Efficient Fréchet Distance Queries for Segments
Maike Buchin &

Ruhr Universitdt Bochum, Germany

Ivor van der Hoog &
Utrecht University, The Netherlands

Tim Ophelders =
Utrecht University, The Netherlands
TU Eindhoven, The Netherlands

Lena Schlipf =

Universitat Tiibingen, Germany

Rodrigo I. Silveira &

Polytechnic University of Catalonia, Barcelona, Spain

Frank Staals =
Utrecht University, The Netherlands

—— Abstract

We study the problem of constructing a data structure that can store a two-dimensional polygonal
curve P, such that for any query segment ab one can efficiently compute the Fréchet distance between
P and ab. First we present a data structure of size O(nlogn) that can compute the Fréchet distance
between P and a horizontal query segment ab in O(logn) time, where n is the number of vertices of
P. In comparison to prior work, this significantly reduces the required space. We extend the type of
queries allowed, as we allow a query to be a horizontal segment ab together with two points s,t € P
(not necessarily vertices), and ask for the Fréchet distance between ab and the curve of P in between
s and t. Using O(nlog® n) storage, such queries take O(log® n) time, simplifying and significantly
improving previous results. We then generalize our results to query segments of arbitrary orientation.
We present an O(nk®™= + n?) size data structure, where k € [1,n] is a parameter the user can
choose, and € > 0 is an arbitrarily small constant, such that given any segment ab and two points
s,t € P we can compute the Fréchet distance between ab and the curve of P in between s and ¢
in O((n/k)log?n + log* n) time. This is the first result that allows efficient exact Fréchet distance
queries for arbitrarily oriented segments.

We also present two applications of our data structure. First, we show that our data structure
allows us to compute a local d-simplification (with respect to the Fréchet distance) of a polygonal

5/2“) time, improving a previous O(n?) time algorithm. Second, we show that we can

curve in O(n
efficiently find a translation of an arbitrary query segment ab that minimizes the Fréchet distance

with respect to a subcurve of P.

2012 ACM Subject Classification Theory of computation — Computational geometry
Keywords and phrases Computational Geometry, Data Structures, Fréchet distance
Digital Object Identifier 10.4230/LIPIcs.ESA.2022.29

Related Version An abstract with preliminary results to this paper waspresented at EuroCG
2020 [10]. A full version with all omitted proofs is available on ArXiv [11].

Preliminary Version: http://wuwl.pub.informatik.uni-wuerzburg.de/eurocg2020/data/
uploads/papers/eurocg20_paper_65.pdf [10]

Full Version: https://arxiv.org/abs/2203.01794 [11]

Funding Research of Schlipf was supported by the Ministry of Science, Research and the Arts
Baden-Wiirttemberg (Germany).

© Maike Buchin, Ivor van der Hoog, Tim Ophelders, Lena Schlipf, Rodrigo I. Silveira, and Frank Staals;
37 licensed under Creative Commons License CC-BY 4.0

30th Annual European Symposium on Algorithms (ESA 2022).

Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 29; pp.29:1-29:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:maike.buchin@rub.de
mailto:i.d.vanderhoog@uu.nl
mailto:t.a.e.ophelders@uu.nl
mailto:schlipf@informatik.uni-tuebingen.de
mailto:rodrigo.silveira@upc.edu
mailto:f.staals@uu.nl
https://doi.org/10.4230/LIPIcs.ESA.2022.29
http://www1.pub.informatik.uni-wuerzburg.de/eurocg2020/data/uploads/papers/eurocg20_paper_65.pdf
http://www1.pub.informatik.uni-wuerzburg.de/eurocg2020/data/uploads/papers/eurocg20_paper_65.pdf
https://arxiv.org/abs/2203.01794
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2

Efficient Fréchet Distance Queries for Segments

Acknowledgements This work started at Dagstuhl workshop 19352, “Computation in Low-
Dimensional Geometry and Topology.” We thank Dagstuhl, the organizers, and the other participants

for a stimulating workshop.

1 Introduction

Comparing the shape of polygonal curves is an important task that arises in many contexts
such as GIS applications [2, 9], protein classification [20], curve simplification [7], curve
clustering [1] and even speech recognition [21]. Within computational geometry, there are
two well studied distance measures for polygonal curves: the Hausdorff and the Fréchet
distance. The Fréchet distance has proven particularly useful as it takes the course of the
curves into account. However, the Fréchet distance between curves is costly to compute:
as its computation requires roughly quadratic time [3, 8]. When a large number of Fréchet
distance queries are required, we would like to have a data structure, a so-called distance
oracle, to answer these queries more efficiently. This leads to a fundamental data structuring
problem: preprocess a polygonal curve such that, given a query polygonal curve, their Fréchet
distance can be computed efficiently (query curves are assumed to be comparatively small).
It turns out that this problem is extremely challenging. Indeed, even though great efforts
have been devoted to design data structures to answer Fréchet distance queries, there is still
no distance oracle known that is able to answer ezact queries for a general query curve.

To make progress on this important problem, in this work we focus on a more restrictive
but fundamental setting: when the query curve is a single segment. The reasons to study this
variant of the problem are twofold. On the one hand, it is a necessary step to solve the general
problem. On the other hand, it is a setting that has its own applications. For example, in
trajectory simplification, or when trying to find subtrajectories that are geometrically close
to a given query segment (e.g. when computing shortcut-variants of the Fréchet distance [12],
or in trajectory analysis [5] on sports data). A similar strategy of tackling segment queries
has also been successfully applied in nearest neighbor queries with the Fréchet distance [4].

