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——— Abstract

Subtrajectory clustering is an important variant of the trajectory clustering problem, where the start
and endpoints of trajectory patterns within the collected trajectory data are not known in advance.
We study this problem in the form of a set cover problem for a given polygonal curve: find the
smallest number k of representative curves such that any point on the input curve is contained in a
subcurve that has Fréchet distance at most a given A to a representative curve. We focus on the case
where the representative curves are line segments and approach this NP-hard problem with classical
techniques from the area of geometric set cover: we use a variant of the multiplicative weights update
method which was first suggested by Bronniman and Goodrich for set cover instances with small
VC-dimension. We obtain a bicriteria-approximation algorithm that computes a set of O(klog(k))
line segments that cover a given polygonal curve of n vertices under Fréchet distance at most O(A).
We show that the algorithm runs in 5(k2n + kn®) time in expectation and uses 5(kn +n?) space.
For input curves that are c-packed and lie in the plane, we bound the expected running time by
6(k2c2n) and the space by 6(kn +¢?n). In addition, we present a variant of the algorithm that
uses implicit weight updates on the candidate set and thereby achieves near-linear running time in
n without any assumptions on the input curve, while keeping the same approximation bounds. This
comes at the expense of a small (polylogarithmic) dependency on the relative arclength.
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1 Introduction

The advancement of tracking technology made it possible to record the movement of single
entities at a large scale in various application areas ranging from vehicle navigation over
sports analytics to the socio-ecological study of animal and human behaviour. The types
of trajectories that are analyzed range from GPS-trajectories [25] to full-body-motion
trajectories [22] and complex gestures [24], and even include the positions of the focus
point of attention from a human eye [15, 21].

In many such applications, a flood of data presents us with the challenging task of
extracting useful information. If a long trajectory is given as a sequence of positions in
some parameter space, it is rarely known in advance which specific movement patterns
occur. In particular, it is challenging to find the start and endpoints of such patterns, which
is why popular clustering algorithms heuristically partition the trajectories into smaller
subtrajectories. An example is the popular algorithm by Lee, Han and Whang [23].
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Since the criteria according to which one should detect, group and represent behaviour
patterns vary greatly among different kinds of application, there are many different variants
of the subtrajectory clustering problem, see also the survey papers [12, 26, 27]. One line of
research uses the well-established Fréchet distance to define similarity between subcurves,
for example the works of Agarwal et al. [1], Buchin et al. [11] and Akitaya et al. [2].

In an attempt to unify previous definitions of the underlying algorithmic problem, Akitaya
et al. [2] define the following geometric set cover problem. Given a polygonal curve, the goal
is to “cover” the whole curve with a minimum number of simpler representative curves, such
that each point of the trajectory is contained in a subcurve with small Fréchet distance to its
closest representative curve. This is in line with traditional clustering formulations such as
metric k-center, where clusters may overlap. In this paper, we study the set cover problem
introduced by Akitaya et al. and improve upon their results.

Preliminaries. For any n > 1, a sequence of points py,...,p, € R? defines a polygonal
curve P by linearly interpolating consecutive points, that is, for each i, we obtain the edge
e 1 [0,1] = R%t s (1 —t)p; + tpir1. We may write e; = p; piy1 for edges. We may think
of P as a continuous function P : [0,1] — R by fixing n values 0 = t; < ... < t,, = 1,
and defining P(t) = ¢; ( =ty ) for t; <t < t;y1. We call the set (¢1,...,t,) the vertex

tip1—t;

parameters of the parametrized curve P : [0,1] — R9. For n = 1, we may slightly abuse
notation to view a point p; in R? as a polygonal curve defined by an edge of length zero
with po = p;. We call the number of vertices n the complexity of the curve. For any two
a,b € [0, 1] we denote with Pla, b] the subcurve of P that starts at P(a) and ends at P(b).
Note, that a > b is specifically allowed and results in a subcurve in reverse direction. We call
the subcurves of edges subedges. Let X¢ = (R9)¢, and think of the elements of this set as
the set of all polygonal curves of £ vertices in R%.
For two parametrized curves P and @), we define their Fréchet distance as

dp(P,Q) = inf sup [[P(a(t)) — Q(BM®))I,

,8:(0,1]=10,1] te[0,1]

where « and ( range over all functions that are non-decreasing, surjective and continuous. We
call the pair (a, ) a traversal. Every traversal has a distance sup,¢(o 17 [|P(a(t)) — Q(B(2))||
associated to it.

We call a curve X in R? c-packed, if for any point p and and radius r, the length of
X inside the disk is bounded by ||X Nb,.(p)|| < er, where b,.(p) = {z € R? | ||p — 2| < r}.
Let X be a set. We call a set R where any r € R is of the form r» C X a set system with
ground set X.

We say a subset A C X is shattered by R if for any A’ C A there exists an 7 € R such
that A’ =r N A. The VC-dimension of R is the maximal size of a set A that is shattered
by R. For a weight function w on the ground set X and a real value € > 0, we say that a
subset C' C X is an e-net if every set of R of weight at least ¢ - w(X) contains at least one
element of C'. For any A C X, we write w(A) short for ) _, w(a).

