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Abstract
Given a graph where every vertex has exactly one labeled token, how can we most quickly execute a
given permutation on the tokens? In (sequential) token swapping, the goal is to use the shortest
possible sequence of swaps, each of which exchanges the tokens at the two endpoints of an edge of
the graph. In parallel token swapping, the goal is to use the fewest rounds, each of which consists
of one or more swaps on the edges of a matching. We prove that both of these problems remain
NP-hard when the graph is restricted to be a tree.

These token swapping problems have been studied by disparate groups of researchers in discrete
mathematics, theoretical computer science, robot motion planning, game theory, and engineering.
Previous work establishes NP-completeness on general graphs (for both problems), constant-factor
approximation algorithms, and some poly-time exact algorithms for simple graph classes such as
cliques, stars, paths, and cycles. Sequential and parallel token swapping on trees were first studied
over thirty years ago (as “sorting with a transposition tree”) and over twenty-five years ago (as
“routing permutations via matchings”), yet their complexities were previously unknown.

We also show limitations on approximation of sequential token swapping on trees: we identify a
broad class of algorithms that encompass all three known polynomial-time algorithms that achieve
the best known approximation factor (which is 2) and show that no such algorithm can achieve an
approximation factor less than 2.
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1 Introduction

Imagine n distinctly labeled tokens placed without collisions on the n vertices of a graph G.
For example, these n tokens might represent (densely packed) movable agents – robots,
people, packages, shipping containers, data packets, etc. – while the n vertices represent
possible agent locations. Now suppose we want to move the tokens/agents around, for example,
to bring certain shipping containers to the loading side of a cargo ship. In particular, we
can suppose every token has a given start vertex and destination vertex, and the goal is to
move every token to its desired destination. Because every vertex has a token (agents are
densely packed), a natural reconfiguration operation is to swap two adjacent tokens/agents,
that is, to exchange the tokens on the two endpoints of a given edge in G. In this paper, we
study token reconfiguration by swaps from a given start configuration to a given destination
configuration with two natural objective functions:
1. (Sequential) Token Swapping (a.k.a. “sorting with a transposition graph” [2]): Min-

imize the number of swaps, i.e., the total work required to reconfigure.
2. Parallel Token Swapping (a.k.a. “routing permutations via matchings” [3]): Minimize

the number of rounds of simultaneous swaps (where the edges defining the swaps form
a matching, so avoid conflicting shared endpoints), i.e., the total execution time or
makespan required to reconfigure.

These reconfiguration problems can be cast in terms of the symmetric group. Each
possible reconfiguration step – swapping along one edge in the sequential problem, or
swapping along every edge of a matching in the parallel problem – is a particular permutation
on the n tokens (an element of the symmetric group Sn). Assuming the graph is connected,
these permutations generate Sn, defining a Cayley graph C [9] where each node π in C

corresponds to a permutation π of the tokens (a collision-free placement of the tokens) and
an undirected edge connects two nodes π1, π2 in C if there is a reconfiguration step (swapping
an edge or matching in G) that transforms between the two corresponding permutations
π1, π2. Minimizing the number of reconfiguration steps between two configurations of the
tokens (sequential/parallel token swapping) is equivalent to finding the shortest path in the
Cayley graph between two given nodes corresponding to two given permutations in Sn. In
fact, sequential token swapping was first studied by Cayley in 1849 [8] who (before inventing
the Cayley graph) solved the problem on a clique, i.e., without any constraint on which
tokens can be swapped.

Since its introduction, token swapping has been studied by many researchers in many
disparate fields, from discrete mathematics [8, 25, 27, 29, 24, 28, 21] and theoretical computer
science [17, 20, 13, 30, 32, 4, 23, 7, 31, 11, 18, 10, 6] to more applied fields including network
engineering as mentioned earlier [2], robot motion planning [12, 26], and game theory [16].
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What is the complexity of token swapping? In general, it is PSPACE-complete to find a
shortest path between two given nodes in a Cayley graph defined by given generators [17]. But
when the generators include transpositions (single-swap permutations) as in both sequential
and parallel token swapping, O(n2) swaps always suffice [30], so the token-swapping problems
are in NP. Both sequential token swapping [23] and parallel token swapping [5, 18] are known
to be NP-complete on a general graph.