We study preprocessing a polygonal curve P to determine the exact continuous Fréchet
distance between P and a query segment in sublinear time. Specifically, we study prepro-
cessing a polygonal curve P of n vertices in the plane, such that given a query segment ab,
traversed from a to b, the Fréchet distance between P and ab can be computed in sublinear
time. Without preprocessing, this problem can be solved in O(nlogn) time.

Related work. Data structures that support (approximate) nearest neighbor queries with
respect to the Fréchet distance have received considerable attention throughout the years [4,
13, 15]. In these problems, the goal is typically to store a set of polygonal curves such that
given a query curve and a query threshold A one can quickly report (or count) the curves
that are (approximately) within (discrete) Fréchet distance A of the query curve. Some of
these data structures even allow approximately counting the number of curves that have
a subcurve within Fréchet distance A [5]. Highlighting its practical importance, the near
neighbor problem using Fréchet distance was posed as ACM Sigspatial GIS Cup in 2017 [24].
Here, we want to compute the Fréchet distance of (part of) a curve to a low complexity
query curve. For the discrete Fréchet distance, efficient (1 + €)-approximate distance oracles
are known, even when P is given in an online fashion [14]. For the continuous Fréchet
distance, Driemel and Har-Peled [12] present an O(ne~*loge™!) size data structure that
given a query segment ab can compute a (1+¢)-approximation of the Fréchet distance between
P and ab in O(¢~2lognloglogn) time. Their approach extends to higher dimensions and low
complexity polygonal query curves. However, in contrast to our solution, this approximation
uses techniques that do not provide insight into the structure of the algorithmic problem.

M. Buchin, I. van der Hoog, T. Ophelders, L. Schlipf, R.l. Silveira, and F. Staals

Gudmundsson et al. [17] present an O(nlogn) sized data structure that can decide
if the Fréchet distance to ab is smaller than a given value A in O(log?n) time (so with

some parametric search approach one could consider computing the Fréchet distance itself).

However, their result holds only when the length of ab and all edges in P is relatively
large compared to A. De Berg et al. [6] presented an O(n?) size data structure that does
not have any restrictions on the length of the query segment or the edges of P. However,
the orientation of the query segment is restricted to be horizontal. Queries are supported
in O(log2 n) time, and even queries asking for the Fréchet distance to a vertex-to-vertex
subcurve are allowed (in that case, using O(n?log®n) space). Recently, Gudmundsson et

al. [18] extended this result to allow the subcurve to start and end anywhere within P.

Their data structure has size O(n?log®n) and queries take O(log®n) time. In their journal
version, Gudmundsson et al. [19] directly apply the main result of a preliminary version
of this paper [10] to immediately improve space usage of their data structure to O(n3/2);
their preprocessing time remains O(n? log? n). The current version of this paper significantly
improves these results. Moreover, we present data structures that allow for arbitrarily
oriented query segments.

Problem statement & our results. Let P be a polygonal curve in R? with n vertices
P1,---,Pn. For ease of exposition, we assume that the vertices of P are in general position,
i.e., all z- and y-coordinates are unique, no three points lie on a line, and no four points are
cocircular. We consider P as a function mapping any time ¢ € [0, 1] to a point P(¢) in the
plane. Our ultimate goal is to store P such that we can quickly compute the Fréchet distance
D#x(P,Q) between P and a query curve Q. The Fréchet distance is defined as

Dr(P,Q) = inf max |[P(a(t)) — Q(B(1))l;
a,Bt€l0,1]
where «, 8: [0,1] — [0, 1] are nondecreasing surjections, also called reparameterizations of P
and @, respectively, and ||p — ¢|| denotes the Euclidean distance between p and gq.
In this work we focus on the case where @ is a single line segment ab starting at a and
ending at b. Note that P may self-intersect and ab may intersect P. Our first main result
deals with the case where ab is horizontal:

» Theorem 1. Let P be a polygonal curve in R? with n vertices. There is an O(nlogn)
size data structure that can be built in O(nlog2 n) time such that given a horizontal query
segment ab it can report D (P, ab) in O(logn) time.

This significantly improves over the earlier result of de Berg et al. [6], as we reduce the
required space and preprocessing time from quadratic to near linear. We simultaneously
improve the query time from O(log?n) to O(logn). We further extend our results to allow
queries against subcurves of P. Let s,¢ be two points on P, we use P[s,t] to denote the
subcurve of P from s to t. For horizontal query segments we then get:

» Theorem 2. Let P be a polygonal curve in R? with n vertices. There is an O(nlog2 n)
size data structure that can be built in O(nlog2 n) time such that given a horizontal query
segment ab and two query points s and t on P it can report Dx(P]s, t],ab) in O(log® n) time.

De Berg et al. presented a data structure that could handle such queries in O(log® n) time
(using O(n?log? n) space), provided that s and ¢ were vertices of P. Compared to their data
structure we thus again significantly improve the space usage, while allowing more general
queries. The recently presented data structure of Gudmundsson et al. [18] does allow s and ¢

29:3

ESA 2022

29:4

Efficient Fréchet Distance Queries for Segments

to lie on the interior of edges of P (and thus supports queries against arbitrary subcurves).
Their original data structure uses O(n? log? n) space and allows for O(log8 n) time queries.
Compared to their result we use significantly less space, while also improving the query time.

Using the insights gained in this restricted setting, we then present the first data structure
that allows exact Fréchet distance queries with arbitrarily oriented query segments in sublinear
time. With near quadratic space we obtain a query time of O(n?/3 log? n). If we insist on
logarithmic query time the space usage increases to O(n?+¢). In particular, we present a
data structure with the following time-space tradeoff. At only a small additional cost we can
also support subcurve queries.

