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—— Abstract

We give a new combinatorial explanation for well-known relations between determinants and traces
of matrix powers. Such relations can be used to obtain polynomial-time and poly-logarithmic space
algorithms for the determinant. Our new explanation avoids linear-algebraic arguments and instead
exploits a classical connection between subgraph and homomorphism counts.
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1 Introduction

The determinant of n x n matrices is, up to scaling, the unique function from n x n matrices
to scalars that is linear and alternating in the rows and columns. It admits the well-known
Leibniz formula

det(A) = Z Sgn(”)Hai,n(iw (1)

TESH

where S,, denotes the set of permutations of {1,...,n} and sgn : S, — {—1,1} denotes the
permutation sign. Writing o () for the number of cycles in 7, the permutation sign can be
expressed as sgn(m) = (—1)"+ (™),

When presented with only the right-hand side of (1), unaware of the connection to the
determinant, one would likely struggle to evaluate this sum of n! terms efficiently. For
comparison, it is #P-hard to compute the similarly defined permanent [8], which is obtained
by omitting the sign factors from the expression.

Yet, determinants can be evaluated efficiently, e.g., via Gaussian elimination in O(n?) field
operations, including divisions. Asymptotically optimal algorithms achieve O(n®) operations,
where w < 3 is the exponent of matrix multiplication [2, Exercise 28.2-3]. Note that det(A)
is defined over any ring containing the entries of A; there are also algorithms computing
determinants with a polynomial number of ring operations, i.e., excluding divisions [6, 1, 7].

Determinants from matrix powers

It is classically known in linear algebra that det(A) for n x n matrices A can be computed
from the matrix traces tr(A*) for 1 < k < n. In the following, assume that A is defined
over an algebraically closed field F, such that A has eigenvalues A1,...,\, € F. The idea
is to express det(A) and tr(A*) for 1 < k < n as particular polynomials in the eigenvalues
A1, ..., An and then relate these polynomials.
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The determinant can be expressed as det(A) = Aj...A,; this is the n-th elementary
symmetric polynomial in the eigenvalues. Generally, the k-th elementary symmetric
polynomial ey (z1,...,2,) in n variables is the sum of monomials » ¢ [];c g s, where S
ranges over all k-subsets S C {1,...,n}.
The matrix trace satisfies tr(A) = A\; +. ..+ \,, and more generally, tr(A*) = \¥+. ..+ \E.
This is the k-th power-sum polynomial in the eigenvalues. Generally, the k-th power sum
polynomial is py(z1,...,z,) = ¥ + ... + 2k,
The Girard—Newton identities then allow us to relate the power-sum and elementary symmetric
polynomials. They state that, for all 1 < k < n,

k
kep(x1,...,2,) = Z(—l)i_lek,i(acl, e )P (T15 -, T)-

i=1

For F of characteristic 0, a recursive application of these identities allows us to compute
det(A4) = e, (M1, ..., A\n) from the values pr(Aq, ..., \,) = tr(4%) for 1 < k < n. Csanky’s
algorithm [4, Chapter 31] implements this approach with an arithmetic circuit of bounded
fan-in, O(log2 n) depth, and polynomial size. In other words, it shows that determinants can
be computed with O(log2 n) operations on a polynomial number of parallel processors.

Our result

The main result of this paper is a novel and self-contained derivation of a known and
algorithmically useful formula that expresses the determinant of n x n matrices A as a
polynomial combination of traces of matrix powers:

(Al )
() = 1 S T o ¢ A L 2)

AFn

Some remarks on the notation are in order. The sum ranges over partitions A of n, which
are multi-sets of positive numbers summing to n. We write A - n to indicate that A is a
partition of n and write |A| for its number of parts. For ¢ € N, we write s¢(\) € N for the
number of occurrences of £ in .

The previous subsection essentially gives a proof of (2) by appropriately expanding the
recursive applications of the Girard—Newton identities. The new proof we present in this
paper bypasses notions like eigenvalues, symmetric polynomials, and the Girard—Newton
identities, and instead relies on ideas from the theory of graph homomorphism counts.