Sequential token swapping on general graphs is also known to be APX-hard [23], and
even W[1]-hard with respect to the number of swaps [7]. For the special case of graphs with
constant treewidth and constant diameter, sequential token swapping is also known to be
NP-hard [7]. Additionally, for the special case of trees, but for the variant where the tokens
have “weights” and “colors” sequential token swapping is known to be NP-hard [6]. From
the algorithms side, there is a 4-approximation for sequential token swapping in general
graphs [23]. Polynomial-time exact algorithms are known for a number of special classes of
graphs including cliques [8], paths [20], cycles [17], stars [25, 24], brooms [28, 18, 6], complete
bipartite graphs [30], and complete split graphs [32]. The problem is also known to be fixed
parameter tractable (where the parameter is the number of swaps) on nowhere dense graphs,
which includes planar graphs and graphs of bounded treewidth [7]. See also the surveys by
Kim [19] and Biniaz et al. [6].

In this paper, we study the special case when the underlying graph is a tree. Sequential
token swapping on a tree was first studied over thirty years ago, even before the problem was
studied on general graphs. Akers and Krishnamurthy [2] studied the problem in the context
of interconnection networks. Specifically, they proposed connecting processors together
in a network defined by a Cayley graph, in particular a Cayley graph of transpositions
corresponding to edges of a tree (what they call a transposition tree), so the shortest-path
problem naturally arises when routing network messages. They gave an algorithm for finding
short (but not necessarily shortest) paths in the resulting Cayley graphs, and characterized
the diameter of the Cayley graph (and thus found optimal paths in the worst case over
possible start/destination pairs of vertices) when the tree is a star. Follow-up work along
this line attains tighter upper bounds on the diameter of the Cayley graph in this situation
when the graph is a tree [27, 13, 21, 11] and develops exponential algorithms to compute the
exact diameter of the Cayley graph of a transposition tree [10], though the complexity of the
latter problem remains open.

Sequential token swapping on a tree is the related problem of computing the shortest-
path distance between two given nodes in the Cayley graph of a transposition tree. For
sequential token swapping on a tree, the literature exhibits a curious phenomenon whereby
there are three 2-approximation algorithms that were all developed independently and all
use completely different techniques. These algorithms are by Akers and Krishnamurthy [2]
in 1989, Vaughan and Portier [29] in 1995, and Yamanaka et al. [30] in 2015. No better
approximation factor than 2 is known.

Parallel token swapping was also introduced in the context of network routing: in 1994,
Alon, Chung, and Graham [3] called the problem “routing permutations via matchings”.
They focused on worst-case bounds for a given graph (the diameter of the Cayley graph);
in particular, they proved that any n-vertex tree (and thus any n-vertex connected graph)
admits a solution with less than 3n rounds, a bound later improved to 3

2 n + O(log n) [33].
Like sequential token swapping, computing the exact diameter of the Cayley graph of a given
tree remains open.

Parallel token swapping on a tree is the related problem of computing the shortest-path
distance between two given nodes in such a Cayley graph. Parallel token swapping is known
to be NP-complete in bipartite maximum-degree-3 graphs, NP-complete even when restricted
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to just three rounds, but polynomial-time when restricted to one or two rounds, but NP-
complete again for “colored” tokens restricted to two rounds [5, 18]. Two approximation
results are known: an additive approximation for paths which uses only one extra round [18],
and a multiplicative O(1)-approximation for the n × n grid graph [12].1 For other special
graph classes, there are tighter worst-case bounds on the diameter of the Cayley graph
[3, 22, 5].

1.1 Our Results
There have been many attempts to understand token swapping on a tree, but all have fallen
short of determining its actual complexity. To summarize the previously stated results for
sequential token swapping on a tree, there are three known 2-approximation algorithms, and
no better approximation known. There are also exact algorithms for several special cases of
trees, with the most general case being a broom (a path attached to a star). From the hardness
side, attempts to prove that the problem is NP-complete have led to NP-completeness proofs
for more general cases. In particular, token swapping on graphs of constant treewidth and
diameter is NP-hard [7], and the “weighted, colored” variant of token swapping on trees is
NP-hard [6]. This leads to our first main question:

Question: Is sequential token swapping on a tree NP-complete?

This question has been implicit since sequential token swapping on a tree was first studied
over 30 years ago, and the question has been explicitly stated by Biniaz et al. [6] and by
Bonnet et al. [7] who conjectured that the answer is yes.

We resolve this question in the affirmative by providing a proof that sequential token
swapping on a tree is NP-complete.

Next, we turn to the approximability of token swapping on a tree. The fact that there
were three independently discovered 2-approximation algorithms, and nothing better is
known, suggests that perhaps there is some barrier at approximation factor 2. This leads to
our second main question:

Question: Is there an inherent barrier to obtaining a (2 − ε)-approximation for
sequential token swapping on trees?