» Theorem 3. Let P be a polygonal curve in R? with n vertices, and let k € [1..n] be a
parameter. There is an O(nk®>*¢ +n?) size data structure that can be built in O(nk3+e + n?)
time such that given an arbitrary query segment ab it can report Dx(P,ab) in O((n/k)log? n)
time. In addition, given two query points s and t on P, it can report Dr(P]s,t],ab) in
O((n/k)log? n + log* n) time.

In Theorem 3 and throughout the rest of the paper € > 0 is an arbitrarily small constant.
In both Theorem 2 and Theorem 3 the query time can be made sensitive to the number of
vertices m = | P[s, t]| in the query subcurve P[s,t]. That is, we can get query times O(log® m)
and O((m/k)log® m 4 log* m), respectively.

To achieve our results, we also develop data structures that allow us to efficiently query the
directed Hausdorff distance Dy (P[s,t], ab) = max,e p[s min, -7 |[p — ¢|| from (a subcurve
P[s,t] of) P to the query segment ab. For an arbitrarily oriented query segment ab and a
query subcurve P[s,t] our data structure uses O(nlogn) space and can answer such queries
in O(log? n) time. Using more space, queries can be answered in O(logn) time, see Section 4.

Applications. In the full version [11] we show how to efficiently solve two problems using
our data structure. First, we show how to compute a local J-simplification of P — that is, a
minimum complexity curve whose edges are within Fréchet distance ¢ to the corresponding
subcurve of P — in O(n®/?*¢) time.This improves existing O(n?) time algorithms [16].

Recently, Gudmundsson et al. [18] (full version [19]) studied the query version of this
problem, where the goal is to preprocess P, such that given a query curve () and two points
s and t on P, one can find the translation of () that minimizes the Fréchet distance between
(a subcurve) P[s,t] and @ efficiently. They study this query version in a restricted setting,
where @ is a horizontal segment. Their original data structure uses O(n? log? n) space and
allows for O(log32 n) time queries. By applying our data structure, we solve their problem
using O(nlog? n) space whilst supporting O(log'?n) time queries. In addition, we answer
one of their open question to find optimal translations for arbitrarily oriented query segments.
Finally, we answer another of their open problems by showing how to find a scaling of a
query segment that minimizes the Fréchet distance. Specifically, we show a O(n log? n) size
data structure that for any horizontal query segment, can compute the scaling of the segment
that minimizes its Fréchet distance to P[s,t] in O(log* n) time.We also show a version for
arbitrarily oriented queries.

2 Global approach

We illustrate the main ideas of our approach, in particular for the case where the query
segment ab is horizontal, with a left of b. We can build a symmetric data structure in case a
lies right of b. We now first review some definitions based on those in [6].

M. Buchin, I. van der Hoog, T. Ophelders, L. Schlipf, R.l. Silveira, and F. Staals

Pj oe »0 Pje ° Pje / °

ow »0 ° ° ° , °

o »0 ° ° ° , °

on »0 ° ° ° °

ow »0 ° ° ° . °
2 =ri 8 hi & SDi

o »0 ° ° ° , °
O —— o N O N (5 N P Y

Figure 1 (a) A polygonal curve and query segment. (b) The red vertex p; forms a backward
pair with all but one blue vertex. (c¢) For a fixed backward pair (p;,p;), we consider the distance
between the intersection (cross) of their bisector (dashed) and ab, and either p; or p;.

Let P< be the set of ordered pairs of vertices (p,q) € P x P where p precedes or equals
q along P. An ordered pair (p,q) € P=< forms a backward pair if x4 < z,. Throughout
the rest of the paper, x, and y, denote the - and y-coordinates of point p, respectively.
We denote by B(P) the backward pairs and say (p,q) € B(P) is trivial if p = ¢ (Figure 1).
For two points p,q € P, we then define d,4(y) = min, max {||(z,y) — p||, ||(z,y) — q||} (See
Figure 1(c)). That is, d,4(y) is a function that for any y, gives the minimum distance between
a point at height y and both p and q. We will use the function d,, only when (p, q) € B(P)
is a backward pair. We define the function Dg(y) = max {d,4(y) | (p,q) € B(P)}, which we
refer to as the backward pair distance of a horizontal segment at height y with respect to P.
Note that D (y) is the upper envelope of the functions d,, for all backward pairs (p, ¢) of P.
De Berg et al. [6] prove that the Fréchet distance is the maximum of four terms:

Dr(P.ab) = max {|lps —all. llp—bll, Du(P.ab), Dp(y.)}- M

The first two terms are trivial to compute in O(1) time. Like de Berg et al., we build
separate data structures that allow us to efficiently compute the third and fourth terms.

A key insight is that we can compute Dy (P, ab) by building the furthest segment Voronoi
diagrams (FSVD) of two sets of horizontal halflines, and querying these diagrams with the
endpoints a and b. See Section 3.1. This allows for a linear space data structure that supports
querying Dy (P, ab) in O(logn) time, improving both the space and query time over [6].

However, in [6] the data structure that supports computing the backward pair distance
dominates the required space and preprocessing time, as there may be (n?) backward pairs,
see Figure 1. Via a divide and conquer argument we show that the number of backward
pairs that show up on the upper envelope Dg is only O(nlogn), see Section 3.2. The crucial
ingredient is that there are only O(n) backward pairs (p, ¢) contributing to Dp in which p is
a vertex among the first n/2 vertices of P, and ¢ is a vertex in the remaining n/2 vertices.
Surprisingly, we can again argue this using furthest segment Voronoi diagrams of sets of
horizontal halflines. This allows us to build Dp in O(nlog®n) time in total. We can then

extend these results to support queries against an arbitrary subcurve P[s,t] of P (see [11]).