Computational Model. We describe our algorithms in the real-RAM model of computation,
which allows to store real numbers and to perform simple operations in constant time on
them. We call the following operations simple operations. The arithmetic operations
+,—, %, /. The comparison operations =, #, >, >, < <, for real numbers with output 0 or
1. In addition to the simple operations, we allow the square-root operation. In the full
version [7], we describe how to circumvent the square-root operation with little extra cost.
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Figure 1 Illustration of the A-coverage of a set C = {Q1,Q2} and a curve P. Here we have
VA (P,C) = [s1,51]U[s2, s5]U][s3, s4], since the subcurves P[s1, s1] and P|[ss, s3] have Fréchet distance

A to Q1, the subcurves P|[s2, s5] and P[s4, s}] have Fréchet distance A to Q2 and each other subcurve
of P that has Fréchet distance at most A to Q1 or Q2 is a subcurve of P[s;, s} for some 1 < i < 4.

Problem definition. We study the same problem as Akitaya, Chambers, Briining and
Driemel [2]. Let P : [0,1] — R? be a polygonal curve of n vertices and let ¢ € N and A € R
be fixed parameters. Define the A-coverage of a set of center curves C' C Xg as follows:

va(PC)=) | {seltt]dr(P[tt].q) <A}

geC 0<t<t'<1

The A-coverage corresponds to the part of the curve P that is covered by the set of all
subtrajectories that are within Fréchet distance A to some curve in C. If for some P,C, A it
holds that WA (P,C) = [0, 1], then we call C' a A-covering of P. The problem is to find a
A-covering C' C Xg of P of minimum size. We study bicriterial approximation algorithms for
this problem, which we formalize as follows.

» Definition 1 ((«, 3)-approximate solution). Let P € X¢ be a polygonal curve, A € R, and
LeN. AsetCC X‘Z is an («, B)-approzimate solution to the A-coverage problem on P, if
C is an aA-covering of P and there exists no A-covering C' C X% of P with B|C’| < |C|.

Related work. Buchin, Buchin, Gudmundsson, Loffler and Luo were the first to consider
the problem of clustering subtrajectories under the Fréchet distance [10]. They consider the
problem of finding a single cluster of subtrajectories with certain qualities, like the number
of distinct subtrajectories, or the length of the longest subtrajectory assigned to it. In their
paper, they suggested a sweepline approach in the parameter space of the curves and obtain
constant-factor approximation algorithms for finding the largest cluster. They also show
NP-completeness of the corresponding decision problems. This hardness result extends to
(2 — e)-approximate algorithms. For their 2-approximation algorithm, Buchin et al. [10]
develop an algorithm that finds a legible cluster center among the subcurves of the input
curve. Gudmundsson and Wong [19] present a cubic conditional lower bound for this problem
and show that it is tight up to a factor of O(n°")), where n is the number of vertices.

The algorithmic ideas presented in [10] were implemented and extended by Gudmundsson
and Valladares [18] who obtained practical speed ups using GPUs. In a series of papers, these

ideas were also applied to the problem of reconstructing road maps from GPS data [8, 9].

In a similar vain, Buchin, Kilgus and Kolzsch [11] studied the trajectories of migrating
animals and defined so-called group diagrams which are meant to represent the underlying
migration patterns in the form of a graph. In their algorithm, to build the group diagram,
they repeatedly find the largest cluster and remove it from the data, inspired by the classical
greedy set cover algorithm.
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The above cited works however do not offer theoretical guarantees when used for
computing a clustering of subtrajectories, nor do they explicitly formulate a clustering
objective. Agarwal, Fox, Munagala, Nath, Pan, and Taylor [1] define an objective function for
clustering subtrajectories based on the metric facility location problem, which consists of a
weighted sum over different quality measures such as the number of centers and the distances
between cluster centers and their assigned trajectories. While they show NP-hardness for
determining whether an input curve can be covered with respect to the Fréchet distance,
they also present a O(log2 n)-approximation algorithm for clustering x-packed curves (for
some constant k) under the discrete Fréchet distance, where n denotes the total complexity
of the input. The overall running time of their algorithm is roughly quadratic in n, cubic in
% and depends logarithmically on the spread of the vertex coordinates.

In our paper, we focus on the clustering formulation previously studied by Akitaya,
Chambers, Briining, and Driemel [2]. They present a pseudo-polynomial algorithm that
computes a bi-criterial approximation in the sense of Definition 1 with expected running
time in O(k(2X)? + An), where A denotes the total arclength of the input trajectory. The
algorithm finds an (a, 3)-approximate solution with a € O(1) and 8 € O(¢*1og(kf)). In
combination with our Lemma 2, below, this can be directly improved to O(¢log(k)). It
should be noted that in this problem formulation some complexity constraint on the eligible
cluster centers is needed to prevent the entire input curve being a cluster center in a trivial
clustering.