We address this question by showing that there is indeed a restriction on the types of
algorithms that can achieve approximation factor better than 2. To motivate the class of
algorithms we rule out, it helps to examine known algorithms. Specifically, it was previously
known that neither Akers and Krishnamurthy’s “happy swap” algorithm [2] nor Yamanaka
et al.’s cycle algorithm [30] can possibly achieve an approximation ratio better than 2 [6].
These two algorithms share a natural property: every token t always remains within distance
1 of the shortest path from t’s start vertex to t’s destination vertex. A natural question is,
can a better-than-2 approximation be achieved if one allows tokens to deviate from their
shortest paths more, say to distance 10 or 100?

Motivated by this question, we define an ℓ-straying algorithm as an algorithm that never
moves a token a distance more than ℓ from its shortest path. We prove a surprisingly strong
limitation on ℓ-straying algorithms: any less-than-2-approximation algorithm for sequential

1 The results of [12] are phrased in terms of motion planning for robots, and in terms of a model where
an arbitrary disjoint collection of cycles can rotate one step in a round. However, the techniques quickly
reduce to the model of swapping disjoint pairs of robots, so they apply to parallel motion planning as
well. They show that there is always a solution within a constant factor of the obvious lower bound on
the number of rounds: the maximum distance between any token’s start and destination.
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token swapping on trees must in general bring a token arbitrarily far – an Ω(n1−ε) distance
away – from its shortest path. That is, no ℓ-straying algorithm for ℓ = o(n1−ε) can achieve
better than a 2-approximation.

The other known 2-approximation algorithm (besides [2] and [30]), is the Vaughan-Portier
algorithm [29], which in fact does move tokens arbitrarily far from their shortest paths. That
is, our result on ℓ-straying algorithms does not imply a limitation on the Vaughan-Portier
algorithm. To address this, we also obtain the first proof that the Vaughan-Portier algorithm
[29] is no better than a 2-approximation; the best previous lower bound for its approximation
factor was 4

3 [6]. Thus, none of the known algorithms or even their generalizations can
improve upon the approximation factor of 2.

For parallel token swapping on a tree, less is known than for the sequential version. In
particular, there is no known approximation algorithm nor is there any known hardness for
tree-like graphs. Thus, the complexity of this problem is completely unclear. This leads to
our third main question:

Question: What is the complexity of parallel token swapping on a tree?

We address this question by showing that parallel token swapping on a tree is NP-hard.
In summary, our results are as follows:

1. Sequential token swapping is NP-complete on trees.
2. Parallel token swapping is NP-complete on trees, even on subdivided stars.
3. Limitations on known techniques for approximating sequential token swapping on trees:

a) No ℓ-straying algorithm for any ℓ = O(n1−ε) can achieve better than a 2-approximation.
b) The Vaughan-Portier algorithm does not achieve better than a 2-approximation.

1.2 Our Techniques
NP-hardness of sequential token swapping on trees

Our NP-hardness proof for sequential token swapping on trees is our most technical and
conceptually difficult result. Prior work has built towards this result by providing NP-
hardness for generalizations of the problem, but there appear to be barriers against extending
these techniques. In the following, we briefly review this prior work and compare it to our
own.

Token swapping on trees is known to be NP-hard for the variant where tokens have
weights as well as “colors” [6]. However, the use of weights and colors appears to be crucial
to the reduction. Token swapping is also known to be NP-hard on graphs with treewidth
2 and diameter 6 [7]. In particular, the graph in this construction is almost a tree in the
sense that if you remove a single vertex the remaining graph is a forest. However, this single
vertex has very high degree and is crucial to the construction. Given the apparent barriers
against extending these known approaches to token swapping on trees, we take a completely
different approach.

We reduce from the permutation generation problem in Garey and Johnson [14, MS6]
(also called the “word problem for products of symmetric groups” (WPPSG) in [15]). In
comparison, the above prior work [6, 7] reduces from the vertex cover problem, and the
3-dimensional matching problem, respectively. We observe that the permutation generation
problem has a similar feel to token swapping, as it can be recast in terms of a token-swapping
reachability problem as follows:

ESA 2022
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Star Subsequence Token-Swapping Reachability (Star STS): Given a star
graph with center vertex 0 and leaves 1, 2, . . . , m, where vertex i initially has a token i;
given a target permutation π of the tokens; and given a sequence of swaps s1, s2, . . . , sn,
where sj ∈ {1, . . . , m} indicates a swap on edge (0, sj), is there a subsequence of the
given swaps that realizes π?

As a first step towards reducing from Star STS to token swapping on trees, we reduce to
weighted token swapping on trees, where each token has a non-negative integer weight, and
the cost of a swap is the sum of the weights of the two tokens being swapped. Our reduction
contains only tokens of weight 0 or 1. That is, the tokens of weight 0 are free to move, while
the tokens of weight 1 cost to move. Our reduction from Star STS to 0/1-weighted token
swapping on trees is quite simple. It is presented in Section 2.