For arbitrarily oriented query segments we similarly decompose Dz (P, ab) into four terms
(Section 4). The directed Hausdorff term can still be queried efficiently using an O(nlog?n)
size data structure. However, our initial data structure for the backward pair distance
uses O(n**¢) space. The main reason for this is that functions d,, expressing the cost of a
backward pair are now bivariate, depending on both the slope and intercept of the supporting
line of ab. The upper envelope of a set of n such functions may have quadratic complexity.

While our divide and conquer strategy does not help us to directly bound the complexity
of the (appropriately generalized function) Dp in this case, it does allow us to support queries
against subcurves of P. Moreover, we can use it to obtain a favourable query time vs. space
trade off. In the full version [11] we then apply our data structure to efficiently solve various
Fréchet distance related problems. Omitted proofs can be found in the full version [11].

29:5

ESA 2022

29:6

Efficient Fréchet Distance Queries for Segments

-

Figure 2 (a) A set S := {p,u,v} with S in blue. The distance h+ (q) is the distance to the apex
of ¥, whilst the distance hs(q) is their vertical difference. (b) the distance between a point ¢ and p
is the maximum of the distance to the left and right halfline from p.

3 Horizontal queries

3.1 The Hausdorff term

In this section we introduce some definitions that will be used throughout the paper, and
state the fact that there is a linear-size data structure to query the Hausdorff term in O(logn)
time, which can be built in O(nlogn) time. The proof of this result is in the full version [11].

For a point p € R?, define ; to be the “leftward” horizontal halfline starting at p and
containing all points directly to the left of p. Refer to Figure 2. Analogously, we define 5 as
the “rightward” horizontal halfline starting at p, so that p = ; N 5 We extend this notation

i
to any set of points S, that is, S = {s | s € S} denotes the set of “leftward” halflines
starting at the points in S C R2. We define S analogously. Let S and T be two (p0551bly
overlapping) p01nt sets in the plane. We define the following distance functions for rays p S

(definitions for p, S are analogous):

= .
h(a) = Du({ah, p) =min { s/ —qll [€D}, hy(q) =max{h,(q) |pe s}
Note that h§ (resp., hg) is the upper envelope of the distance functions to the halflines in

— —
S (resp., S). Since h§ and hg map each point in the plane to a distance, the envelopes live

in R3. Combining furthest segment Voronoi diagrams with point location data structures,
we can show how to compute Dy (S, ab) efficiently:

» Theorem 4. Let S be a set of n points in R2. In O(nlogn) time we can build a data
structure of linear size so that given a horizontal query segment ab, Dy (S, ab) can be computed
in O(logn) time.

Note that the directed Hausdorff distance from a polygonal curve P to a (horizontal) line
segment is attained at a vertex of P [6], thus, we can use Theorem 4 to compute it.

3.2 The backward pairs term

Here we show that the function Dp, representing the backward pair distance, has complexity
O(nlogn), can be computed in O(nlog®n) time, and evaluated for some query value y in
O(logn) time. This leads to an efficient data structure for querying P for the Fréchet distance
to a horizontal query segment ab, proving Theorem 1. See the full version [11] for details.

Recall that Dp(y) is the maximum over all function values d,4(y) for all backward pairs
(p,q) € B(P). To avoid computing B(P), we define a new function d,,,(y) that applies to any
ordered pair of points (p,q) € PS. We show that for all backward pairs (p,q) € B(P), we
have &), (y) = 6pq(y). For any pair (p,q) € P< that is not a backward pair, we show that
there exists a (trivial) backward pair (p’,q') € B(P) such that d,,,(y) < 6,,,(y) = 0prg' ().
Consequently, we can compute the value Dp(y) by computing the maximum value of d;,,(y)
over all pairs in P<. We will show how to do this in an efficient manner.

M. Buchin, I. van der Hoog, T. Ophelders, L. Schlipf, R.l. Silveira, and F. Staals

|

(a) 4 ' (b) 7
Figure 3 The distance 6,,(y) is realised by either (a) the point of intersection between y and the

bisector between E and B or, (b) the vertical distance between a line at height y and p or gq.

For a pair of points (p,q) € P<, we define the pair distance between a query ab at height
y and (p, q) as the Hausdorff distance from a horizontal line of height y to (5 U Z), that is:

() = minmax {he ((@,9)), b ((@,9)) } -

See Figure 3. The following key lemma states that, for our purposes we can use ¢’ instead
of §.

» Lemma 5. For any y, Dp(y) = max {5,(y) | (p,q) € B(P)} = max{d,,(y) | (p,q) € P<}.

3.2.1 Relating Dg(y) to furthest segment Voronoi diagrams

Now we devise a divide and conquer algorithm that computes Dg(y) by computing it for

subsets of vertices of P. Lemma 5 allows us to express Dg(y) in terms of P< instead of B(P).

Next we refine the definition of Dg(y) to make it decomposable. To that end, we define
Dg(y) on pairs of subsets of P. Let S,T be any two subsets of vertices of P, we define:

DT (y) = max {&,,(y) | (p.q) € (S x T)NP=}.

We show that we can compute D;_Z,XT(y) efficiently using the 4’ functions. For this, we fix
a value of y and show that computing DJSBXT(y) is equivalent to computing an intersection
between two curves that consist of a linear number of pieces, each of constant complexity. We
then argue that as y changes, the intersection point moves along a linear complexity curve
that can be computed in O(nlogn) time. This will allow us to query Dp(y) = DE*"(y) in
O(logn) time, for any query height y.