Our contribution. Our main result is an algorithm that computes an («, 8)-approximate
solution with a € O(1) and 8 = O(¢log k), where k is the size of an optimal solution. For
general curves, the algorithm runs in O(k2n + kn?) time in expectation and uses O(kn + n?)
space. (The 6() notation hides polylogarithmic factors in n to simplify the exposition.) If
the input curve is a c-packed polygonal curve in the plane, the expected running time can be
bounded by O(k2c2n) and the space is in O(kn + ¢?n). In higher dimensions, the bound for
c-packed curves becomes quadratic in n. Our second result is an algorithm that achieves
near-linear running time in n — even for general polygonal curves — while keeping the same
approximation bounds at the expense of a small dependency on the arclength in the running
time. The algorithm needs in expectation O(nk? log4(ﬁ)) time and O(nk log(<%)) space,
where ) is the total arclength of the input curve. Here, we stated our results for general ¢
using the reduction described below (Lemma 2).

In our algorithms we use a variant of the multiplicative weights update method [5], which
has been used earlier for set cover problems with small VC-dimension [6, 13]. The difficulty
in our case is that the set system initially has high VC-dimension, as shown by Akitaya et
al [2] — namely ©(logn) in the worst case. We circumvent this by defining an intermediate
set cover problem where the VC-dimension is significantly reduced. We then show how to
compute a finite set system using a carefully chosen set of candidate curves on which the
multiplicative weight update method can be applied. A key idea that enables our results is
a curve simplification that requires the curve to be locally maximally simplified, a notion
that is borrowed from de Berg, Cook, and Gudmundsson [14]. To the best of our knowledge,
our candidate generation yields the first strongly polynomial algorithm for approximate
subtrajectory clustering under the continuous Fréchet distance. In the full version [7], we
also discuss how our candidate set can be used for the related problem of maximizing the
coverage. Our second algorithm improves the dependency on the relative arclength from
quadratic to polylogarithmic as compared to [2].
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Reduction to line segments. In the remainder of the paper, we will focus on finding a
A-covering with line segments, that is £ = 2. The following lemma provides the reduction for
general £ at the expense of an increased approximation factor.

» Lemma 2. Let P € X¢ be a polygonal curve, A € Ry and £ € N. Let C C X¢ be a
A-covering of P of minimum cardinality. There exists a set of line segments C' C X4 that is
a A-covering of P with |C'] < (£ —1)|C|.

Proof. Choose as set C’ the union of the set of edges of the polygonal curves of C. Clearly,
this set has the claimed cardinality and is a A-covering of P. |

Roadmap. In Section 2 we develop a structured variant of our problem that allows us to
apply the multiplicative weight update method in the style of Bronniman and Goodrich [6]
in an efficient way. Our intermediate goal is to obtain a structured set of candidates for a
modified coverage problem that is on the one hand easy to compute and on the other hand
sufficient to obtain good approximation bounds for the original problem. We first define our
notion of curve simplification. A crucial property of this simplification is that the relevant
subcurves of the input are within small Fréchet distance to subcurves of constant complexity
of the simplification. We then define a structured notion of A-coverage and a candidate space,
which lets us take advantage of this fact. We show that we can narrow our choice down even
further, to a finite set of subedges of the simplification, and still sufficiently preserve the
quality of the solution. In Section 3, we present our main algorithm. The algorithm uses
the concepts and techniques developed in Section 2 in combination with the multiplicative
weights update method. In Section 4, we analyze the approximation factor and running time
of this algorithm. Crucially, we show that the VC-dimension of the induced set system which
is implicitly used by our algorithm is small by design.

2  Structuring the solution space

In this section, we introduce key concepts that allow us to transfer the problem to a set cover
problem on a finite set system with small VC-dimension and still obtain good approximation
bounds. The main result of this section is Theorem 14.

Simplifications and containers. We start by defining the notion of curve-simplification that
we will use throughout the paper.

» Definition 3 (simplification). Let P be a polygonal curve in R, Let (t1,...,t,) be the
vertex-parameters of P, and p; = P(t;) the vertices of P. Consider an index set 1 < iy <
... <'ix < n that defines vertices p;,. We call a curve S defined by such an ordered set of
vertices (p;,, - --,pi.) € (RY)F a simplification of P. We say the simplification is A-good,
if the following properties hold:

(i) Ipi; = piyull = 5 for1<j<k

(1) dp(Plti; ti; 0], P, Piyry) < 3A forall1 < j < k.

(iii) dF(P[thtileil pi1) < 3A and dF(P[tzk,tn],m) <3A

(iv) dr(Plti;, ti;, ), Pi; Piya) > 240 forall1 <j <k—1

Our intuition is the following. Property (i) guarantees that S does not have short edges.