The situation becomes much more complicated when we extend this result from the
0/1-weighted setting to the unweighted setting. Now, we need to simulate the weight-0
tokens using unweighted tokens. This introduces several complications.

First, we will describe why weight-0 tokens are integral to our reduction from Star STS
to 0/1-weighted token swapping on trees. The Star STS problem asks whether there exists a
subsequence of swaps that realizes the target permutation π. This subsequence could contain
any number of swaps. In our reduction to 0/1-weighted token swapping, the swaps from this
subsequence are represented using tokens of weight 0. This way, if there is a solution to the
Star STS instance, then the cost of the 0/1-weighted token swapping is the same regardless
of how many swaps occurred in the solution to the Star STS instance. This introduces a
challenge for unweighted token swapping for the following reason. For 0/1 weighted token
swapping, we prove a statement of the form “if the token swapping cost is exactly K then
there is a solution to the Star STS instance”, while for unweighted token swapping, we prove
a statement of the form “if the token swapping cost is within a particular range then there is
a solution to the Star STS instance”. The second statement is much more difficult to prove
because we need to argue that the additional swaps in this range do not allow the tokens to
move around in a clever way to admit a solution even when there is no Star STS solution. In
fact, as we discuss next, natural modifications of the weighted construction do admit such
clever ways to create counterexamples.

The most basic first attempt to remove the weights from the weighted construction is
simply to replace all weight-0 tokens with unweighted tokens. This construction admits
a straightforward counterexample due to the increased cost of swapping these formerly
weight-0 tokens. Thus, we would like to make the contribution of the formerly weight-0
tokens negligible in comparison to the weight-1 tokens. A natural attempt is to replace each
weight-1 token with a long path of tokens. However, as it turns out, there is a surprising and
subtle counterexample to this strategy. To overcome this counterexample, we introduce a set
of “padding tokens” throughout the graph whose role is to block any deviant movement of
the original tokens.

The resulting proof is very involved. To give a sense of the complexity, our 0/1-weighted
hardness proof fits in just a couple of pages, while our unweighted proof spans around thirty
pages. Our unweighted proof is presented in Section 3.

NP-hardness of parallel token swapping on trees

We prove that parallel token swapping on trees is NP-hard, even when restricted to subdivided
stars. This result is presented in the extended version of this paper [1]. As for sequential
token swapping, we reduce from the Star STS problem.
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Our construction is reminiscent of our construction for sequential token swapping, although
the details differ significantly. In particular, we use the single high-degree vertex in the
subdivided star as a bottleneck to limit the available parallelism. We develop “enforcement”
tokens that need to swap through the high-degree vertex to force congestion at specific times.
This proof’s complexity is between the weighted and unweighted sequential hardness proofs.

Limitations on known techniques for approximation algorithms

To prove that neither an ℓ-straying algorithm nor the Vaughan-Portier algorithm can achieve
better than a 2-approximation, we use a problem instance that has been previously used to
prove that Akers and Krishnamurthy’s and Yamanaka et al.’s algorithms cannot achieve an
approximation ratio better than 2 [6]. To prove our results, we show that while there exists a
solution to the instance with K swaps (for some K), (1) every ℓ-straying algorithm performs
2K swaps, and (2) the Vaughan-Portier algorithm performs 2K swaps. The existence of
a solution with K swaps was already shown by [6], so it remains to show that the above
algorithms require 2K swaps.

We emphasize that the proofs in [6] for Akers and Krishnamurthy’s and Yamanaka et
al.’s algorithms, as well as our proof for the Vaughan-Portier algorithm, are for specific
algorithms, while our proof for ℓ-straying algorithms shows limitations against a very wide
class of possible algorithms. Thus, our proof for ℓ-straying algorithms requires much more
general reasoning about how tokens can possibly move around the graph.

2 Weighted sequential token swapping on trees is NP-hard

In this section, we prove that weighted token swapping on a tree is NP-hard, even when the
token weights are in {0, 1}. Our purpose is to introduce the general idea that is used in our
main NP-completeness proof for the unweighted case given in Section 3.

We first precisely define the decision problem weighted sequential token swapping
on trees [6], abbreviated in this section to weighted token swapping. The input consists
of: a tree on n vertices with distinct initial positions (vertices) and distinct target positions
for the n tokens; non-negative integer weights on the tokens; and a maximum cost K. The
cost of a swap is the sum of the weights of the two tokens involved. The decision problem
asks whether there is a sequence of swaps that moves all the tokens to their target positions
and such that the sum of the costs of the swaps is at most K.