Our proof of (2) is contained in Section 2. We then sketch in Section 3 how this formula
can be used to obtain polynomial-time and parallel algorithms for the determinant.

2  Proof of Equation (2)

In the following, let [n] = {1,...,n} and let A = (a; ;); je[n) be a matrix. We will study the
determinant of A using graph-theoretic language. The graphs G we consider are directed
and may feature self-loops, and some graphs may feature parallel edges between the same
pair of vertices. We write V(G) and E(G) for the vertices and edges of G.

2.1 Determinants are sums of cycle covers

The matrix A induces an edge-weighted complete directed graph with self-loops on the
vertex set V(A) = [n]. Abusing notation, we also write A for this weighted graph. In this
view, permutations correspond to cycle covers, which are edge-sets C C E(A) inducing
vertex-disjoint cycles that cover all vertices of A.
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We require the more general notion of a k-partial cycle cover for 0 < k < n, which is a
collection of vertex-disjoint cycles with k edges in total. We write o(C') for the number of
cycles in C, define the sign of C' analogously to the permutation sign as sgn(C) = (—1)I¢1+o(C),

and define the format of C as the partition A F k induced by the multi-set of cycle lengths.

Finally, let C(n, k) be the set of k-partial cycle covers of the complete directed graph on
vertex set [n].

Partial cycle covers are connected to k-partial determinants. Up to sign, these are the
coeflicients of characteristic polynomials, and they can be defined as

deti(A) = Y det(A[S]),
SCln] of size k

where A[S] is the square sub-matrix of A defined by restricting to the rows and columns
contained in S. From the Leibniz formula (1), it follows that

dety(A) = Z sgn(C) H Aoy p- (3)
CceC(n,k) uveC

Given A+ k, let Cy € C(n, k) be any fixed cycle cover of format A\. We can regroup terms in
(3) to obtain

dety(A) = Z sgn(Cy) Z H Gy - (4)

Ak ceC(n,k)of wvel
format A

=:sub(Cx—A)

Note that the quantity sub(Cy — A) defined above is a weighted sum over the cycle covers
C isomorphic to C), weighted by the product of the edge-weights in C.

2.2 Relating subgraphs, embeddings and homomorphisms

Let L be a graph, possibly containing parallel edges. The weighted homomorphism and
embedding counts from L into A are defined as

hom(L — A) = Z H Af(u),f(v) (5)

f:V(L)—[n] e€E(L)
with e=uv

emb(L — A) = Z H Af(u),f(v)- (6)

f:V(L)—[n] e€E(L)
injective with e=uv

For example, if C; denotes the directed (-cycle for £ € N, then hom(Cy, — A) = tr(A°).

Moreover, for A F k, recall that sp(\) counts the occurrences of part ¢ in A\. We have
k
hom(Cy — A) = ] tr(A9)*™, (7)
=1

since homomorphisms from a disjoint union of graphs can be chosen independently for the
individual components; this implies that hom(Cy — A) is the product of homomorphism
counts for the individual cycles in C'y.

Given a graph P without parallel edges, an automorphism of P is an isomorphism into
itself. We write aut(P) for the number of automorphisms of P. For example,

k
aut(Cy) = [ [ se(A)!- £, (8)
(=1

38:3

ESA 2022



38:4

Determinants from Homomorphisms

since any automorphism of C) (i) permutes the set of s;(\) cycles for any fixed length ¢,
which gives rise to a factor of s;(\)! in the above product, and (ii) independently applies an
automorphism to each cycle, giving rise to a factor of £ for every cycle of length /.

With these notions set up, we can successively express subgraph counts from cycle covers,
as defined in (4), via homomorphism counts. First, we transition from subgraph to embedding
counts: As every subgraph isomorphic to C) gives rise to aut(C)) many embeddings with
the same image, we obtain

emb(C\ — A)

sub(Cy — A) = ant(Ch) (9)

Next, we transition from embedding to homomorphism counts. Roughly speaking,
embedding counts from a graph H are equal to homomorphism counts from H plus “lower-
order terms” involving only homomorphism counts from graphs F' with strictly less vertices
than H. This follows directly from [5, (5.18)] and we include a simple proof for completeness,
also contained in [3].