Property (i7) and (4i7) together tell us, that the simplification error is small. Property (iv)
tells us, that the simplification is (approximately) maximally simplified, that is, we cannot
remove a vertex, and hope to stay within Fréchet distance 2A to P.
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Figure 2 Example of the structured A-coverage of a set C' = {Q1,Q2} and a curve P. Here we
have ¥y (P,C) = [s1, 1] U [s2, s5] since the subcurves P[s1, s]] and P[s2, s5] have Fréchet distance
A to Q1 and P[ss, s3] has Fréchet distance A to Q2. Note that [s4, s4] is not part of the coverage
since the subcurve P[s4, s}] consists of 4 edges.

» Definition 4 (Container). Let P be a polygonal curve, let m = Pl[s,t] be a subcurve of
P, and let (ty,...,t,) be the vertez-parameters of P. For a simplification S of P defined
by index set I = (i1,...,1ix), define the container cs(w) of m on S as S[ta,ts], with
a=max ({in}u{iel|t;<s})andb=min({i eI |t; >t} U{ir}).

The following lemma has been proven by de Berg et al. [14]. We restate and reprove it
here with respect to our notion of simplification.

» Lemma 5 ([14]). Let P be a polygonal curve in R, and let S be a A-good simplification
of P. Let Q be an edge in R? and let 7 be a subcurve of P with dp(Q,7) < A. Then cs(r)
consists of at most 3 edges.

Proof. Assume for the sake of contradiction, that cg(m) contains 4 edges, that is it has
three internal vertices si, s2, s3. By Definition 4 these three vertices are also interior vertices
of m. As the Fréchet distance dp(Q,7) < A, there are points ¢1,¢2,95 € @, that get
matched to s1,s2 and s3 respectively during the traversal, with ||s; — ¢;|| < A. This implies
dp(m[s1,s3],q13) < A. It also implies, that dr(5753,71¢3) < A. But then

dp (5153, P[s1,s3]) = dp (51,53, 7[s1, s3]) < dr(5153,G1 G3) + dr(7[s1, s3], @1 G3) < 24,

contradicting the assumption that S is a A-good simplification. |

Structured coverage and candidate space. We want to make use of the property of A-good
simplifications shown in Lemma 5. For this we adapt the notion of A-coverage from Section 1
as follows.

» Definition 6. Let S be a polygonal curve in R, Let (ty,...,t,) be the vertez-parameters
of S. Let £ € N and A € R be fized parameters. Define the structured A-coverage of a set
of center curves C C X? as

vas.0)=1) U 38,9
qgeC (i,j)e]
where
VO (S ) ={s € [t,t] |t <t <tiq; t <t t; 1 <t <tj; dp(S[t,1'],q) < A},

and where J ={1<i<j<n|1<j—i<4}.
If it holds that W', (S,C) = [0,1], then we call C a structured A-covering of S.
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Figure 3 Free space diagrams of the curves P and @1 (resp. Q2) depicted in Figure 1. The
monotone paths m; illustrate that the Fréchet distance between P(s;, s;] and Q1 (resp. Q2) is equal
to A for 1 <1< 4.

» Observation 7. In general for any polygonal curve S and set of center curves C it holds
that ¥'\ (S,C) C UA(S,C).

We now want to restrict the candidate set to subedges of a simplification of the input
curve, thereby imposing more structure on the solution space. For this we begin by defining
a more structured parametrization of the set of edges of a polygonal curve.

» Definition 8 (Edge space). We define the edge space T, = {1,...,n—1} x [0,1]. We
denote the set of edges of P with E(P).

» Definition 9 (Candidate space). Let E = {ey,...,e,_1} be an ordered set of edges in RY. We
define the candidate space induced by E as the set Zg = {(i1,t1,12,t2) € T\, x Ty, | i1 = io}.
We associate an element (i,t1,1,t2) € Zg with the subedge e;(t1) e;(t2).

The following theorem summarizes and motivates the above definitions of structured
coverage and candidate space. Namely, we can restrict the search space to subedges of
the simplification S and still obtain a good covering of P. Moreover, we can evaluate the
coverage of our solution solely based on S. The structured coverage only allows subcurves
of S that consist of at most three edges to contribute to the coverage. This technical
restriction is necessary to obtain a small VC-dimension in our main algorithm later on, and
it is well-motivated by Lemma 5.

» Theorem 10. Let S be a A-good simplification of a curve P. Let C be a set of subedges of
edges of S. If C' is a structured 8A-covering of S, then C is an 11A-covering of P. Moreover,
if k is the size of an optimal A-covering of P, then there exists such a set C of size at most
3k.

Partial traversals and coverage. Our algorithm and analysis use the notion of the free
space diagram which was first introduced by Alt and Godau [3]. It is instructive to consider
this concept in the context of the coverage problem. Refer to Figure 3.

» Definition 11 (Free space diagram). Let P and Q be two polygonal curves parametrized
over [0,1]. The free space diagram of P and Q is the joint parametric space [0,1]? together
with a not necessarily uniform grid, where each vertical line corresponds to a vertex of P and
each horizontal line to a vertex of Q. The A-free space of P and Q is defined as

Da(P,Q) = {(z,y) € [0,1]* | | P(z) — Qy)ll < A}

28:7
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|
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Figure 4 An illustration of a A-feasible (2, 4)-partial traversal 7 from (a,c) to (b,d) of P and Q.
7 covers all points between a and b on P, and all points between ¢ and d on Q.

