Lemma 6.9, G and H must have isomorphic
maximal abelian direct factors, so for abelian factors we even have G; =& H;,. <
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7 Conclusion

We studied the Weisfeiler-Leman dimension of numerous isomorphism invariants of groups,
showing that a low dimensional WL-algorithm in fact captures a plethora of isomorphism
invariants, characteristic subgroups, and group properties classic to algorithmic group theory.
Particularly tricky was the treatment of direct indecomposable factors, for which we had
to circumvent the fact that the they do not correspond to canonical substructures of the
groups. Our techniques lead us to a canonical maximal central decomposition.

The observation that many efficiently computable isomorphism invariants are captured
by a low dimensional WL-algorithm raises the question whether there are actually invariants
that are not captured at all. Here we should emphasize that it is an open problem whether
some fixed dimension of WL represents a complete invariant. The question is equivalent to
the well-known open question whether the Weisfeiler-Leman dimension of groups is bounded
in general (stated explicitly in [4]).

For this open question, our results show that it suffices to consider directly indecomposable
groups. We wonder whether there are other, similar reductions to confine the search for
groups of high WL-dimension.
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