» Lemma 1. For any fixed graph H, there are coefficients Bp € Z for all graphs F with
[V(F)| < |V(H)| such that

emb(H — A) =hom(H = A)+ > Bphom(F — A).

graphs F' with
[V (F) <V (H)]

Proof. Given a partition p of the set! V/(H), the quotient H/p is the multigraph obtained by
identifying the vertices within each block of p while keeping all possibly emerging self-loops
and multi-edges. We have

hom(H — A) = Z emb(H/p — A), (10)

partition p
of V(H)

since any homomorphism f : V(H) — [n] induces a partition p = {f~1(i) | i € [n]} by which
f may be viewed as an embedding from H/p to A.

Write L for the finest partition of the set V/(H), that is, the partition consisting of |V (H)|
singleton parts. By rearranging (10) and using H/1 = H, we obtain

emb(H — A) =hom(H - A)— > emb(H/p — A). (11)

partition p#_L
of V(H)

Note that all graphs H/p with p # L have strictly less vertices than H. We can therefore apply
(11) again to express each term emb(H/p — A) on the right-hand side as hom(H/p — A)
minus embedding counts from smaller graphs. This process can be iterated until reaching
single-vertex graphs, from which homomorphism and embedding counts coincide trivially.
Upon termination of this process, all occurrences of embedding counts have been replaced by
homomorphism counts. |

Combining (4), (9), and Lemma 1, it follows that the k-partial determinant is a linear
combination of homomorphism counts from k-partial cycle covers plus “lower-order terms”.

! Note that p here is a partition of a set, not a partition of a number.
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» Corollary 2. For any fized k € N, there are coefficients ap € Q for all graphs F with
|[V(F)| < k such that, for any n x n matriz A,

sgn(C))
A) = ———~% hom — A hom(F — A). 12
det (A) (}\Ei_kaut(CA) om(C) )|+ ngith ap hom( ) (12)
[V(F)|<k

2.3 Lower-order terms vanish

As it turns out, the “lower-order terms” in (12) vanish. To show this, we use Kronecker
products to lift this equality to a polynomial identity and then compare coefficients. For
t € N, the Kronecker product’? A® J, of A with the t x t all-ones matrix J; is an nt x nt
matrix with row and column indices from [n] x [t], such that the entry at row (i,7) and
column (j,7") equals a; ;. In other words, each entry a; j of A is replaced in A® J; by a t x t
matrix that contains only a; ;.

It turns out that (12) “reacts polynomially” to this operation: When fixing k¥ = n and
replacing A by A ® J; for varying ¢ in (12), the homomorphism counts hom(S — A ® J;) for
graphs S on the right-hand side become polynomials in ¢. In fact, each such homomorphism
count contains only a single monomial:

> Claim 3. For any graph S, we have hom(S — A ® J;) =t/ hom(S — A).

Proof. Every function f : V(S) — [n] induces ¢!V functions ' : V(S) — [n] x [t], all

of the same edge-weight product, by choosing an index r, € [t] for each vertex v € V(5).

Conversely, every such function is induced by the function that forgets the second component
of the images. <

Applying Claim 3 on (12) with & = n, and with A ® J; instead of A, we obtain

det, (A® Jp) =t" <Z m hom(Cy — A) | + Z VOl o p hom(F — A). (13)
A V(S en

We now observe that det,, (A ® J;) is proportional to t™. This will allow us to ignore the
lower-order graphs F in (13).

> Claim 4. 'We have det, (A ® J;) = t"det(A).

Proof. By definition of the partial determinant, we have

detn(A® J) = Y det((A® J;)[9)).