From distance to intersections. For a fixed value 3/, computing D5*7 (y') is equivalent to
computing an intersection point between two curves:

» Lemma 6. Let y' € R be a fized height, let p be a point in P, and let T be a subset of
the vertices of P[p,p,]. The graphs of the functions x — h;((:c,y’)) and x — h;((l’,y’))
intersect at a single point (z*,y’). Moreover, DJ{BP}XT(y’) = h%((x*,y’)) = h;((m*, y'))

» Lemma 7. Let 3/ € R be a fized height, and let S, T be subsets of vertices of P such that
all vertices in S precede all vertices in T. The graphs of the functions x hg((x,y’)) and
x> h;((x,y')) intersect at a single point (z*,y'). Moreover, D3 (y') = hg((:ﬁ*,y’)) =

he((2,4)):

Proof. If all points in S precede all points in T, then all elements in S x T are in P< and
we note: DgXT(y’) = mMaXpes { Dg’}XT(y’)} . The equality then follows from Lemma 6. <«

29:7

ESA 2022

29:8

Efficient Fréchet Distance Queries for Segments

Given such a pair S, T, for a fixed value y’, we can compute a linear-size representation
of z — h%((m,y’)) in O(nlogn) time as follows (see Figure 4). We compute the FSVD of

—
T in O(nlogn) time. Then, we compute the Voronoi cells intersected by a line of height
y' (denoted by ¢,/) in left-to-right order in O(nlogn) time. Suppose that a segment of £,

intersects only the Voronoi cell belonging to a halfline Z € ?, then on this domain the
function h;((x,y’) = h;((x, y')), and thus it has constant complexity. A horizontal line
can intersect at most a linear number of Voronoi cells, hence the function has total linear
complexity. Analogous arguments apply to z — h;((x, y')).

Varying the y-coordinate. Let f(§ o :y — ¥ be the function that for each y gives the

intersection point 2* such that hg((x’;,) = h?((x*, y)). The intersection point (x*,y") lies

4

—

on a Voronoi edge of the FSVD of (T'U S). More precisely, it lies on the bichromatic bisector

— —
of the FSVD of T and the one of S.
When we vary the y-coordinate, the intersection point traces this bisector. This implies

— —
that, given the FSVD of S and the FSVD of T, the graph of f(§ o can be computed in

O(n) time. Using these properties, we can prove the following.

» Lemma 8. Let S,T be subsets of vertices of P such that all vertices in S precede all
vertices in T. The function D5*T has complexity O(n) and can be computed in O(nlogn)
time. Evaluating DgXT(y), for some query value y € R, takes O(logn) time.

3.2.2 Applying divide and conquer

We begin by analyzing the complexity of the function Dg(y). Consider a partition of P into
subcurves S and T with at most [n/2] vertices each, and with S occurring before T" along P.
Our approach relies on the following fact.

» Observation 9. Let P be partitioned into two subcurves S and T with all vertices in S
occurring on P before the vertices of T. We have that

Dp(y) = Dy (y) = max {D5*° (y), D37 (), D5 (y) } -

Note that we can omit Dgxs because (T x S) N P< = (). We obtain the following lemma.

d) fz 7 @)

-

Figure 4 (a) A set T of rays arising from a set T of points, with their FSVD. (b) h;((m,y)) is
the distance from (z,y) to the ray corresponding to the Voronoi cell at (x,y). (c) For a fixed /,
T h;((x,y')) is monotonically increasing. (d) The value x for which h;((x, y')) = hg((:r,y’))

corresponds to f<§ H)(y’), and to DT ().
T

M. Buchin, I. van der Hoog, T. Ophelders, L. Schlipf, R.l. Silveira, and F. Staals

» Lemma 10. Let P be a polygonal curve with n vertices. The function Dg has complexity
O(nlogn) and can be computed in O(nlog2 n) time. Evaluating Dg(y), for a given y € R,
takes O(logn) time.

Eq. 1 together with Theorem 4 and Lemma 10 thus imply that we can store P in an O(nlogn)

size data structure, so that we can compute Dz (P, ab) for some horizontal query segment ab
in O(logn) time. That is, we have established Theorem 1.

Subcurve queries. We can extend our data structure to support Fréchet distance queries to
subcurves of P, establishing Theorem 2. The two main ideas are (%) to store all intermediate
data structures constructed in the above divide and conquer algorithm, and that (4) we can
actually achieve the result of Lemma 8 — evaluating D37 (y') for some query value 3’ in
O(logn) time — by separately storing a data structure on S and a data structure on 7. See
the full version [11] for details. Our data structure has total size O(nlog®n) and allows us
to find O(logn) nodes whose associated subcurves make up the query subcurve P[s,t]. For
each such pair of nodes u, v we use the (extended) Lemma 8 data structures associated with
these nodes to compute the contribution Dg“ P (y) of backward pairs with one vertex in
subcurve P, and one vertex in P,. We thus spend O(log®n) time to compute the backward
pair distance. This dominates the O(log?n) time required to query the Theorem 4 data
structures associated with each node to compute the Hausdorff distance term.

4 Arbitrary orientation queries

In this section we extend our results to arbitrarily oriented query segments, proving Theorem 3.

Let o be the slope of the line containing the query segment ab, and let 3 be its intercept
(note that vertical query segments can be handled by a rotated version of our data structure
for horizontal queries). We again consider the case where a is left of b; the other case
is symmetric. Following Eq. 1, we can write Dx(P,ab) as the maximum of four terms:

— _
lp1 — all, |lpn — bll, Pu(P,ab), and the backward pair distance Dg(«, 8) with respect to a.