This is the set of points in the parametric space, whose corresponding points on P and @ are
at a distance at most A. The edges of P and Q) segment the free space into cells. We call the
intersection of Da (P, Q) with the boundary of cells the free space intervals.

Alt and Godau [3] showed that the A-free space inside any cell is convex and has constant
complexity. More precisely, it is an ellipse intersected with the cell. Furthermore, the Fréchet
distance between two curves is less than or equal to A if and only if there exists a path
7 :[0,1] — Da(P, Q) that starts at (0,0), ends in (1,1) and is monotone in both coordinates.

» Definition 12 (Partial traversal). Let P be a polygonal curve in R?, and let (t1,...,t,) be
the vertex-parameters of P. Let 1 < i < j < n be integer values. Let Q be an edge in RY. We
define an (i, j)-partial traversal as a pair of continuous, monotone increasing and surjective
functions, f :[0,1] — [a,b] and g : [0,1] — [c,d], where t; < a < tip1, tj—1 < b < tj,
0<a<b<l, and0<c<d<1. We say that (f,g) is a partial traversal from (a,c) to
(b,d).

» Definition 13 (A-feasible). We say that a partial traversal is A-feasible if the image of
the path m: [0,1] — [0,1]? defined by ©(t) = (f(t),g(t)) is contained inside the A-free space
Da(P,Q). We say that m covers a point t on P if t € [a,b] and we say that ® covers a point
tonQifteled.

A finite set of candidates. By Theorem 10, it is sufficient to find a structured covering
using a suitable simplification of the input curve. However the corresponding search space
would still be infinite, even for a single edge. We will next define a finite set of candidates
and show that it contains a good solution. In particular, our goal is to prove the following
theorem.

» Theorem 14. Let P be a polygonal curve of complexity n in R and let A > 0 be given. Let
S be a A-good simplification of P. Assume there exists a A-covering C of P of cardinality k.
Then, there exists an algorithm that computes in O(n3) time and space a set of candidates
B C Zg(s)y C X4 with |B| € O(n®), such that B contains a structured 8A-covering Cp of S
of size at most 12k. Moreover, Cg is a 11A-covering of P.

The main steps to constructing this set of candidates B are as follows. We first define a
special set of subcurves of the simplification S. Intuitively, these are the containers of S of
subcurves of P that may contribute to the coverage.
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Figure 5 Examples of extremal points. Shown on the right are the two free space intervals [a1, b1]
and [ag, bs] as well as the left- and rightmost points l. and 7. of the A-free space of e and Y. The
extremal points are defined by b2 and r.. All points considered for the first extremal point are shown
in blue. Similarly all points considered for the second extremal point are shown in red. A traversal
from the first extremal point to the second extremal point is illustrated. On the left the resulting
subedge e[s*,¢*] and the maximal subcurve of Y that can be matched are illustrated.

» Definition 15 (Generating subcurves). Let S be a A-good simplification of a polygonal curve
P. Let (t1,...,ty,) be the vertez-parameters of S. For any 1 <1i,1<j<3 andi+j<m,
we say the subcurve S[t;, t;1;] is a generating subcurve. In particular, this defines all
subcurves of at most three edges starting and ending at vertices of S.

Now, for every generating subcurve Y of S and every edge e of S, we can identify an
interval defining a subedge of e, that maximizes the A-coverage on Y over all subedges of
e. For this reason, we call the endpoints of this interval extremal. Using this definition we
define the finite candidate set induced by S via generating triples.

» Definition 16 (A-extremal points). Given a value of A > 0, a polygonal curve Y :
[0,1] = R? of m edges and an edge e : [0,1] — R?, such that they permit a A-feasible
(1,m)-partial traversal. As e is a single edge, the A-free space of Y and e consists of a
single row. Let [a;,b;] be the ith vertical free space interval of the A-free space of Y and
e. Denote by I = (ly,l.) the leftmost point in the A-free space of Y and e and r = (ry,r.)
the rightmost point (in case l is not unique, chose the point with smallest y-coordinate, and
r as the point with the biggest y-coordinate). We define the A-extremal points induced
by Y on e as the tuple Ea(Y,e) = (s,t) € [0,1)2 with s = min({l.} U {b1,...,b,_1}) and
t =max({re} U{a,...,an—1}). We explicitly allow that t < s.

» Definition 17 (Generating triples). Let S be a A-good simplification of a polygonal curve P.
We define the set of generating triples Tss as a set of triples (e, Y1,Y2), where e is any edge
of S, and Y1 and Ys are generating subcurves of S (not necessarily distinct). We include the
triple (e,Y1,Ys) in the set Ts if and only if there are points p € e, p1 € Y1 and py € Y such
that |[p — p1|| < 8A and |[p — p2|| < 8A.