SC[n]x[t]
with |S|=n

If S contains two pairs that agree in the first component, then the n x n matrix (A ® J;)[S]
contains two equal columns and its determinant vanishes. We can therefore restrict the
summation to index sets of the form S = {(1,r1),...,(n,r,)} for r1,...,7, € [t]. There are
t" sets S of this form, each with (A ® J;)[S] = A. The claim follows. <

2 The Kronecker product A ® B can be defined for general A and B, but we only require B = J;.
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Now consider the polynomial identity (13) again. By Claim 4, the left-hand side equals
t"det(A). Then comparing the coefficients of ¢" on both sides yields

det(A) = Z m hom(Cy — A) (14)
AbFn
n L tr(Aé)”()‘)

For the last equation, we expanded hom(Cy — A) via (7) and aut(C)) via (8), and we used
the definition of sgn(Cy). This proves (2).

» Remark. The above argument applies more generally. Consider any function F' : Q*** — Q
that admits a set H of k-vertex graphs and coefficients ay € Q for H € H such that

F(A) =) agemb(H — A).
HeH

By Lemma 1, every emb(H — A) is a sum of hom(H — A) and lower-order homomorphism
counts; this yields an analogue of (12). If F' vanishes on k x k matrices with two identical
rows/columns, then an analogue of Claim 4 holds, and it follows as above that the lower-order
homomorphism counts vanish.

3 Algorithmic applications

Equation (2) does not directly imply a polynomial-time algorithm for the determinant, as
the sum over partitions A - n involves a super-polynomial number of terms. Nevertheless,
this sum can be computed in polynomial time via dynamic programming or polynomial
multiplication, as shown below.

» Lemma 5. Given tr(A%) for all 1 < ¢ <n, we can compute det(A) with O(n>) operations.

Proof. Let X be a formal indeterminate. For 1 < ¢ < n, define the polynomial

[n/t] ;
Str(ASE
pe(x) = 3 (-1 e

=0

We observe first that the coefficient of X™ in the product (—1)"p; ...p, is the desired sum
in (2), and then focus on computing that coefficient.

For the first part, note that the coefficient of X™ can be viewed as a weighted count of
all ways to choose a power X* from each polynomial p,, subject to > ¢l -i¢ =n. These

choices yield a partition (1%,...n%)  n that is weighted by [],_,(—1)% tgf;?; . Thus, the
coefficient of X™ in (—1)"p; ... p, can be viewed as a sum over partitions A - n whose terms
correspond to those in (2).

We compute the first n + 1 coefficients of (—1)™p; ... p,, including the coefficient of X"

by iteratively multiplying p; onto p; ...p:;—1 and truncating the intermediate result to the

first n 4+ 1 coefficients. Using standard polynomial multiplication, each of the n iterations
takes O(n?) operations. Overall, this procedure requires O(n?®) operations. <

By naively iterating matrix multiplication, we can compute tr(A¢) for all 1 < ¢ < n with
O(n“*1) overall operations, where w is the exponent of matrix multiplication. This implies:

» Theorem 6. The determinant det(A) can be computed with O(n“*t) operations.
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The traces and subsequent application of (2) can also be computed with arithmetic
circuits of constant fan-in and poly-logarithmic depth: Any product of two matrices can
be computed trivially in O(logn) depth and O(n?) size. Repeated squaring allows us to
compute all matrix powers A* and their traces tr(A¢) for 1 < ¢ < n in O(log®n) depth and
O(n*) overall size.

After all traces are computed, the polynomial multiplications from the proof of Lemma 5
can be performed in O(log® n) depth and O(n?) size: A single polynomial multiplication can
be computed in O(logn) depth and O(n?) size. The truncation of the product (—1)"p; ... pp
to the first n + 1 coefficients can then be computed as an O(logn)-depth binary tree, with
P1,---,Pn at the leaves, and each internal node performing a polynomial multiplication
followed by truncating to the first n + 1 coefficients. This implies:

» Theorem 7. The determinant det(A) can be computed with an arithmetic circuit of
constant fan-in, O(log®n) depth, and O(n*) size.
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