The backward pair distance is now defined as

Dp(a, B) = max {dy4(c, 8) | (p,q) € B(P)}, where
Opg (@, B) = min max {||(z, az + B) — p|, [|(z, cx +) — q|[}

In Section 4.1 we present an O(nlogn) size data structure that supports querying
BH(P, ab) in O(log?n) time. The key insight is that we can use furthest point Voronoi
diagrams instead of furthest segment Voronoi diagrams. In Section 4.2 we present a data
structure that efficiently supports querying Dp(a, §). In Section 4.3 we extend our results
to support queries against subcurves of P as well. This combines our insights from the
horizontal queries with our results from Sections 4.1 and 4.2. Finally, in Section 4.4 we then
show how this also leads to a space-time trade off.

4.1 The Hausdorff distance term

For any point p and slope a we will denote by 77& the ray with apex p and slope « that

—a
points in the leftward direction. Similarly, for any point set T, we define T = {<_pa |pe T}.

Furthermore, we define tha (z,y) to be the directed Hausdorff distance from (x,y) to the
ray p, and heTa(x,y) = max{h?a(x,y) |peT}.

29:9

ESA 2022

29:10

Efficient Fréchet Distance Queries for Segments

We can show that we can use the furthest point Voronoi diagram instead of the furthest
segment Voronoi diagram and obtain the following results.

» Lemma 11. Let T be a set of n points in R%. In O(n?) time we can construct an O(n?)
size data structure so that given a query point (x,y) and slope o we can compute hHTa (z,9)

in O(logn) time.

» Theorem 12. Let P be a polygonal curve in R? with n vertices.
In O(nlogn) time we can construct a data structure of size O(nlogn) so that given a
query segment ab, Dy (P,ab) can be computed in O(log* n) time.
In O(n?) time we can construct a data structure of size O(n?) so that given a query
segment ab, BH(R ab) can be computed in O(logn) time.

4.2 The backward pair distance term

Let (p,q) € P< be an ordered pair. We restrict d,,(c, 3) to the interval of o values for which
(p, q) is a backward pair with respect to orientation «. Hence, each d,4 is a partially defined,
constant algebraic degree, constant complexity, bivariate function. The backward pair
distance Dp is the upper envelope of O(n?) such functions. This envelope has complexity
O(n**¢), for some arbitrarily small ¢ > 0, and can be computed in O(n?*¢) time [23].
Evaluating Dp(«, 8) for some given «, 8 takes O(logn) time. The following lemma, together
with Theorem 12 then gives an O(n?t¢) size data structure that supports O(logn) time
Fréchet distance queries.

» Lemma 13. Let P be an n-vertex polygonal curve in R%. In O(n**¢) time we can construct
a size O(n**¢) data structure so that given a query segment ab, Dg(ab) can be computed in
O(logn) time.

4.3 Subcurve queries

Next, we sketch how to support querying against subcurves P[s,t] of P in O(log® n) time as
well. Refer to the full version [11] for details. We use the same approach as in the horizontal
query segment case: we store the vertices of P into the leaves of a range tree where each
internal node v corresponds to some canonical subcurve P,, so that any subcurve P(s, t] can
be represented by O(logn) nodes.

The Hausdorff distance term. Computing the directed Hausdorff distance is decomposable,
so using this approach with the data_> structure of Theorem 12 immediately gives us a data
structure that allows us to compute Dy (P]s,t],ab) in O(log®n) time. Since the space usage
satisfies the recurrence S(n) = 25(n/2) + O(n?), this uses O(n?) space in total.

The backward pair distance term. By storing the data structure of Lemma 13 at every
node of the tree, we can efficiently compute the contribution of the backward pairs inside
each of the O(logn) canonical subcurves that make up P[s,t]. However, as before, we are
still missing the contribution of the backward pairs from different canonical subcurves. We
again store additional data structures at every node of the tree that allow us to efficiently
compute this contribution.

Let S and T be (the vertices of) two such canonical subcurves, with all vertices of S
occurring before T along P. As before we will argue that for some given o and /3 the functions
T~ h? o(z,ax + B) and = — hﬂsa (z, ax +) are monotonically increasing and decreasing,

M. Buchin, I. van der Hoog, T. Ophelders, L. Schlipf, R.l. Silveira, and F. Staals

respectively, and that the intersection point of (the graphs of) these functions corresponds to
the contribution of the backward pairs in S x T. So, our goal is to build data structures
storing S and T that given a query «, 8 allow us to compute the intersection point of these
functions. We will show that we can use the data structure of Lemma 11 to support such
queries in O(log®n) time.

We generalize some of our earlier geometric observations to arbitrary orientations. Let
p, q be vertices of P, and let S and T be subsets of vertices of P. We define

O, B) = min max {hA—qa(((E, azx + f)), h—»pa((x, ar + ﬁ))} and
DY (a, B) = max {8, (a, 8) | (p,q) € (S xT)N pP=}.

and prove the following lemmas (by essentially rotating the plane so that the query segment
becomes horizontal, and applying the appropriate lemmas from earlier sections):

» Lemma 14. Let P be partitioned into two subcurves S and T with all vertices in S
occurring on P before the vertices of T'. We have that

Dg(a, B) = DE*F (o, B) = max {D3*%(a, B), DL (o, B), DT (e, B) } -

» Lemma 15. Let S and T be subsets of vertices of P, with S occurring before T along P, and
let o, B denote some query parameters. The function x — h<—Ta (z,ax + B) is monotonically

increasing, whereas x — }LE@(:J:7 az+3) is monotonically decreasing. These functions intersect

at a point (x*, ax* + B), for which DgXT(a, B) = h<—Ta(Jc*, ar* 4+ 8) = h—»Sa(x*, azr* +).

Querying ’DgXT(a, B). Consider the predicate Q(x) = h<—Ta(£L'7 ar +) < hﬂsa(x, ax + f).