It is not clear whether the weighted token swapping problem lies in NP; however, it is in
NP if K is given in unary.2

We prove that weighted token swapping is NP-hard when K is given in unary. The
reduction uses Star STS. In order to distinguish tokens and vertices in the original star from
those in the tree that we construct, we will call the tokens of the Star STS instance items
and we will call the leaves slots. Then the instance of Star STS consists of: a star with center
0 and slots 1, . . . , m, each of which initially has an item of its same label; a permutation π

of the items; and a sequence s1, . . . , sn of slots that specify the allowed swaps. Figure 1(a)
shows an example input for m = 4 slots, 5 items and a sequence of length n = 7.

▶ Theorem 1. Weighted token swapping on trees is NP-hard.

2 Consider a minimum length swap sequence of weight at most K. The number of swaps involving a
nonzero weight token is at most K. Because the sequence has minimum length, it can be shown that
no two zero-weight tokens swap more than once. Thus the sequence has length at most K + n2 and
provides a polynomial-size certificate, showing that the problem is in NP.

ESA 2022
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0[3]

1[0] 2[2] 3[4] 4[1]

  s1, s2, s3, s4, s5, s6, s7  =

   1,  3,  4,  1,  2,  1,  2

(a) (b)

0[3]

1[0]

x1[y7]

y1[x6]

y5[x7]

y2[x2]

y3[x3]

y4[x4] y6[x1]

y7[x5]

2[2]

3[4]

4[1]

x2[y6]x3[y5]x4[y4]x5[y3]x6[y2]x7[y1]

Figure 1 (a) An instance of Star STS with m = 4 slots and a sequence of length n = 7; notation
a[b] indicates that token a is initially at this vertex and token b should move to this vertex. This
instance has no solution because item 4 should move to slot 3, which is possible only if slot 3 appears
after slot 4 in the sequence. (b) The corresponding instance of weighted token swapping with the
ordering gadget on the left and m = 4 slot gadgets attached to the root, each with a nook vertex
shown in red. After swapping item token 0 at the root with token y1 in the first (bottom) slot
gadget there is an opportunity to swap tokens 0 and 1 for free along the nook edge of the first slot
gadget, before moving y1 to its target position at the end of the ordering gadget and moving x1 to
its target position at the end of the first slot gadget.

Proof. Suppose we are given an instance of Star STS as described above. We may assume
without loss of generality that every slot appears in the sequence (otherwise remove that slot
from the problem) and that no slot appears twice in a row in the sequence.

Construct a tree with a root, an ordering gadget which is a path of length n attached
to the root, and m slot gadgets attached to the root. Slot gadgets are defined below. See
Figure 1(b) where the ordering gadget of length n = 7 appears on the left and there are
m = 4 slot gadgets attached to the root. We picture the tree with the root in the middle,
and use directions left/right as in the figure.

Let ni be the number of occurrences of slot i in the input sequence. Observe that∑m
i=1 ni = n. Slot gadget i consists of a path of ni vertices, plus an extra leaf attached

to the leftmost vertex of the path. This extra leaf is called the nook of the slot gadget.
The m nooks and the root are in one-to-one correspondence with the slots and the center of
the original star (respectively), and we place item tokens at these vertices whose names,
initial positions, and final positions correspond exactly to those of the items of the input
star. These item tokens are given a weight of 0.

There are 2n additional non-item tokens x1, . . . , xn and y1, . . . , yn. These all have
weight 1. The xj ’s are initially placed along the ordering gadget path, in order, with x1
at the right and xn at the left. The ordering path is also the target position of the yj ’s in
reverse order with y1 at the left and yn at the right.

Suppose slot i appears in the sequence as sj1 , sj2 , . . . , sjni
with indices in order j1 < j2 <

· · · < jni
. Then tokens yj1 , yj2 , . . . , yjni

are initially placed along the path of slot gadget i,
in order with smallest index at the left. The path of slot gadget i is also the target position
of the tokens xj1 , xj2 , . . . , xjni

in reverse order with smallest index at the right.

Consider, for each non-item token xj or yj , the distance from its initial location to its
target location. This is a lower bound on the cost of moving that token. We set the max
cost K to the sum of these lower bounds. This guarantees that every xj or yj only travels
along its shortest path. Observe that this reduction takes polynomial time. We now prove
that a YES instance of Star STS maps to a YES instance of token swapping and vice versa.
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YES instance of Star STS. Suppose the Star STS instance has a solution. The “intended”
solution to the token swapping instance implements each sj for j = 1, . . . , n as follows.
Suppose sj = i. By induction on j, we claim that token yj will be in the leftmost vertex of
slot gadget i when it is time to implement sj . Swap token yj with the item token t currently
at the root. Then item token t has the opportunity to swap for free with the item token
in nook i. We perform this free swap if and only if swap sj was performed in the solution
to Star STS. Next, swap tokens yj and xj – we claim by induction that xj will be in the
rightmost vertex of the ordering gadget. Finally, move token yj to its target position in the
ordering gadget, and move xj to its target position in slot gadget i. It is straightforward to
verify the induction assumptions. Every xj and yj moves along its shortest path so the cost
of the solution is equal to the specified bound K.