» Definition 18 (Candidate set). Let A > 0 be a given value and let S be a A-good
simplification of a polygonal curve P. Let Ts be the set of generating triples of S. We define
the candidate set induced by S with respect to A as the set of line segments

B = {G[Sl,tg] | = (6,51,52) € TS, s.t. (S‘SA(SZ',G) = (Sl,tl) fOTi S {1,2}}
Clearly, the set B can be computed in O(|Ts|) time and space, if the set Tg is given.

In the full version [7], we show that, for any suitable covering, we can deform each
subedge of the solution to one of our candidates while retaining the coverage on a fixed
subcurve. However, while retaining coverage on one subcurve, we may lose coverage on
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another subcurve in the same cluster. We show, through a case analysis, how to deal with
all subcurves at once while increasing the number of clusters by a factor of at most 4. We
use this fact together with Theorem 10 to prove Theorem 14.

3 The main algorithm

We describe the main algorithm below with pseudocode specified in Algorithm 1 and
Algorithm 2. Specifications of the missing subroutines are given in Table 1. Several additional
building blocks of the algorithm are described in the full version [7]: computing candidates,
computing the structured coverage, testing feasibility and computing simplifications.

Algorithm. The algorithm receives as input a polygonal curve P in R? and a parameter
A > 0. The goal is to compute an small set of edges C', such that all points on P are covered
by the A’-coverage of C' on P for some A’ € O(A). The algorithm APPROXCOVER (see
Algorithm 1), when called with input P and A, first computes a A-good simplification S
of P and generates a finite subset B of the candidate space Zgs) C X4 defined on the
edges of this simplification. For this, we use the construction of the candidate set presented
in Section 2. The algorithm then performs an exponential search with the variable k£ that
controls the target size of the solution. Starting with a constant k, the algorithm tries to find
a solution of size approximately k and if this fails, the algorithm doubles k& and continues.
For finding a solution with fixed target size, the algorithm KAPPROXCOVER is used (see
Algorithm 1). This algorithm is called with the simplification S, the candidate set B and
set of parameters r, A’ k', and 4,.. The algorithm KAPPROXCOVER uses a variant of the
multiplicative weight update method with a maximum number of (proper) iterations bounded
by imax- In the ith iteration, we take a sample from a discrete probability distribution D;
that is defined on B via a weight function w; : B — R, where the probability of an element
e € B being in the sample is defined as w;(e)/ Y . p wi(e). For the initial distribution Dy, all
weights are set to 1, which corresponds to the uniform distribution over B. During the course
of the algorithm, we repeatedly update this distribution thereby generating distributions
D1,Ds, ... (up to D, , unless the algorithm finds a solution in an earlier iteration). The
update step performed by a call to subroutine UPDATEWEIGHT proceeds by doubling the
weight of the subset F' of B. This can be done in O(|B|) time and space by storing the
cumulative probability distribution.

With this basic mechanism in place, the algorithm KAPPROXCOVER now proceeds as
follows. In each iteration, the algorithm computes a set C C B by taking k' independent
draws from the current distribution D;. Then, the algorithm checks, if C' is a solution to
our problem by a call to the subroutine POINTNOTCOVERED. The subroutine should either
return that all points on S are in the A’-coverage of the solution C, or return a point ¢ on
S that is not covered in this way. This can be done by computing the structured coverage
U’y (S, C) explicitly. In the former case, the algorithm returns the solution and terminates.
In the latter case, we compute the subset F' of candidates B that would cover ¢ with respect
to the subcurves that contain ¢ and which have at most 3 edges. To compute F', we simply
iterate over all elements of B and check if ¢ is covered by a call to ISFEASIBLE (see Algorithm
2). (For technical reasons, we parametrize the curve P via the edge space of the set of edges
of P, so that we can locate the edge that contains ¢ in constant time.) It is important that
F' is not a multiset, so repeated additions of an element will not increase its weight.

At this point we would like to perform the weight update step which we described above
with respect to the set F', however, we only do this if the weight of the set F' is small. If the
total weight of the set F is larger than a %—fraction of the total weight of B, then we simply
skip the update step and continue by taking another sample from the current distribution.
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Algorithm 1 Main algorithm.