It follows from Lemma 15 that there is a single value z* so that Q(z) = FALSE for all z < z*
and Q(z) = TRUE for all z > z*. Moreover, x* realizes DgXT(a,B). By storing S and T,
each in a separate copy of the data structure of Lemma 11, we can evaluate Q(z), for any

value z, in O(logn) time. We then use parametric search [22] to find z* in O(log? n) time.

Note that this approach is an O(logn) factor slower compared to the approach we used for
horizontal queries only.

» Lemma 16. Let S, T be subsets of vertices of P such that all vertices in S precede all

vertices in T, stored in the data structure of Lemma 11. For any query o, 8 we can compute
DT (o, B) in O(log® n) time.

For every node v of the recursion tree on P we store: (i) the data structure of Lemma 13
built on its canonical subcurve P,, and (ii) the data structure of Lemma 11 built on
the vertices of P,. The total space usage of the data structure follows the recurrence
S(n) = 258(n/2) + O(n**+), which solves to O(n**¢). To query the data structure with some
subcurve P[s,t] from some vertex s to a vertex ¢t we again find the O(logn) nodes whose
canonical subcurves together define Pls, t], query the Lemma 13 data structure for each of
them, and run the algorithm from Lemma 16 for each pair. The total running time is then
O(log* n). As before, the procedure can be easily extended to the case where s and ¢ lie on
the interior of an edge. We conclude:

» Lemma 17. Let P be a polygonal curve in R? with n vertices, and € > 0. There is an
O(nt¢) size data structure that can be built in O(n**¢) time that for an arbitrary query
segment ab (and two points s and t on P) can report Dg[s’ﬂxp[s’ﬂ (v, B) in O(log* n) time.

Since we can compute all four terms ||s—al|, ||[t—b||, BH (P[s,t],ab), and ’Dg[s’t] xPls.t] (, B)
in O(log? n) time, it follows that we can efficiently answer Fréchet distance queries against
subcurves.

29:11

ESA 2022

29:12

Efficient Fréchet Distance Queries for Segments

4.4 Space vs. Query time tradeoff

We can use our approach for subcurve queries from Section 4.3 to obtain a space vs. query
time trade off for queries against the entire curve. Let k € [1..n] be a parameter. We trim the
recursion tree on P at a node v of size O(k). Let T denote the resulting tree (i.e., the top
log(n/k) levels of the full recursion tree), and let L(7) denote the set of leaves of T, each of
which thus corresponds to a subcurve of length O(k). Let ¢(v) and r(v) be the left and right
child of v, respectively. By repeated application of the second equality in Lemma 14 we have

DEX*P(a, B) = max {ma%cDga")XP””)(a,ﬁ), max Dy (a,,@)} .
ve

veL(T)

At every leaf of T we now store the data structure of Lemma 13, and at every internal
node the data structure of Lemma 11. The space required by all Lemma 13 data structures
is O((n/k)k**¢) = O(nk®+¢). The total size for all Lemma 11 data structures follows the
recurrence S(n) = 25(n/2) + O(n?) which solves to O(n?). Hence, the total space used is
O(nk®+¢ 4+ n?). The preprocessing time is O(nk3+¢ + n?) as well.

To answer a query («, 3) we query the Lemma 13 data structures at the leaves of T in
O(log k) time each. For every internal node v we use Lemma 16 to compute the contribution
of Dg“”)xpr“’) (o, B) in O(log®n) time. Hence, the total query time is O((n/k)logk +
(n/k)log®n) = O((n/k)log®n). So, e.g., choosing k = n'/3 yields an O(n?>*+%) size data
structure supporting O(n2/ 3 log? n) time queries. We can extend this idea to support subcurve
queries in O((n/k)log®n + log* n) time as well, giving us the following result:

» Lemma 18. Let P be a polygonal curve in R? with n vertices, and let k € [1..n] be a
parameter. In O(nk3+t€ + n?) time we can construct a data structure of size O(nk3+e 4+ n?)
s0 that given a query segment ab, Dg(ab) can be computed in Og(n/k) log?n) time. If, in
addition we are also given two points s and t on P, ’Dg[s’t]XP[S’ (ab) can be computed in

O((n/k)log® n +log* n) time.

Since computing BH(P[S, t], ab) can be done in O(log? n) time using only O(n?) space, we
thus established Theorem 3. Once again, it is possible to make the query time proportional
to the complexity of P[s,t] rather than to n.

5 Concluding Remarks

We presented data structures for efficiently computing the Fréchet distance of (part of) a
curve to a query segment. This constitutes an important step towards the more ambitious
goal of finding data structures to efficiently answer queries for general polygonal curves.

Our results improve over previous work for horizontal segments and are the first for
arbitrarily oriented segments. However, we are left with the challenge of reducing the space
used for arbitrary orientations. There are two main issues. The first issue is that even for a
small interval of query orientations (e.g., one of the O(n?) angular intervals defined by lines
through a pair of points) it is difficult to limit the number of relevant backward pairs to
o(n?). The second issue is how to combine the backward pair distance values contributed by
various subcurves. For (low algebraic degree) univariate functions, the upper envelope has
near linear complexity, whereas for bivariate functions the complexity is near quadratic. The
combination of these issues makes it hard to improve over the somewhat straightforward
O(n**¢) space bound we build upon.

M. Buchin, I. van der Hoog, T. Ophelders, L. Schlipf, R.l. Silveira, and F. Staals

—— References

1

10

11

12

13

14

15

16

17

18

Pankaj K Agarwal, Sariel Har-Peled, Nabil H Mustafa, and Yusu Wang. Near-linear time
approximation algorithms for curve simplification. Algorithmica, 42(3-4):203-219, 2005.