YES instance of weighted token swapping. Suppose the weighted token swapping instance
has a solution with at most K swaps. Because K is the sum of the distances of the non-item
tokens from their target positions, each xj and yj can only move along the shortest path
to its target position. Token xj must move into the root before xj+1, otherwise they would
need to swap before that, which means moving xj the wrong way along the ordering gadget
path. Similarly, yj must move into the root before yj+1, otherwise they need to swap after
that, which means moving yj+1 the wrong way.

Furthermore, xj must move into the root before yj+1 otherwise the ordering gadget would
contain xj , . . . , xn, and y1, . . . , yj , a total of n + 1 tokens, which is more tokens than there
are vertices in the ordering gadget.

We also claim yj must move into the root before xj+1. The nooks can only contain item
tokens, since no xj or yj can move into a nook. This accounts for every item token except for
one “free” item token. Now suppose xj+1 moves into the root before yj . Then the ordering
gadget contains xj+2, . . . , xn, and y1, . . . , yj−1, a total of n − 2 tokens. Even if the free item
token is in the ordering gadget, there are not enough tokens to fill the ordering gadget.

Thus the xj ’s and yj ’s must use the root in order, first x1 and y1 in some order, then x2
and y2 in some order, etc. Finally, we examine the swaps of item tokens. A swap between
two item tokens can only occur when the free item token is at the parent of a nook. Suppose
this happens in slot gadget i. Then some token yj must have left the slot gadget, and the
corresponding token xj has not yet entered the slot gadget, which means that neither of the
tokens yj+1 or xj+1 has moved into the root. This implies that any swap of item tokens is
associated with a unique sj = i, and such swaps must occur in order of j, 1 ≤ j ≤ n. Thus
the swaps of item tokens can be mimicked by swaps in the original Star STS sequence, and
the Star STS instance has a solution. ◀

3 Sequential token swapping on trees is NP-complete

Recall that the token swapping problem is a decision problem: given a tree with initial and
target positions of the tokens, and given a non-negative integer K, can the tokens be moved
from their initial to their target positions with at most K swaps. Membership in NP is
easy to show: any problem instance can always be solved with a quadratic number of swaps
by repeatedly choosing a leaf and swapping its target token to it. Thus, a certificate can
simply be the list of swaps to execute. Here we give an overview of the construction for the
unweighted case; however, most of the proof is left to the full version [1].
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3.1 Overview
We reduce from Star STS and follow the same reduction plan as for the weighted case,
building a tree with an ordering gadget and m slot gadgets, each with a nook for an item
token. However, there are several challenges. First of all, the swaps with item tokens are no
longer free, so we need to take their number into account. Secondly, we cannot know the
number of item token swaps precisely since it will depend on the number of swaps (between
0 and n) required by the original Star STS instance. Our plan is to make this “slack” n very
small compared to the total number of swaps needed for the constructed token swapping
instance. To do this, we will make the total number of swaps very big by replacing each of the
non-item tokens xj and yj by a long path of non-item tokens called a “segment.” This raises
further difficulties, because nothing forces the tokens in one segment to stay together, which
means that they can sneak around and occupy nooks, freeing item tokens to swap amongst
themselves in unanticipated ways. To remedy this we add further “padding segments” to the
construction. The construction details are given in Section 3.2.

Proving that our unweighted construction is correct is much more involved than in the
weighted case. There are two parts to the proof.

Part 1: YES instance of Star STS → YES instance of token swapping. In the
full version [1] we show that if there is a solution to an instance of Star STS then the
constructed token swapping instance can be solved with at most K swaps (where K will
be specified in the construction). This solution uses exactly H = K − n swaps to get the
non-item tokens to their target positions, and uses between 0 and n additional swaps to
get the item tokens to their target positions. Note that H counts swaps of both item and
non-item tokens and is more than just the cost of moving each non-item token along its
shortest path.

Part 2: YES instance of token swapping → YES instance of Star STS. In the full
version [1] we show that if the constructed token swapping instance can be solved with at
most K swaps then the original Star STS instance has a solution. We show that H swaps
are needed to get the non-item tokens to their destinations. We then show that with only
n remaining swaps, the motion of item tokens is so constrained that they must behave
“as intended” and therefore correspond to swaps in the original Star STS instance.