1:
2
3
4:
5:
6
7
8
9:
10:
11:
1
2
3
4:
5:
6
7
8
9

10:

procedure APPROXCOVER(P € X4 A€ R)

S < SIMPLIFYCURVE(P, A)
B < GENERATECANDIDATES(SS, A)

k+1
v < 110d + 412 > bound on the VC-dimension
repeat
k « 2k > increase target size for solution
re 2k, A al\, K [16ky10g(16ky)], imax < 5k logy (121
C + KAPPROXCOVER(S, B,r, A" k' imax) > search solution with this size
until C # () > until we find a solution
return C

. procedure KAPPROXCOVER(S € X4, B C X4, r, A’ € R, k/, imax € N )

Let D; be the uniform distribution over B with weight function w; : B — {1}
141
repeat

C < sample k' elements from D;

t + POoINTNOTCOVERED(C, S, A’)

if t = —1 then return C > if all points covered, return solution found

F«0 > otherwise, compute feasible set of ¢
for each @ € B do

if ISFEASIBLE(Q, S,t,A’) then add Q to F
11: if Prp, [F] < % then
12: Di+1 < WEIGHTUPDATE(D;, F') > increase the probability of F
13: 1+ 1+1
14: until 7 > 4.4
15: return () > no solution found for this target size
Algorithm 2 Subroutine ISFEASIBLE which is called by the main algorithm.
1: procedure ISFEASIBLE(Q € X¢,5 € Xt € T,,, A’ € R)
2: (t',i') +t > locate edge of t on S
3: J={1<i<j<n|1<j—i<4;i>i—3;j<i 44} > find generating subcurves
4: for (i,7) € J do > check if @) covers t on S
5: if ¢t € ¥%7(S, Q) then return true
6: return false
Table 1 Specification of additional subroutines used in the main algorithm.
Procedure Input Output
SIMPLIFY CURVE PeX¢ A>0 A-good simplification of P (Def. 3)
GENERATECANDIDATES S € X4, A >0 candidate set (Def. 18)
PoINTNOTCOVERED ccxd, Sext, A>0 either t € T, \ ¥4 (S,C) or —1 if
this set is empty
WEIGHTUPDATE distribution D given by weight D’ with w’ : B — R where weight

function w : B—+R, F C B is doubled for all elements of F’
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(65 I . e
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Figure 6 Example for the construction of the rectangle R = [av1, 2] X [B1, B2] for fixed P,i,7,t, A
and e. The left image shows the curves P[t;,t;] and e with two circles of radius A around P(¢;41)
and P(tj—1). The middle image shows the corresponding A-free space diagram with a (7, j)-partial
traversal from a; to b, and the right image shows the rectangle R in the parameter space [0, 1] of e.

4 Analysis of the main algorithm

The algorithm described in Section 3 is based on the set cover algorithm by Brénniman
and Goodrich [6]. A crucial step in the analysis of this algorithm is the analysis of the
VC-dimension of the dual set system. In our case this is a set system formed by the sets F’
computed in the main algorithm. For the formal analysis of this set system, we introduce
the notion of feasible sets.

» Definition 19 (Feasible set). Let S: T, — R? be a polygonal curve and let B C X§ be a
candidate set of edges and let A > 0 be a real value. For any point t € T,,, we define the
feasible set of t as the set of elements Q € B that admit an (i, j)-partial traversal with S
that fully covers Q and that covers t on S, with the additional condition that j —i < 3. We
denote the feasible set of t with Fa(t).

Note that for any fixed S and A the set of feasible sets {Fa(t) | t € T, } is exactly the
set system determined by the subroutine ISFEASIBLE described in Algorithm 2. We claim
that any feasible set can be split into sets corresponding to the edges of the simplification,
where each set consists of a constant union of rectangles in the candidate space restricted
to the respective edge. Figure 6 illustrates one of those rectangles. The following lemma
provides the formal statement.

» Lemma 20. Let P be a polygonal curve in R? and let e € X3 be an edge. Let (tq,...,t,)
be the vertex-parameters of P. For any integer values 1 < i < j < min(i + 3,n) and real
value t € [0,1] with t; <t <t;, either there exist ay, o2, b1, B2 such that

R:={(a,8) € [0,1* | t € VX (P, elev, B])} = [a1, 2] X [B1, Ba),

or the set R is empty. Moreover, each «, (respectively ,) for v € {1,2} can be written as
ay, = ¢, ++/d, (respectively B, = e, ++/f,), where the parameters c, and d, (respectively e,
and f,) can be computed by an algorithm that takes (i,7),t and e as input and needs O(d)
simple operations.

To prove a VC-dimension bound of O(d), we combine the above lemma with the following
general theorem which can be attributed to Goldberg and Jerrum [16]. We use the variant
by Anthony and Bartlett [4], which is stated as follows.

» Theorem 21 (Theorem 8.4 [4]). Suppose h is a function from R® x R® to {0,1} and let
H={z — h(a,x) | @ € R*} be the class determined by h. Suppose that h can be computed
by an algorithm that takes as input the pair (o, z) € R x R® and returns h(o, ) after no
more than t simple operations. Then, the VC-dimension of H is < 4a(t + 2).
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» Lemma 22. Let S : T, — R? be a polygonal curve and let A € R.. Consider the set
system {Fa(t) | t € T,,} with ground set X3. The VC-dimension of this set system is in O(d).

Proof. Define a function h : T, x X¢ — {0,1} with h(t,Q) = 1 if and only if a call to
ISFEASIBLE(Q, S, t, A) returns true. We analyse the VC-dimension of the class of functions
determined by h:

H={x— h(t,x) |teT,}

As a consequence, we obtain the same bounds on the VC-dimension of the corresponding set
system R with ground set X§ where a set r; € R is defined by a t € T,, with

re={Q € X3 | h(t,Q) =1}

In order to show the lemma, we first argue that for any given ¢t € T,, and Q € X2 the
expression h(t, Q) can be evaluated with O(d) simple operations.