H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. Journal of Algorithms,
49(2):262-283, 2003.

Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 5:75-91, 1995.
Boris Aronov, Omrit Filtser, Michael Horton, Matthew J. Katz, and Khadijeh Sheikhan.
Efficient nearest-neighbor query and clustering of planar curves. In Zachary Friggstad, Jorg-
Riidiger Sack, and Mohammad R Salavatipour, editors, Algorithms and Data Structures, pages
28-42. Springer International Publishing, 2019.

M. de Berg, A. F Cook IV, and J. Gudmundsson. Fast Fréchet queries. Computational
Geometry, 46(6):747-755, 2013.

Mark de Berg, Ali D Mehrabi, and Tim Ophelders. Data structures for Fréchet queries in
trajectory data. In 29th Canadian Conference on Computational Geometry (CCCG’17), pages
214-219, 2017.

K. Buchin, M. Buchin, J. Gudmundsson, M. Loffler, and J. Luo. Detecting commuting
patterns by clustering subtrajectories. International Journal of Computational Geometry €
Applications, 21(03):253-282, 2011.

Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four soviets walk
the dog: Improved bounds for computing the fréchet distance. Discret. Comput. Geom.,
58(1):180-216, 2017. doi:10.1007/s00454-017-9878-7.

Kevin Buchin, Maike Buchin, Marc van Kreveld, Maarten Loffler, Rodrigo I Silveira, Carola
Wenk, and Lionov Wiratma. Median trajectories. Algorithmica, 66(3):595-614, 2013.

Maike Buchin, Ivor van der Hoog, Tim Ophelders, Rodrigo I. Silveira, Lena Schlipf, and Frank
Staals. Improved space bounds for Fréchet distance queries. In 36th European Workshop on
Computational Geometry (EuroCG’20), 2020.

Maike Buchin, Ivor van der Hoog, Tim Ophelders, Rodrigo I. Silveira, Lena Schlipf, and
Frank Staals. Efficient Fréchet distance queries for segments. CoRR, abs/2203.01794, 2022.
arXiv:2203.01794.

A. Driemel and S. Har-Peled. Jaywalking your dog: Computing the Fréchet distance with
shortcuts. SIAM Journal on Computing, 42(5):1830-1866, 2013.

Anne Driemel and loannis Psarros. (2 + ¢)-ANN for time series under the Fréchet distance.
arXiv preprint, 2020. arXiv:2008.09406.

Arnold Filtser and Omrit Filtser. Static and streaming data structures for Fréchet distance
queries. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1150-1170. STAM, 2021.

Arnold Filtser, Omrit Filtser, and Matthew J. Katz. Approximate nearest neighbor for
curves — simple, efficient, and deterministic. In 4/7th International Colloquium on Automata,
Languages, and Programming (ICALP 2020), volume 168 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 48:1-48:19, 2020. doi:10.4230/LIPIcs.ICALP.2020.48.
Michael" Godau. A natural metric for curves — computing the distance for polygonal chains
and approximation algorithms. In 8th Annual Symposium on Theoretical Aspects of Computer
Science (STACS’91), pages 127-136, 1991.

J. Gudmundsson, M. Mirzanezhad, A. Mohades, and C. Wenk. Fast Fréchet distance between
curves with long edges. International Journal of Computational Geometry & Applications,
29(2):161-187, 2019.

Joachim Gudmundsson, André van Renssen, Zeinab Saeidi, and Sampson Wong. Fréchet
distance queries in trajectory data. In The Third Iranian Conference on Computational
Geometry (ICCG 2020), pages 29-32, 2020.

29:13

ESA 2022

https://doi.org/10.1007/s00454-017-9878-7
http://arxiv.org/abs/2203.01794
http://arxiv.org/abs/2008.09406
https://doi.org/10.4230/LIPIcs.ICALP.2020.48

20:14

Efficient Fréchet Distance Queries for Segments

19

20

21

22

23

24

Joachim Gudmundsson, André van Renssen, Zeinab Saeidi, and Sampson Wong. Translation
invariant Fréchet distance queries. Algorithmica, 83(11):3514-3533, 2021. doi:10.1007/
s00453-021-00865-0.

M. Jiang, Y. Xu, and B. Zhu. Protein structure—structure alignment with discrete Fréchet
distance. Journal of Bioinformatics and Computational Biology, 6(01):51-64, 2008.

S. Kwong, QH He, K. Man, KS Tang, and CW Chau. Parallel genetic-based hybrid pattern
matching algorithm for isolated word recognition. International Journal of Pattern Recognition
and Artificial Intelligence, 12(05):573-594, 1998.

N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms.
Journal of the ACM, 30(4):852-865, 1983.

Micha Sharir. Almost tight upper bounds for lower envelopes in higher dimensions. Discrete
& Computational Geometry, 12(3):327-345, 1994.

Martin Werner and Dev Oliver. ACM SIGSPATIAL GIS cup 2017: Range queries under Fréchet
distance. SIGSPATIAL Special, 10(1):24-27, June 2018. doi:10.1145/3231541.3231549.

https://doi.org/10.1007/s00453-021-00865-0
https://doi.org/10.1007/s00453-021-00865-0
https://doi.org/10.1145/3231541.3231549

	1 Introduction
	2 Global approach
	3 Horizontal queries
	3.1 The Hausdorff term
	3.2 The backward pairs term
	3.2.1 Relating {D}_B(y) to furthest segment Voronoi diagrams
	3.2.2 Applying divide and conquer

	4 Arbitrary orientation queries
	4.1 The Hausdorff distance term
	4.2 The backward pair distance term
	4.3 Subcurve queries
	4.4 Space vs. Query time tradeoff

	5 Concluding Remarks