3.2 Construction of token swapping instance
Suppose we have an instance of Star STS where the star has center 0 and leaves 1, . . . , m

and each vertex has a token of its same label. We have a permutation π of the tokens with
π(0) = 0 and a sequence s1, . . . , sn with sj ∈ {1, . . . , m} that specifies the allowed swaps. As
in the weighted case in Section 2, we will refer to the tokens of the Star STS instance as
items and the leaves as slots. We assume without loss of generality that every slot appears
in the sequence (otherwise remove that slot from the problem) and that no slot appears
twice in a row in the sequence.

Construct a tree as in the weighted case except that each individual xj and yj is replaced
by a sequence of k vertices (and tokens) with k = (mn)c for a large constant c, to be set
later. Each such sequence of length k is called a big segment. Refer to Figure 2 where
the tree is drawn with the root in the middle, the ordering gadget to the left, and the slot
gadgets to the right. We will refer to left and right as in the figure. The target ordering of
tokens within a big segment behaves as though the segment just slides along the shortest
path to its target, i.e., the left to right order of tokens in a segment is the same in the initial
and the final configurations.



O. Aichholzer et al. 3:11

p2,5

(b)

0

0[0]

1[3] 2[2] 3[4] 4[1]

  s1, s2, s3, s4, s5  =

   1,  3,  4,  1,  2

(a)

x1x2x5 p3,1p2,1p4,1p1,5p3,5p4,5

y1 y5y2q4,1q2,1q3,1 q2,5q4,5q3,5

3

x4

x5

x2

x3

x1p1,3 p1,2p1,5

p2,4 p2,3 p2,2 p2,1

p3,1

p4,5

p3,5 p3,4 p3,3

p4,4 p4,2 p4,1

2

4

1

1

y1

y5

y2

y3

y4q1,1 q1,2 q1,4

q2,1 q2,2 q2,3 q2,4

q3,1

q4,1

q3,3 q3,4 q3,5

q4,2 q4,4 q4,5

2

3

4

(c)

0

q4,3

q3,2

q2,5

q1,5q1,3

p4,3

p3,2

p1,4 p1,1

q1,1

p1,1

q1,5

p2,5

Figure 2 (a) An instance of Star STS with m = 4 slots and a sequence of length n = 5. (b) The
corresponding instance of token swapping with the initial token positions. The root has item token 0
(coloured red). The ordering gadget lies to the left of the root. There are 4 slot gadgets to the right
of the root. A long oval indicates a big segment of length k, and a short oval indicates a padding
segment of length k′ = k/n8. Each nook vertex (coloured red) is attached to the kth vertex from the
root along the slot gadget path. Item tokens are coloured red; non-slot tokens are in the segment
ovals coloured gray; and slot tokens are in the segment ovals coloured white. (c) The target token
positions. In the first round of the “intended” solution, big segments y1 and x1 first change places.
As y1 moves left, item token 0 moves to nook parent 1 where it may swap with item token 1. As x1

moves right, the item token moves back to the root. Then segment y1 moves to the far left of the
ordering gadget and x1 moves to the far right of the first slot gadget. Next, padding segments p3,1

and q3,1 change places across the root and move to their target locations; then p2,1 and q2,1; then
p4,1 and q4,1; and finally p1,1 and q1,1. Note the ordering q3,1, q2,1, q4,1, q1,1 of padding segments
that lie to the right of y1 in the final configuration – q1,1 is last because s1 = 1 and q3,1 is first
because s2 = 3.

The nook vertex in each slot gadget is attached to the vertex at distance k from the root
in the slot gadget, and this vertex is called the nook parent. The edge between the nook
vertex and the nook parent is called the nook edge, see Figure 2. In the “intended” solution,
the big segments leave the slot gadgets and enter the ordering gadget in the order y1, . . . , yn.

Although we will not give details, the construction so far allows “cheating” via interference
between slot gadgets. To prevent this, we add a total of 2nm padding segments each of
length k′ = k/n8. The intuition is in the “intended” solution, after yj enters the ordering
gadget, one padding segment from each slot gadget will enter the ordering gadget, and
then yj+1 will do so. We now give the details of the padding segments in the initial/final
configurations of the slot/ordering gadgets. In the initial configuration there are nm padding
segments qi,j , i = 1, . . . , m, j = 1, . . . , n in the slot gadgets, and nm padding segments
pi,j , i = 1, . . . , m, j = 1, . . . , n in the ordering gadget. In the final configuration, the qi,j ’s
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3:12 Hardness of Token Swapping on Trees

are in the ordering gadget and the pi,j ’s are in the slot gadgets. In the initial configuration,
slot gadget i, i = 1, . . . , m, contains n padding segments qi,j , j = 1, . . . , n. They appear in
order from left to right with big segments mixed among them. Specifically, if yj′ is a big
segment in slot gadget i then yj′ appears just before qi,j′ . In the final configuration of the
ordering gadget there are m padding segments after each of the n big segments. The padding
segments after yj are qi,j , i = 1, . . . , m. They appear in a particular left-to-right order: qsj ,j

is last, qsj+1,j is first, and the others appear in order of index i. Within one padding segment,
the left-to-right ordering of tokens is the same in the initial and final configurations.