Let (t',i') =t and recall the index set J = {(i,7) | ¥’ —3 <i < i < j <i+ 3} as in the
procedure ISFEASIBLE. Note that |J| = 9 and that J can be determined by O(1) simple
operations from i’. Note that ISFEASIBLE returns true if and only if ¢ € \I'iA’j(S, Q) for some
(i,7) € J. So, for fixed (i, j), consider the set

R={(a.f) € 0,1 |t € ¥X (S,Qa, 8])}

Lemma 20 implies that R is either empty or can be written as a rectangle [a1, aa] X [51, B2].
Note that t € \I/iA’j(S, Q) if and only if R is non-empty and (0,1) € R. By Lemma 20, this
test can be performed using O(d) simple operations. Thus, we can apply Theorem 21 and
conclude that the VC-dimension of H is in O(d). <

With proper bounds on the VC-dimension in place, we obtain the following main result.
The proof is based on the well-known %-net theorem by Haussler and Welzl [20], which
provides a bound on the probability that our sample chosen in line 5 is a %—net of the
weighted set system, based on the VC-dimension of this set system. We use this to bound
the expected number of iterations of the main loop in KAPPROXCOVER within our analysis

of the multiplicative weights update algorithm.

» Theorem 23. Given a polygonal curve P € X% and A € R, there exists an algorithm
that computes an («, §)-approzimate solution to the A-coverage problem on P with a = 11
and = O(log k*), where k* is the minimum size of a solution to the A-coverage problem on
P. The algorithm needs in expectation O((k*)2n + k*n®) time and O((k*)n +n3) space.

In the full version [7], we show improved bounds for ¢-packed curves. The only modification
to the algorithm is a more careful generation of the triples that generate the candidate set.

» Theorem 24. Let P € X% be c-packed and A € R,. Let k* be the minimum size of
a solution to the A-coverage problem on P. There exists an algorithm that outputs an
(11, 0(log(k™*)))-approzimate solution. The algorithm needs

1. O((k*)*n + nc®k*) expected time and O(k*n + nc?) space in R?,

2. O((k*)®n + nc®k* 4+ n?) expected time and O(k*n + nc?) space in RY.

In the full version [7], we also show that the property of the feasible sets as testified
by Lemma 20 can be exploited to implicitly update the weights of a much larger set of
candidates chosen from a uniform grid in the candidate space, thereby circumventing the
explicit computation of the candidates. This improves the overall dependency on the
complexity of the input curve in the running time, when compared to the previous algorithm
— at the cost of a logarithmic factor of the relative arc-length of the curve.
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» Theorem 25. Let P € X¢ and A € R,. Let k* be the minimum size of a solution to the
A-coverage problem on P. Let further A\(P) be the arc length of the curve P. There exists
an algorithm that outputs a (12,0 (log(k*))-approzimate solution. The algorithm needs in

expectation O(nk*%log%%) +1log” (1)) + nlog®(n)) time and O(nk* 1og("2§£) )) space.

5 Conclusions

With the algorithm variants presented in this paper, we can find bicriteria-approximate
solutions to the A-coverage problem on a polygonal curve P. The new algorithms improve
upon previously known algorithms for the A-coverage problem both in terms of known
running time and space requirement bounds [2], as well as approximation factors. To the best
of our knowledge, our candidate generation leads to the first strongly polynomial algorithm
for subtrajectory clustering under the continuous Fréchet distance that does not depend on
the relative arclength A\/A of the input curve or the spread of the coordinates. The running
time is at most cubic in n, the number of vertices of the input curve (Theorem 23). In
practice, we expect this to be lower as testified by our analysis for c-packed curves (Theorem
24). The work of Gudmundsson et. al. [17] suggest that in practice most curves are c-packed
for a c that is considerably smaller than the complexity of the curve. However, it remains
to be seen if this also holds for the typically long curves which appear as input in the
subtrajectory clustering setting. We also present a variant of the algorithm with implicit
weight updates which achieves a linear dependency on n (Theorem 25) and this holds in
general, without any c-packedness assumption on the input.

There are several avenues for future research. We mention some of them here. An
interesting question that remains open for now is whether the implicit weight update can
be performed directly on the candidate set (Definition 18). For this, we need to develop a
dynamic data structure that can maintain the distribution on this candidate set to perform
updates with rectangles and to sample from it. Another future research direction is to
improve the dependency of the approximation factor on the parameter that controls the
complexity of the input curves. Currently, the dependency is linear, and we did not try to
improve it, since our focus was on clustering with line segments. Another interesting question
is, how the low complexity center curves obtained by our algorithm can be best connected to
center curves of higher complexity or even a geometric graph while retaining the A-covering.
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