The initial configuration of the ordering gadget is obtained from the final configuration by:
reversing (from left to right) the pattern of big segments and padding segments; changing y’s
to x’s, and changing q’s to p’s. Similarly, the final configuration of slot gadget i is obtained
from the initial configuration of slot gadget i in the same way.

Let A be the set of non-item tokens, and for any token t, let dt be the distance between
t’s initial and target positions. To complete the reduction, we will set H to be 1

2
∑

t∈A(dt +1)
and set the bound K to be H + n. The decision question is whether this token swapping
instance can be solved with at most K swaps. The reduction takes polynomial time.

The remainder of the proof can be found in the full version [1].

4 Known techniques preclude approximation factors less than 2

Previous results about sequential token swapping on trees include three different polynomial
time 2-approximation algorithms and some lower bounds on approximation factors. The
three algorithms all have the property that if a token at a leaf is at its destination (i.e., it is
a “happy leaf token”) then the algorithm will not move it. Biniaz et al. [6] proved that any
algorithm with this property has a (worst case) approximation factor at least 4

3 . They also
proved via ad-hoc arguments that the approximation factor is exactly 2 for two of the known
2-approximation algorithms (the “Happy Swap Algorithm” and the “Cycle Algorithm”). For
the third 2-approximation algorithm, the Vaughan-Portier algorithm, they could not prove a
lower bound better than 4

3 .
We prove that the Vaughan-Portier algorithm has approximation factor exactly 2. We also

extend the approximation lower bounds of Biniaz et al. by proving that the approximation
factor is at least 2 for a larger family of algorithms. We formalize this family as follows. For
token t let Pt be the path from t’s initial position to its final position. A sequence of token
swaps is ℓ-straying if at all intermediate points along the sequence, every token t is within
distance ℓ of the last vertex of Pt that it has reached up to this point. A token swapping
algorithm is ℓ-straying if it produces ℓ-straying sequences.

Both approximation lower bounds will be proved for the same family of trees that was
used by Biniaz et al. [6]. For any k and any odd b we define a tree Tk,b together with initial
and final positions of tokens. The tree Tk,b has b paths of length k attached to a central
vertex c, and a set L of k leaves also attached to c. See Figure 3. The tokens at c and L are
happy – they are at their final positions. The tokens in branch i, 0 ≤ i ≤ b − 1, have their
final positions in branch i + 1, addition modulo b, with the initial and final positions equally
far from the center c.

Biniaz et al. [6] proved that the optimum number of swaps for Tk,b is at most (b +
1)(

(
k+1

2
)

+ 2k). The solution repeatedly exchanges the tokens in branch i, 0 ≤ i ≤ b − 1,
modulo b, with the tokens at L. The first exchange moves the tokens initially at L into
branch 0, and the (b + 1)st exchange moves those tokens back to L. In the full version [1] we
prove that for Tk,b the approximation factor is not better than 2 for ℓ-straying algorithms
and for the Vaughan-Portier algorithm.
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Figure 3 Tree Tk,b with b = 3 branches each of length k = 4, and with k = 4 leaves attached to
the center node. The dashed arrows go from a token’s initial to final position. The figure is from [6].

5 Open Problems

Many interesting related problems remain open. For sequential token swapping on trees,
where is the divide between NP-complete and polynomial-time? Our reduction’s tree is a
subdivided star (as for parallel token swapping) with the addition of one extra leaf (the nook)
per path. By contrast, there is a polynomial-time algorithm for the case of a broom (a star
with only one edge subdivided) [28, 18, 6]. What about a star with two subdivided edges?

For parallel token swapping, even the case of a single long path is open. Kawahara et
al. [18] gave an additive approximation algorithm that uses at most one extra round. Is there
an optimal algorithm, or is parallel token swapping NP-hard on paths?

There are also open problems in approximation algorithms. In parallel token swapping,
we know that there is no PTAS [18]. Is there an O(1)-approximation for trees or general
graphs? For sequential token swapping, there is a 4-approximation algorithm [23]. Is 4 a
lower bound on the approximation factor of this algorithm? Is 4-approximation the best
possible for general graphs?

Although this paper focused on the best reconfiguration sequence, much research is
devoted to understanding the worst-case behavior for a given graph; is it NP-hard to
determine the diameter of the Cayley graph, i.e., the maximum number of reconfiguration
steps that can be required for any pair of token configurations? This problem is open for
both sequential token swapping (implicit in [10]) and parallel token swapping [3].
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